
Acta Math. Univ. Comenianae
Vol. LXXXVI, 2 (2017), pp. 345–356

345

ON STRONG VARIATIONS OF WEYL TYPE THEOREMS

J. SANABRIA, L. VÁSQUEZ, C. CARPINTERO, E. ROSAS AND O. GARCÍA

Abstract. An operator T acting on a Banach space X satisfies the property

(UWE) if σa(T ) r σ
SF−

+
(T ) = E(T ), where σa(T ) is the aproximate point spec-

trum of T , σ
SF−

+
(T ) is the upper semi-Weyl spectrum of T and E(T ) is the set

of all eigenvalues of T that are isolated in the spectrum σ(T ) of T . In this paper,

we introduce and study two new spectral properties, namely (VE) and (VEa ), in
connection with Weyl type theorems. Among other results, we have that T satisfies

property (VE) if and only if T satisfies property (UWE) and σ(T ) = σa(T ).

1. Introduction and preliminaries

Throughout this paper, L(X) denotes the algebra of all bounded linear operators
acting on an infinite-dimensional complex Banach space X. We refer to [25] for
details about notations and terminologies. However, we give the following notations
that will be useful in the sequel:

• Browder spectrum: σb(T )
• Weyl spectrum: σW (T )
• Upper semi-Browder spectrum: σub(T )
• Upper semi-Weyl spectrum: σSF−

+
(T )

• Drazin invertible spectrum: σD(T )
• B-Weyl spectrum: σBW (T )
• Left Drazin invertible spectrum: σLD(T )
• Upper semi-B-Weyl spectrum: σSBF−

+
(T )

• approximate point spectrum: σa(T )
• surjectivity spectrum: σs(T )

In this paper, we introduce two new spectral properties of type Weyl theorems,
namely, the properties (VE) and (VEa), respectively. In addition, we establish the
precise relationships between these properties and other variants of Weyl’s theorem
recently introduced in [8], [9], [24], [25], [26], [27] and [29].
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Recall that an operator T ∈ L(X) is said to have the single valued extension
property at λ0 ∈ C (abbreviated SVEP at λ0) if for every open disc Dλ0

⊆ C
centered at λ0, the only analytic function f : Dλ0

→ X which satisfies the equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0 ,

is f ≡ 0 on Dλ0
(see [17]). The operator T is said to have SVEP if it has SVEP

at every point λ ∈ C. Evidently, every T ∈ L(X) has SVEP at each point of
the resolvent set ρ(T ) := C r σ(T ). Moreover, T has SVEP at every point of the
boundary ∂σ(T ) of the spectrum. In particular, T has SVEP at every isolated
point of the spectrum. Note that (see [1, Theorem 3.8])

(1) p(λI − T ) <∞ =⇒ T has SVEP atλ,

and dually,

(2) q(λI − T ) <∞ =⇒ T ∗ has SVEP at λ.

It is easily seen from definition of localized SVEP that

(3) λ /∈ acc σa(T ) =⇒ T has SVEP at λ,

where accK means the set of all accumulation points of K ⊆ C, and

(4) λ /∈ accσs(T ) =⇒ T ∗ has SVEP at λ.

Remark 1.1. If λI − T is a semi B-Fredholm operator, then the implications
(1)–(4) are equivalences (see [2]).

Lemma 1.2. ([3, Lemma 2.4]) Let T ∈ L(X). Then

(i) T is upper semi B-Fredholm and α(T ) <∞ if and only if T ∈ Φ+(X).
(ii) T is lower semi B-Fredholm and β(T ) <∞ if and only if T ∈ Φ−(X).

Denote by isoK, the set of all isolated points of K ⊆ C. If T ∈ L(X), define

E0(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T ) <∞},
E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(λI − T ) <∞},
E(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T )},
Ea(T ) = {λ ∈ isoσa(T ) : 0 < α(λI − T )}.

Also, define

Π0(T ) = σ(T ) \ σb(T ), Π0
a(T ) = σa(T ) \ σub(T ),

Π(T ) = σ(T ) \ σD(T ), Πa(T ) = σa(T ) \ σLD(T ).

