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A FUNCTIONAL GENERALIZATION OF OSTROWSKI
INEQUALITY VIA MONTGOMERY IDENTITY

S. S. DRAGOMIR

ABSTRACT. In this paper amongst other, we show that if f: [a,b] — R is absolutely
continuous on [a,b] and ®: R — R is convex (concave) on R, then

*(r@- = [ ' at)

x b
<(>) ! V @[(tfa)f’(t)}dtJr/ P [(t—b) f/(t)] dt

-~ 7'b—a z
for any z € [a, b].
Natural applications for power and exponential functions are provided as well.
Bounds for the Lebesgue p-norms of the deviation of a function from its integral
mean are also given.

1. INTRODUCTION

Comparison between functions and integral means are incorporated in Ostrowski
type inequalities as follows.
The first result in this direction is due to Ostrowski [20].

Theorem 1. Let f: [a,b] — R be a differentiable function on (a,b) with the
property that |f'(t)] < M for allt € (a,b). Then

2
1 r — atb
for all x € [a,b].

The constant i 18 the best possible in the sense that it cannot be replaced by a
smaller quantity.

b
(1.1) ‘f(w)—b_la [ s

The following results for absolutely continuous functions hold (see [16] — [18]).
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Theorem 2. Let f: [a,b] — R be absolutely continuous on [a,b]. Then, for all
x € [a,b], we have

b
|f<x> S el ARLGL

1 z—otb 2 / . /
V() [ @-0 e i € Dalab)
(12) a+1 at+1]®
1 x—a b—z . /

L ol e renen

x(a—b)= 1£1 5 é—l—%: 1, smalla > 1;
p—r

[3+ | 5] 1770

where ||-[( 4, (r € [1,00]) are the usual Lebesgue norms on Ly[a,b] , i.e.,

1911 fa,p,00 = €55 sup [g(?)]

t€la,b]
and
b ™
T
191l .01, = lg@®)"dt) ,  rello0).
a
The constants i, 1 and %, respectively, are sharp in the sense presented in

(pt1)»
Theorem 1.

The above inequalities can also be obtained from the Fink result in [19] on
choosing n = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Holder
continuous, then one may state the result (see, for instance, [14] and the references
therein for earlier contributions).

Theorem 3. Let f: [a,b] = R be of (r — H)-Hdlder type, i.e.,

(1.3) |f(@) = fWI<Hlz—y["  forall 2,y€ [a,b],
wherer € (0,1] and H > 0 are fized. Then, for all x € [a,b], we have the inequality

bia/abf(t)dt a <2_Z>r+:t <z_s>r+1] (a—b)".

1.4 —
(1.4) r+1
The constant i s also sharp in the above sense.

fx) =

<

Note that if » = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)

(see, for instance, [6])
2
1 b 1 z — kb
b_a/ fO)dt| < Y ( b_; ) (a —b)L,

(1.5) fx) =
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where « € [a,b]. Here the constant  is also best.
Moreover, if one drops the condition of the continuity of the function, and
assumes that it is of bounded variation, then the following result may be stated

(see [8]).
Theorem 4. Assume that f: [a,b] = R is of bounded variation and denote by

b
\ (f) its total variation. Then

1P 1 — atb |l ®
(1.6) f@) = 5= | fOdt| < |5+ b_; ]\/(f)

for all @ € [a,b]. The constant 5 is the best possible.

If we assume more about f, i.e., f is monotonically increasing, then the in-
equality (1.6) may be improved in the following manner [5] (see also the mono-
graph [15]).