Let T ∈ L(X). Following Coburn [15], T is said to satisfy Weyl’s theorem, in
symbols (W), if σ(T ) r σW (T ) = E0(T ). Following Rakočević [21], T is said to
satisfy a-Weyl’s theorem, in symbols (aW), if σa(T )rσSF−

+
(T ) = E0

a(T ). Accord-

ing to Berkani and Koliha [11], T is said to satisfy generalized Weyl’s theorem, in
symbols (gW), if σ(T )rσBW (T ) = E(T ). Similarly, T is said to satisfy generalized
a-Weyl’s theorem, in symbol (gaW), if σa(T ) r σSBF−

+
(T ) = Ea(T ).

Now, we describe several spectral properties introduced recently in [14], [24],
[25], [26] and [27].
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Definition 1.3. An operator T ∈ L(X) is said to have:

(i) property (gaw) [14] if σ(T ) r σBW (T ) = Ea(T ).
(ii) property (z) [27] if σ(T ) r σSF−

+
(T ) = E0

a(T ).

(iii) property (gz) [27] if σ(T ) r σSBF−
+

(T ) = Ea(T ).

(iv) property (v) [25] if σ(T ) r σSF−
+

(T ) = E0(T ).

(v) property (gv) [25] if σ(T ) r σSBF−
+

(T ) = E(T ).

(vi) property (Sw) [24] if σ(T ) r σSBF−
+

(T ) = E0(T ).

(vii) property (Saw) [26] if σ(T ) r σSBF−
+

(T ) = E0
a(T ).

Property (gv) (resp., (v)) is also called property (gt) (resp., (t)) in [22], and
property (gh) (resp., (h)) in [28]. It was proved in [25, Corollary 2.12], that prop-
erty (gv) (resp., (v)) is equivalent to property (gz) (resp., (z)). Also, it was proved
in [26, Corollary 2.9], that properties (Sw) and (Saw) are equivalent.

2. Properties (VE) and (VEa
).

According to [8], T ∈ L(X) has property (WE) (resp., property (UWEa)) if
σ(T ) r σW (T ) = E(T ) (resp. σa(T ) r σSF−

+
(T ) = Ea(T )). It was shown in [8,

Theorem 2.3] (resp., [8, Theorem 3.5]) that property (WE) (resp. (UWEa)) implies
generalized Weyl’s theorem (resp., property (WE)) but not conversely. Following
to [9], an operator T ∈ L(X) is said to have property (UWE) if σa(T )rσSF−

+
(T ) =

E(T ). It was shown in [9, Theorem 3.5] that property (UWE) implies property
(WE) but not conversely. Also in [9], it is shown that properties (UWEa

) and
(UWE) are independient. According to [29], T ∈ L(X) has property (ZEa

) if
σ(T ) r σW (T ) = Ea(T ). It was proved in [29, Corollary 2.5] that property (ZEa

)
also implies property (WE). In this section, we introduce and study two equiv-
alent spectral properties that are stronger than the properties (UWEa), (UWE)
and (ZEa

).

Definition 2.1. An operator T ∈ L(X) is said to have property (VE) if
σ(T ) r σSF−

+
(T ) = E(T ).

Example 2.2. 1. Let L be the unilateral left shift operator on `2(N). It is well
known that σ(L) = σSF−

+
(L) = D(0, 1), the closed unit disc on C and E(L) = ∅.

Therefore, σ(L) r σSF−
+

(L) = E(L), and so L satisfies property (VE).

2. Consider the Volterra operator V on the Banach space C[0, 1] defined by
V (f)(x) =

∫ x
0
f(t)dt for all f ∈ C[0, 1]. Note that V is injective and quasinilpo-

tent. Thus, σ(V ) = {0}, α(V ) = 0 and hence E(V ) = ∅. Since the range R(V ) is
not closed, then σSF−

+
(V ) = {0}. Therefore, σ(V )rσSF−

+
(V ) = E(V ), that means

V has property (VE).

Theorem 2.3. For T ∈ L(X), the following statements are equivalent:

(i) T has property (VE),
(ii) T has property (UWE) and σ(T ) = σa(T ),
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(iii) T has property (UWEa
) and σ(T ) = σa(T ).

Proof. (i) ⇒ (ii). Suppose that T satisfies property (VE) and let λ ∈ σa(T ) r
σSF−

+
(T ). Since σa(T ) r σSF−

+
(T ) ⊆ σ(T ) r σSF−

+
(T ) = E(T ), we have λ ∈ E(T )

and so, σa(T ) r σSF−
+

(T ) ⊆ E(T ).

To show the opposite inclusion E(T ) ⊆ σa(T ) r σSF−
+

(T ), let λ ∈ E(T ). Then,

λ ∈ isoσ(T) and α(λI − T ) > 0, so λI − T is not bounded below and hence,
λ ∈ σa(T ). As T satisfies property (VE) and λ ∈ E(T ), it follows that λI − T is
upper semi-Weyl. Therefore, λ ∈ σa(T )rσSF−

+
(T ). Thus, E(T ) ⊆ σa(T )rσSF−

+
(T )

and T satisfies property (UWE). Consequently, σ(T ) r σSF−
+

(T ) = E(T ) and

σa(T ) r σSF−
+

(T ) = E(T ). Therefore, σ(T ) r σSF−
+

(T ) = σa(T ) r σSF−
+

(T ) and

σ(T ) = σa(T ).

(ii) ⇒ (i). Suppose that T satisfies property (UWE) and σ(T ) = σa(T ). Then,
σ(T )rσSF−

+
(T ) = σa(T )rσSF−

+
(T ) = E(T ). Thus, σ(T )rσSF−

+
(T ) = E(T ) and

T satisfies property (VE).

(ii) ⇔ (iii). Obvious. �

The next example shows that, in general, property (UWEa) does not imply
property (VE).

Example 2.4. Let R be the unilateral right shift operator on `2(N) and U ∈
L(`2(N)) be defined by

U(x1, x2, x3, · · · ) = (0, x2, x3, · · · ).
Define an operator T on X = `2(N)⊕ `2(N) by T = R⊕U . Then, σ(T ) = D(0, 1),
the closed unit disc on C, σa(T ) = Γ ∪ {0}, where Γ denotes the unit circle
of C and σSF−

+
(T ) = Γ. Moreover, Ea(T ) = {0} and E(T ) = ∅. Therefore,

σa(T ) r σSF−
+

(T ) = Ea(T ) and σ(T ) r σSF−
+

(T ) 6= E(T ). Thus, T satisfies prop-

erties (UWEa
), but T does not satisfy property (VE).

The next example shows that, in general, property (UWE) does not imply
property (VE).

Example 2.5. Let R be the unilateral right shift operator on `2(N). Define
an operator T on X = `2(N) ⊕ `2(N) by T = R ⊕ 0. Then, σ(T ) = D(0, 1),
σa(T ) = σSF−

+
(T ) = Γ ∪ {0} and E(T ) = ∅. Therefore, σa(T ) r σSF−

+
(T ) = E(T )

and σ(T ) r σSF−
+

(T ) 6= E(T ). Thus, T satisfies property (UWE), but T does not

satisfy property (VE).

The next result gives the relationship between the properties (VE) and (WE).

Theorem 2.6. Let T ∈ L(X). Then T has property (VE) if and only if T has
property (WE) and σSF−

+
(T ) = σW (T ).

Proof. Sufficiency: Suppose that T satisfies property (VE), then by Theorem 2.3,
T satisfies property (UWE). Property (UWE) implies by [9, Theorem 3.2] that
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T satisfies property (WE). Consequently, σ(T ) r σSF−
+

(T ) = E(T ) and σ(T ) r
σW (T ) = E(T ). Therefore, σSF−

+
(T ) = σW (T ).

Necessity: Suppose that T satisfies property (WE) and σSF−
+

(T ) = σW (T ).

Then, σ(T ) r σSF−
+

(T ) = σ(T ) r σW (T ) = E(T ), and so T satisfies property

(VE). �

The next example shows that, in general, property (WE) does not imply prop-
erty (VE).

Example 2.7. Let Q be defined on `1(N) by

Q(x1, x2, x3, . . . , xk, . . . ) = (0, α1x1, α2x2, . . . , αk−1xk−1, . . . ),

where (αi) is a sequence of complex numbers such that 0 < |αi| ≤ 1 and
∑∞
i=1 αi <

∞. It follows from [11, Example 3.12], that

R(Qn) 6= R(Qn), n = 1, 2, . . . .

Define the operator T onX = `2(N)⊕`2(N)⊕`1(N) by T = R⊕0⊕Q, where R is the
unilateral right shift operator. Then, σ(T ) = σW (T ) = D(0, 1), σSF−

+
(T ) = Γ∪{0}

and E(T ) = ∅. We then have,

σ(T ) r σW (T ) = E(T ), σ(T ) r σSF−
+

(T ) 6= E(T ).

Hence, T satisfies property (WE), but T does not satisfy property (VE).