Theorem 5. Let f: [a,b] — R be monotonic nondecreasing. Then for all
x € [a,b], we have the inequality.

b
%@ﬁ—bia/1ﬂﬂﬁ

b
W < bia {[2:3 —(a+b)] f(z) +/a sgn (¢ x)f(t)dt}
< e~ a) [f() — F(@)] + (b~ ) [F0) — f(@)])
1 T — ‘%“b
< [2 — ] /) - fa)

All the inequalities in (1.7) are sharp and the constant % is the best possible.
The case for the convex functions is as follows [11]

Theorem 6. Let f: [a,b] C R — R be a convex function on [a,b]. Then for
any x € (a,b), one has the inequality

5 [0— 02w - - @ @)
b
(1) < [ it~ (@-b)s()
<3 [o-22rw - - @)

The constant % 1s sharp in both inequalities. The second inequality also holds for
r=aorz=yh.
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For other Ostrowski’s type inequalities for the Lebesgue integral, see [1]-[6]
and [12]. Inequalities for the Riemann-Stieltjes integral may be found in [7], [9]
while the generalization for isotonic functionals was provided in [10]. For the case
of functions of self-adjoint operators on complex Hilbert spaces, see the recent
monograph [13].

2. A GENERALIZATION OF OSTROWSKI’S INEQUALITY

The following result holds

Theorem 7. Let f: [a,b] — R be absolutely continuous on [a,b]. If &: R - R
is convex (concave) on R, then we have the inequalities

b
B (f(m)— = f(t)dt>

(2.1) )
/ B[(t— a)f' (1)) dt + / B[(t—b) /(1) dt]

a x

for any x € [a,b].

Proof. Utilising the Montgomery identity

b
fo) -5 [ s

@ b
= bia Va (t—a)f’(t)dt—l—/ (t—10) f’(t)dt]

T

r—a 1 “5
t—a)f(t)dt
o (o2 [ - arow)
b—=x 1 b ,
+ba<bx/x(t_b)f(t)dt>’
which holds for any = € (a,b) and the convexity of ®: R — R, we have
1 b
0 - — t)dt
fa)- 5= [ 10

(2.3) <X % ( ! / (t — a)f’(t)dt)

“b—a Tr—a

4 z_aqa (bix/z (t—b)f’(t)dt)

for any « € (a,b), which is an inequality of interest in itself as well.
If we use Jensen’s integral inequality

d d
@(Cli / g(t)dt> < / @ [g(t)] dt

(2.2)
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we have

eo e [u-aroa) < L [Cee-aroa

b b
o (b ! / t—b)f’(t)dt> < ﬁ/x B [(t — b) (1)) dt

for any x € (a,b).
Using (2.3)—(2.
If x = b, then

b—a/ f®) b_a/ab(t—a)f’(t)dt

and by Jensen’s inequality, we get

b b
» (f(b)—bla / f(t)dt> < / B((t - a) /(1)) dt,

which proves the inequality (2.1) for z = b.
The same argument can be applied for x = a.

The case of concave functions goes likewise and the theorem is proved.

Corollary 1. With the assumptions of Theorem 7, we have

b b
20 <) [ <I><f(x)b_1a / f(t)dt> o

b
(26) <C) [ [ o-nee-a @)

b
—|—/ (x —a)®[(z—0b) f'(z)] dx] :

Proof. By Jensen’s integral inequality, we have

1 b
b—a ﬁ’(f(x) = )

which proves the first inequality in (2.6).

5), we get the desired result (2.1) for the convex functions.

67
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Integrating the inequality (2.1) over x, we have

bia/ab¢’<f(x)—b_la/abf(t)dt> dx

2.7)
1 b x , b ,
<C) i /. V <I>[(t—a)f(t)]dt+/z¢>[(t—b)f(t)]dt]dx-

Integrating by parts, we have

/ab (/j@ [(t —a)f'(t)] dt) dz
x/z<1>[(ta)f’(t)]dti/abxd </j<b[(ta)f’(t)]dt)
b/a P [(t—a)f'(t)]dt — /abxq’ [(x —a)f'(x)] dx
/ -0 8l - o) @) dr
b b
/a ( / ®[(t—b) ()] dt> dz
- (/:tb[(t—b)f’(t)]dt> b —/abxd (/:@[(t—b)f’(t)}dt>