The next result gives the relationship between the property (VE) and generalized
Weyl’s theorem.

Theorem 2.8. Let T ∈ L(X). Then T has property (VE) if and only if T
satisfies generalized Weyl’s theorem and σSF−

+
(T ) = σBW (T ).

Proof. Sufficiency: Property (VE) implies by Theorem 2.6, that T satisfies pro-
perty (WE), and property (WE) implies by [8, Theorem 2.3], that T satisfies
generalized Weyl’s theorem. Consequently, σ(T ) r σSF−

+
(T ) = E(T ) and σ(T ) r

σBW (T ) = E(T ). Therefore, σSF−
+

(T ) = σBW (T ).

Necessity: Assume that T satisfies generalized Weyl’s theorem and
σSF−

+
(T ) = σBW (T ). Then, σ(T ) r σSF−

+
(T ) = σ(T ) r σBW (T ) = E(T ), that

means T satisfies property (VE). �

Remark 2.9. From Theorem 2.8, property (VE) implies generalized Weyl’s
theorem. However, the converse is not true in general. Consider the operator T
in Example 2.7, since T satisfies property (WE), then it also satisfies generalized
Weyl’s theorem, but does not satisfy property (VE).

Theorem 2.10. Suppose that T ∈ L(X) has property (VE). Then:

(i) T has property (ZEa),
(ii) Ea(T ) = E0

a(T ) = Π0
a(T ) = Πa(T ) = Π0(T ) = Π(T ) = E0(T ) = E(T ).
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Proof. (i) Property (VE) implies by Theorem 2.3, that σ(T ) = σa(T ), and
also implies by Theorem 2.6 that σSF−

+
(T ) = σW (T ). Hence, σ(T ) r σW (T ) =

σ(T ) r σSF−
+

(T ) = E(T ) = Ea(T ) and so T satisfies property (ZEa
).

(ii) Follows from (i) and [29, Lemma 2.3]. �

Example 2.11. Let R be the unilateral right shift operator defined on `2(N).
Since σ(R) = σW (R) = D(0, 1), E(R) = Ea(R) = ∅ and σSF−

+
(R) = Γ, then R

satisfies property (ZEa
), but does not satisfy property (VE).

Theorem 2.12. For T ∈ L(X), the following statements are equivalent:

(i) T has property (VE),
(ii) T has property (v) and E0(T ) = E(T ),

(iii) T has property (z) and E0(T ) = E(T ),
(iv) T has property (gv) and σSF−

+
(T ) = σSBF−

+
(T ).

(v) T has property (gz) and σSF−
+

(T ) = σSBF−
+

(T ).

Proof. (i) ⇒ (ii). Suppose that T satisfies property (VE). Then by Theorem
2.10, E0(T ) = E(T ), and hence σ(T ) r σSF−

+
(T ) = E(T ) = E0(T ), that means T

has property (v).

(ii)⇒ (i). If T satisfies property (v) and E0(T ) = E(T ), then σ(T )rσSF−
+

(T ) =

E0(T ) = E(T ) and T satisfies property (VE).

(ii)⇔ (iii). The equivalence between the properties (z) and (v) have been proved
in [25, Corollary 2.12].

(i) ⇒ (iv). Assume that T satisfies property (VE). By Theorem 2.3, T satisfies
property (UWEa). Property (UWEa) implies by [8, Theorem 3.2] that T satisfies
generalized a-Weyl’s theorem and σSF−

+
(T ) = σSBF−

+
(T ). Consequently, E(T ) =

σ(T ) r σSF−
+

(T ) = σ(T ) r σSBF−
+

(T ), and hence T satisfies property (gv).

(iv) ⇒ (i). Suppose that T satisfies property (gv) and σSF−
+

(T ) = σSBF−
+

(T ).

Then σ(T )rσSF−
+

(T ) = σ(T )rσSBF−
+

(T ) = E(T ), and hence T satisfies property

(VE).

(iv) ⇔ (v). The equivalence between the properties (gz) and (gv) have been
proved in [25, Corollary 2.12]. �

The following example shows that, in general, property (gv) (resp. (v)) does
not imply property (VE).

Example 2.13. Consider the operator T = 0 defined on the Hilbert space
`2(N). Then, σ(T ) = σSF−

+
(T ) = {0}, σSBF−

+
(T ) = ∅ and E(T ) = {0}. Therefore,

σ(T )rσSF−
+

(T ) 6= E(T ) and T does not satisfy property (VE). On the other hand,

σ(T ) r σSBF−
+

(T ) = E(T ), that means T satisfies property (gv), in consequence

T also satisfies property (v).

The next result gives the relationship between the properties (VE) and (Sw).
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Theorem 2.14. For T ∈ L(X), the following statements are equivalent:

(i) T has property (VE),
(ii) T has property (Sw) and E0(T ) = E(T ),

(iii) T has property (Saw) and E0(T ) = E(T ).

Proof. (i) ⇒ (ii). Assume that T satisfies property (VE). Then by Theorem
2.10, E(T ) = E0(T ), and by Theorem 2.12, σSF−

+
(T ) = σSBF−

+
(T ). Therefore

σ(T ) r σSBF−
+

(T ) = σ(T ) r σSF−
+

(T ) = E(T ) = E0(T ), that means T satisfies

property (Sw).

(ii) ⇒ (i). If T satisfies property (Sw) and E(T ) = E0(T ), then σ(T ) r
σSF−

+
(T ) ⊆ σ(T ) r σSBF−

+
(T ) = E0(T ) = E(T ). This shows σ(T ) r σSF−

+
(T ) ⊆

E(T ).

To show the opposite inclusion E(T ) ⊆ σ(T ) r σSF−
+

(T ), let λ ∈ E(T ). Since

E(T ) = E0(T ), then λ ∈ E0(T ) = σ(T ) r σSBF−
+

(T ). Thus λI − T is an upper

semi B-Fredholm operator and α(λI − T ) < ∞. By Lemma 1.2, λI − T is upper
semi-Fredholm, and hence upper semi-Weyl. Therefore, λ ∈ σ(T ) r σSF−

+
(T ) and

consequently σ(T ) r σSF−
+

(T ) = E(T ).

(ii)⇔ (iii). The equivalence between the properties (z) and (v) have been proved
in [26, Corollary 2.9]. �

The following example shows that, in general, property (Sw) does not imply
property (VE).

Example 2.15. Consider the operator Q defined in Example 2.7 and define
an operator T on X = `1(N) ⊕ `1(N) by T = Q ⊕ 0. Then, N(T ) = {0} ⊕ `1(N),
σ(T ) = {0}, E(T ) = {0}, E0(T ) = ∅. Since R(Tn) = R(Qn) ⊕ {0}, R(Tn) is not
closed for any n ∈ N; in consequence T is not an upper semi B-Weyl (resp. upper
semi-Weyl) operator and σSBF−

+
(T ) = {0} (resp. σSF−

+
(T ) = {0}). Then, we have

σ(T ) r σSBF−
+

(T ) = E0(T ), σ(T ) r σSF−
+

(T ) 6= E(T ).

Hence, T satisfies property (Sw), but T does not satisfy property (VE).

The next result gives the relationship between property (VE) and Weyl’s theo-
rem.

Theorem 2.16. Let T ∈ L(X). Then T has property (VE) if and only if T
satisfies Weyl’s theorem and σW (T ) r σSF−

+
(T ) = E(T ) r E0(T ).

Proof. Sufficiency: Suppose that T satisfies property (VE). It follows by The-
orem 2.8, T satisfies generalized Weyl’s theorem. Since generalized Weyl’s the-
orem implies Weyl’s theorem, it is enough to show that σW (T ) r σSF−

+
(T ) =

E(T )rE0(T ). By Theorems 2.6 and 2.10, σSF−
+

(T ) = σW (T ) and E(T ) = E0(T ),

respectively. Thus, we conclude that σW (T ) r σSF−
+

(T ) = ∅ = E(T ) r E0(T ).



352 J. SANABRIA, L. VÁSQUEZ, C. CARPINTERO, E. ROSAS, AND O. GARCÍA

Necessity: Assume that T satisfies Weyl’s theorem and σW (T ) r σSF−
+

(T ) =

E(T )rE0(T ). Since σ(T )rσW (T ) = E0(T ), σ(T ) = E0(T )∪σW (T ) and E0(T )∩
σW (T ) = ∅. Thus,

σ(T ) r σSF−
+

(T ) = [E0(T ) ∪ σW (T )] r σSF−
+

(T )

= E0(T ) ∪ [σW (T ) r σSF−
+

(T )]

= E0(T ) ∪ [E(T ) r E0(T )] = E(T )

and hence T satisfies property (VE). �

Remark 2.17. By Theorem 2.16, property (VE) implies Weyl’s theorem. How-
ever, the converse is not true in general. Consider the operator T in Remark 2.9,
since T satisfies generalized Weyl’s theorem, then it also satisfies Weyl’s theorem,
but does not satisfy property (VE).