~ ( / [t - b) F(1) dt) + / 20 (2 — b) f'(2)] da

Is)

=

and

b
- / (x — a)® [(x — b)f'(2)] da.
Utilising the inequality (2.7), we deduce the desired inequality (2.6). O

Remark 1. If we write the inequality (2.1) for the convex function ®(z) =
|z|” ,p > 1, then we get the inequality

P

b
fla) - — / f(tdt

b—a

(2.8)

b
<bi[ [ e—arirapa [ (b—t)”lf’(t)lpdt]

for « € [a,b].
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Utilising Holder’s inequality, we have

x b
B@%=/n@—wﬂfwfw+/"w—ﬂﬂwa&

i .
i————wmmﬂ i ' € Lo [a,2]:

(iC _ CL)erl [eY

(pa + 1)
29) U @=allf i,

IN

1 ey s i "€ Lpplasa] 0> 1,1 /a+1/8 =1

h— )Pt )
Uy TS RS A PR

+{ (b—a)PtHe .
&)wm.mmb if £ € Lyslwbl,a > 1,1/a+1/8 = 1
y4e

(b—a)? I7'1E, 4.0

for x € [a,b).
Utilising the inequalities (2. 8) and (2.9) for « € [a,b], we have

b—a/f dt

m—w@+n[@ a)’

Z‘

(2.10) <

AR CEES Lany P e

1 z—a\" b—a\"!

< AV

<o |G=) *(mw> (@ =071 ey.cc
provided f’ € Lo[a,b],

/f oai|
b—a
< _ g\ptl/a
‘Wamm+MMW DN Moo

2.11) (6= SN )

< 1 <xa> pi/a
T (pa+1)V [\b-a

b—a\PT/e 1 p
" <b—a> (=" 1 F 1.5
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provided f’ € Lygla, b, > 1,1/a+ 1/ =1 and

b
) AL
1

@ = 0 I Wy + O =) 11,
z—a\’ [(b—z\? _
cmac{ (122) (122) b 0r 1,
1 atb P
. CED R T

T~
provided f’ € Ly[a,b].

P

fz) =

<

(2.12)

b—a

Remark 2. If we take p = 1 in the above inequalities (2.11)—(2.12), then we
obtain some inequalities similar to the Ostrowski type inequalities from Theorem 2,
namely

b
Fw>bfa/fmw

1
< sty [ = 1 Mg + 0= 01 o

(2.13) 1 Tr—a 2 b— 2 /
=3 [(ba) * (ba> ](“_b)f”[a,b],oo
_atb\?
= [i* <$b—; ) ](ab) 1l a,0,00

for z € [a,b], provided f’ € Ly [a, b,

b
P@*wialf@“
]‘ !
= (a—0b)(a+ 1) [(x*a)lﬂ/a"f lfa,z1,6

(2.14) 6= N g

< 1 (ma)Hl/a
>~ (a+1)1/o¢ b—a

bh— o 141/
((522) e W
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for x € [a, b], provided f’ € Lg[a,b], a0 >1,1/a+1/8 =1 and

- [ o

(&= a) 17 g1+ (5= 2) 1 ]

(L+b
}Ilf a1

o — atb
3. APPLICATIONS FOR p-NORMS

(2.15) <

for x € [a,b).

We have the following inequalities for Lebesgue norms of the deviation of a function
from its integral mean

Theorem 8. Let f' [a,b] — R be absolutely continuous on [a,b].
(i) If f' € L , then
2 :| 1/p

1+L ) 47
(3 1 Hf 7/ f dt < |:(p—’_1)(p—~_2) (a*b) +p ”f ||[a7b]7oo

(i) If f’ € Lygla,b], wzthoz>1 1/a+1/8 =1, then

et

2
(pa+1)"* (p+1/a+1)

(iii) We have
1t 12+l 1\ /P
|f— m/ f(t)dt S35 <p+1> (@ =) (1 ljap).