Definition 2.18. An operator T ∈ L(X) is said to have property (VEa
) if

σ(T ) r σSF−
+

(T ) = Ea(T ).

Theorem 2.19. Let T ∈ L(X). Then T has property (VEa
) if and only if T

has property (UWEa) and σ(T ) = σa(T ).

Proof. Sufficiency: Assume that T satisfies property (VEa). Then

σa(T )rσSF−
+

(T ) ⊆ σ(T )rσSF−
+

(T ) = Ea(T ) and so σa(T )rσSF−
+

(T ) ⊆ Ea(T ).

To show the opposite inclusion Ea(T ) ⊆ σa(T ) r σSF−
+

(T ), let λ ∈ Ea(T ).

Then, λ ∈ isoσa(T) and hence λ ∈ σa(T ). As T satisfies property (VEa) and
λ ∈ Ea(T ), it follows that λI − T is upper semi-Weyl. Therefore, λ ∈ σa(T ) r
σSF−

+
(T ). Thus, Ea(T ) ⊆ σa(T ) r σSF−

+
(T ) and T satisfies property (UWEa

).

Consequently, σ(T )rσSF−
+

(T ) = Ea(T ) and σa(T )rσSF−
+

(T ) = Ea(T ). Therefore,

σ(T ) r σSF−
+

(T ) = σa(T ) r σSF−
+

(T ) and σ(T ) = σa(T ).

Necessity: Suppose that T satisfies property (UWEa
) and σ(T ) = σa(T ). Then,

σ(T )rσSF−
+

(T ) = σa(T )rσSF−
+

(T ) = Ea(T ), in consequence T satisfies property

(VEa
). �

Corollary 2.20. Let T ∈ L(X). Then T has property (VEa
) if and only if T

has property (VE).

Proof. Sufficiency: Suppose that T satisfies property (VEa). By Theorem 2.19,
σ(T ) = σa(T ), it follows that σ(T )r σSF−

+
(T ) = Ea(T ) = E(T ), hence T satisfies

property (VE).

Necessity: Assume that T satisfies property (VE). By Theorem 2.3, σ(T ) =
σa(T ) and so, σ(T ) r σSF−

+
(T ) = E(T ) = Ea(T ). Therefore, T satisfies property

(VEa). �

The next result gives the relationship between property (VEa) (or equivalently
(VE)) and property (ZEa).
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Theorem 2.21. Let T ∈ L(X). Then T has property (VEa
) if and only if T

has property (ZEa
) and σSF−

+
(T ) = σW (T ).

Proof. Sufficiency: Assume that T satisfies property (VEa
). By Corollary 2.20,

property (VEa
) is equivalent to property (VE), and by Theorem 2.6, property (VE)

implies that σSF−
+

(T ) = σW (T ). Consequently, σ(T )rσW (T ) = σ(T )rσSF−
+

(T ) =

Ea(T ). Therefore, T satisfies property (ZEa
).

Necessity: Assume that T satisfies property (ZEa
) and σSF−

+
(T ) = σW (T ).

Then, σ(T )rσSF−
+

(T ) = σ(T )rσW (T ) = Ea(T ), that means T satisfies property

(VEa
). �

Similar to Theorem 2.21, we have the following result.

Theorem 2.22. Let T ∈ L(X). Then T has property (VEa) if and only if T
has property (gaw) and σSF−

+
(T ) = σBW (T ).

Recall that T ∈ L(X) is said to satisfy a-Browder’s theorem (resp., generalized
a-Browder’s theorem) if σa(T ) r σSF−

+
(T ) = Π0

a(T ) (resp., σa(T ) r σSBF−
+

(T ) =

Πa(T )). From [7, Theorem 2.2] (see also [4, Theorem 3.2(ii)]), a-Browder’s the-
orem and generalized a-Browder’s theorem are equivalent. It is well known that
a-Browder’s theorem for T implies Browder’s theorem for T , i.e., σ(T )rσW (T ) =
Π0(T ). Also by [7, Theorem 2.1], Browder’s theorem for T is equivalent to gener-
alized Browder’s theorem for T , i.e. σ(T ) r σBW (T ) = Π(T ).

For T ∈ L(X), define Π0
+(T ) = σ(T )rσub(T ). The following theorem describes

the relationship between a-Browder’s theorem and property (VE).

Theorem 2.23. For T ∈ L(X), the following statements are equivalent:

(i) T has property (VE),
(ii) T satisfies a-Browder’s theorem and Π0

+(T ) = E(T ).

Proof. (i) ⇒ (ii) Assume that T satisfies property (VE). Then E(T ) = E0(T )
and T satisfies property (v) by Theorems 2.10 and 2.12, respectively. Property (v)
implies by [25, Theorem 2.17] that T satisfies a-Browder’s theorem and Π0

+(T ) =
E0(T ). Consequently, T satisfies a-Browder’s theorem and Π0

+(T ) = E0(T ) =
E(T ).

(ii) ⇒ (i) If T satisfies a-Browder’s theorem and Π0
+(T ) = E(T ), then

σ(T )rσSF−
+

(T ) = σ(T )rσub(T ) = Π0
+(T ) = E(T ). Therefore, T satisfies property

(VE). �

Remark 2.24. By Theorem 2.23, property (VE) implies a-Browder’s theorem.
However, the converse is not true in general. Indeed, the operator T defined in
Example 2.15 does not satisfy property (VE), but σa(T ) = σSF−

+
(T ) = {0} and

Π0
a(T ) = ∅, it follows that T satisfies a-Browder’s theorem.

Corollary 2.25. If T ∈ L(X) has SVEP at each λ /∈ σSF−
+

(T ), then T has

property (VE) if and only if E(T ) = Π0
+(T ).



354 J. SANABRIA, L. VÁSQUEZ, C. CARPINTERO, E. ROSAS, AND O. GARCÍA

Proof. By Theorem [5, Teorema 2.3], the hypothesis T has SVEP at each
λ /∈ σSF−

+
(T ) is equivalent to T satisfies a-Browder’s theorem. Therefore, if E(T ) =

Π0
+(T ), then σ(T ) r σSF−

+
(T ) = σ(T ) r σub(T ) = Π0

+(T ) = E(T ). �

Remark 2.26. It was proved in [12, Lemma 2.1], that if T ∗ has SVEP at every
λ /∈ σSF−

+
(T ) (resp., T has SVEP at every λ /∈ σSF+

−
(T )), then σW (T ) = σSF−

+
(T )

and σa(T ) = σ(T ) (resp., σW (T ∗) = σSF−
+

(T ∗) and σa(T ∗) = σ(T ∗)). Under the

above results, clearly we have that if T ∗ has SVEP at every λ /∈ σSF−
+

(T ) (resp.

T has SVEP at every λ /∈ σSF+
−

(T )), then the properties (WE), (UWE), (UWEa),

(ZEa
), (VE) and (VEa

) are equivalent for T (resp. for T ∗).

In the following table summarizes the meaning of various theorems and prop-
erties that are related with property (VE).

(WE) [8] σ(T ) r σW (T ) = E(T ) (WΠ) [9] σ(T ) r σW (T ) = Π(T )

W [15] σ(T ) r σW (T ) = E0(T ) B [19] σ(T ) r σW (T ) = Π0(T )

(ZEa ) [29] σ(T ) r σW (T ) = Ea(T ) (ZΠa ) [29] σ(T ) r σW (T ) = Πa(T )

(aw) [14] σ(T ) r σW (T ) = E0
a(T ) (ab) [14] σ(T ) r σW (T ) = Π0

a(T )

gW [11] σ(T ) r σBW (T ) = E(T ) gB [11] σ(T ) r σBW (T ) = Π(T )

(Bw) [18] σ(T ) r σBW (T ) = E0(T ) (Bb) [23] σ(T ) r σBW (T ) = Π0(T )

(gaw) [14] σ(T ) r σBW (T ) = Ea(T ) (gab) [14] σ(T ) r σBW (T ) = Πa(T )

(Baw) [30] σ(T ) r σBW (T ) = E0
a(T ) (Bab) [30] σ(T ) r σBW (T ) = Π0

a(T )

(v) [25] σ(T ) r σ
SF−

+
(T ) = E0(T ) (ah) [28] σ(T ) r σ

SF−
+

(T ) = Π0(T )