Proof. Integrating the inequality (2.10) on [a, b], we have

1/p
15 (2 — )15,

<

(3.3)

[a,b],p

b b p
| @52 [ ] a
1 b ) )
(3.4) = (a—b)(p+1) £ ||[a b] /a {(x —a)PTl 4 (b—2) +1} dz
= 1 1P 2(b— a)P+2
— g e | |
2

~ o0y M e @b
which is equivalent with (3.1).
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Integrating the inequality (2.11),

/ab f(x)ia/abfu)dtp

1 b 1
< £ /m(f_MMUa+w—$y+m(h
3.5) (a=b)(pa+ 1)L/ 17 a0 ; [
1 2a — b)pt+1/atl
- A R
(a—b) (pa +1) o i/t
2

_ 1P p+1/a
- (pa+ 1)1/04 (p—|— 1/a+ 1) Hf ||[a,b],pﬁ (b_a)

dx

which is equivalent with (8).
Integrating the inequality (2.12), we have

A f(ff)—b_la/:f(t)dtp

b
! I[)tl,b},p/ max {(x — a)?, (b — z)P} du.

dx

Since

b
/ max {(z — a)?, (b — x)"} dz

a+b
2

:/a (b—x)pdx—i—/:rb(x—a)pdx

_ () et bt ()"
T p+1 p+1 p+1 p+1

<2p+1 — 1) b)p-l-l7

then from (3.6), we get

[ -5 [ o

which is equivalent with (3.3).

1 [fortlo1
dvs 2= <2p> (@ =) 1 I} 000
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4. APPLICATIONS FOR THE EXPONENTIAL

If we write the inequality (2.1) for the convex function ®(z) = exp(z), then we
get the inequality

exp[ Y dt]

< bia Va exp [(t —a)f'(t )]dt+/ exp[(t—b)f’(t)]dt]

x

(4.1)

for x € [a, b].
If we write the inequality (2.1) for the convex function ®(z) = cosh(z) :=
e“+e "
2

, then we get the inequality

h[ s dt]

z b
< bia [/a cosh [(t — a) f'(t)] dt+/ cosh [(t — b) f'(t)] dt}

x

for « € [a,b].
Utilising the inequality (4.1), we have the following multiplicative version of
Ostrowski’s inequality

Theorem 9. Let f: [a,b] — (0,00) be absolutely continuous on [a,b]. Then we
have the inequalities

b [ oL j}(xl)nf fbia{/:e"p[t‘“ o)
+/:exp{( Z ]

fabf(a:)dx 1 b f(z
exp [ﬁf;lnf(t)dt} = b—a /a (b~ z)exp [(x_a) f(x)} e

+/ab<x— e |-t dx] ~

(4.2)

for any x € [a,b] and

(4.3)

f(z)
Proof. If we replace f by In f in (4.1), we get

expllnf() i [ waa ]

= V e {“ ) J}g))] e /: P [“ 9 J;/g))] dt]

for any « € [a, b].

(4.4)
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Since

1 b
exp lln flx) — — In f(t)dt]
I b
=exp |In f(z) — In {exp (bia/ lnf(t)dt> }]
_ (z)
=exp [In
P | (exp ( f In f(t) ) )]

f(z)
exp ( f In f (¢ )

for any x € [a, b], then from (4.4), we get the desired inequality (4.2).
If we integrate the inequality (4.2) we get

S £(@)
exp[ flnf }

< bia/ab Vm exp [(t—a)?l((f))} dt+/:exp [(t—b) J;”((tt))} dt] dz.
Integrating by parts we have

[ (/ze p[“ V7))

(t)
<>]dt

(4.5)
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and
/ab </: exp {(t b J}((;))} dt) de
wo el b Oal - faa( o u-nh0)a)
_ —a/abexp [(t—b) J;(%)] dt+/ab$exp [(m—b) J;((j))} dz
_ /ab(x ) exp {(z —b) J}((;))] dz,
then by (4.5) we deduce the desired inequality (4.3). 0

5. APPLICATIONS FOR MIDPOINT-INEQUALITIES
From the inequality (2.1) written for —f, we have the following result:

Proposition 1. Let f: [a,b] — R be absolutely continuous on [a,b]. If®: R - R
is convez (concave) on R then from (2.1) we have the inequalities

b
@ (bla/ f(tydt - f (“;b»
(5.1) b atb
<@ | [ ele-oroias [T ela-oro) dt] .