(z) [27] σ(T ) r σ
SF−

+
(T ) = E0

a(T ) (az) [27] σ(T ) r σ
SF−

+
(T ) = Π0

a(T )

(gv) [25] σ(T ) r σ
SBF−

+
(T ) = E(T ) (gah) [28] σ(T ) r σ

SBF−
+

(T ) = Π(T )

(Sw) [24] σ(T ) r σ
SBF−

+
(T ) = E0(T ) (Sb) [24] σ(T ) r σ

SBF−
+

(T ) = Π0(T )

(gz) [27] σ(T ) r σ
SBF−

+
(T ) = Ea(T ) (gaz) [27] σ(T ) r σ

SBF−
+

(T ) = Πa(T )

(Saw) [26] σ(T ) r σ
SBF−

+
(T ) = E0

a(T ) (Sab) [26] σ(T ) r σ
SBF−

+
(T ) = Π0

a(T )

(UWE) [9] σa(T ) r σ
SF−

+
(T ) = E(T ) (UWΠ) [9] σa(T ) r σ

SF−
+

(T ) = Π(T )

(w) [20] σa(T ) r σ
SF−

+
(T ) = E0(T ) (b) [13] σa(T ) r σ

SF−
+

(T ) = Π0(T )

(UWEa ) [8] σa(T ) r σ
SF−

+
(T ) = Ea(T ) (UWΠa ) [9] σa(T ) r σ

SF−
+

(T ) = Πa(T )

aW [21] σa(T ) r σ
SF−

+
(T ) = E0

a(T ) aB [16] σa(T ) r σ
SF−

+
(T ) = Π0

a(T )

(gw) [6] σa(T ) r σ
SBF−

+
(T ) = E(T ) (gb) [13] σa(T ) r σ

SBF−
+

(T ) = Π(T )

(Bgw) [23] σa(T ) r σ
SBF−

+
(T ) = E0(T ) (Bgb) [23] σa(T ) r σ

SBF−
+

(T ) = Π0(T )

gaW [11] σa(T ) r σ
SBF−

+
(T ) = Ea(T ) gaB [11] σa(T ) r σ

SBF−
+

(T ) = Πa(T )

(SBaw) [10] σa(T ) r σ
SBF−

+
(T ) = E0

a(T ) (SBab) [10] σa(T ) r σ
SBF−

+
(T ) = Π0

a(T )

Table 1.
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Theorem 2.27. Suppose that T ∈ L(X) has property (VE). Then:

(i) σSBF−
+

(T ) = σBW (T ) = σSF−
+

(T ) = σW (T ) = σLD(T ) = σD(T ) = σub(T ) =

σb(T ) and σ(T ) = σa(T ).
(ii) All properties given in Table 1 are equivalent, and T satisfies each of these

properties.

Proof. (i) By Theorem 2.3, the equality σ(T ) = σa(T ) holds. The equalities
σSBF−

+
(T ) = σBW (T ) = σSF−

+
(T ) = σW (T ) follows from Theorems 2.6, 2.8

and 2.12. Since the inclusions σSBF−
+

(T ) ⊆ σLD(T ) ⊆ σub(T ) ⊆ σb(T ) and

σSBF−
+

(T ) ⊆ σLD(T ) ⊆ σD(T ) ⊆ σb(T ) hold, it is sufficient to prove σSBF−
+

(T ) =

σb(T ). Indeed, since T has property (VE), by Theorem 2.23, T satisfies general-
ized a-Browder’s theorem or equivalently a-Browder’s theorem. As a-Browder’s
theorem implies Browder’s theorem, it follows that σSBF−

+
(T ) = σW (T ) = σb(T ),

(ii) By Theorem 2.3, T satisfies property (UWE), and the equivalence between
all properties follows from (i) and Theorem 2.10. �
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properties type Weyl-Browder theorems, Submitted.
27. Zariouh H., Property (gz) for bounded linear operators, Mat. Vesnik 65 (2013), 94–103.

28. Zariouh H., New version of property (az), Mat. Vesnik 66 (2014), 317–322.

29. Zariouh H., On the property (ZEa ), Rend. Circ. Mat. Palermo, II. Ser 65(2) (2016)
323–331.

30. Zariouh H. and Zguitti H., Variations on Browder’s theorem, Acta Math. Univ. Comeni-

anae 81 (2012), 255–264.

J. Sanabria, L. Vásquez, C. Carpintero, E. Rosas and O. Garćıa, Departamento de Matemáticas,
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