If f:[a,b] — R is convex on [a,b], then by Hermite-Hadamard inequality we

have
1 b a+b
ﬂ/ f(t)dtzf( : )

We can state the following result in which the function ® is assumed is convex
only on [0, 00) or (0,00).

Proposition 2. If f: [a,b] — R is convez on [a,b], monotonic nondecreasing
on [a, “T'H’] and monotonic nonincreasing [a, “'QH’]. If ®: [0,00),(0,00) = R is

convez (concave) on [0,00) or (0,00), then (5.1) holds true.

If f: [a,b] — R is strictly convex on [a, b] , monotonic nondecreasing on [a, “;r ]

and monotonic nonincreasing on |[a, ‘“Qrb}, then by taking ®(x) = Inz, which is
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strictly concave on (0,00), we get the logarithmic inequality

In <b_1a /abf(t)dt—f (“;b»
b atd

Z bia V+ ln[(b—t)f’<t)]dt+/a 2 ln[(a—t)f’(t)]dt].

(5.2)

If f: [a,b] — R is convex on [a,b], monotonic nondecreasing on [a,‘%"b] and
monotonic nonincreasing on [a, “;‘b], then by taking ®(x) = z¢ with ¢ € (0,1),
we also have

<b_1a/abf<t>dt—f(a;b)>q

b
=z bia V [(b—t)f’(t>]th+/ [(a—t)f’(t)]th].

v+
2 a

(5.3)

If : [0,00),(0,00) — R is convex (concave) on [0,00) or (0,00), and if we take

f@t)=1t— a-2|-b P, p > 1, then from (5.1), we get
(a_b)p 1 /b a+b p—1
)< (> N B
¢<2p(p+1) _(_)bfa (,TH,‘I’ pb—1)(t 5 dt
( ’ a+b

+/a : @[(t—a)(

Let us recall the following means:

a-+b p—1
)

(a) The arithmetic mean

a+b

A= A(a,b) := 5

a,b>0;

(b) The geometric mean

G = G(a,b) := Vab; a,b>0;

(¢) The harmonic mean

2

H = H(a,b) := o1
a b

; a,b>0;

(d) The logarithmic mean

——
LL(a,b):{ o ;f;‘#z, a,b > 0;

Inb—Ina
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(e) The identric mean

a ifa="b
I=1(a,b):= = ;
(@0=11 (&) if a # b
(f) The p-logarithmic mean
a ifa=10
L, = L:D(a’ b) = pp+1_ g+l » . ;
()T e

where p € R\ {0, —1}.
The following inequality
H<GLSLLI<A

is well-known in the literature.

It is also well-known that L, is monotonically increasing over p, assuming that
L(] =1 and L_1 = L.

Assume that &: R - R is convex (concave) on R.

Now, if we take f(t) = 1 in (5.1), where t € [a,b] C (0,00), then we have

S(Z)blal/;(b(t;b>dt+/a : @(ttQ )dt]

If we take f(t) = —Int in (5.1), where ¢ € [a,b] C (0,00), then we have

)
gt [ (o [ (524]

If we take f(t) = t?, p € R\ {0,—1} in (5.1), where t € [a,b] C (0,00), then we
have

® (Lb(a,b) — AP(a,b))
(5.7) oy 1
T b—a

(5.5)

(5.6)

b ate
/ﬂ @[p(b—t)tp_l]dt—i-/ @[p(a—t)tp_l]dt].

v+b
a5 a
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