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ON BOCHNER RICCI SEMI-SYMMETRIC

HERMITIAN MANIFOLD

B. B. CHATURVEDI and B. K. GUPTA

Abstract. The aim of the present paper is to study a Bochner Ricci semi-sym-

metric quasi-Einstein Hermitian manifold (QEH)n, a Bochner Ricci semi-symmetric

generalised quasi-Einstein Hermitian manifold G(QEH)n and a Bochner Ricci semi-
symmetric pseudo generalised quasi-Einstein Hermitian manifold P (GQEH)n.

1. Introduction

An even dimension differentiable manifold Mn is said to be a Hermitian manifold
if a complex structure J of type (1, 1) and a pseudo-Riemannian metric g of the
manifold M satisfy

(1.1) J2 = −I,

and

(1.2) g(JX, JY ) = g(X,Y ),

for all X,Y ∈ χ(M), where χ(M) is Lie algebra of vector fields on M.
The notion of an Einstein manifold was introduced and studied by Albert Ein-

stein and for this reason, this manifold is known as an Einstein manifold. In differ-
ential geometry and mathematical physics, an Einstein manifold is a Riemannian
or pseudo-Riemannian manifold (Mn, g) (n ≥ 2) whose Ricci tensor satisfies the
condition

(1.3) S(X,Y ) = αg(X,Y ),

where S denotes the Ricci tensor of the manifold (Mn, g)(n ≥ 2) and α is a non-
zero scalar. An Einstein manifold plays an important role in Riemannian geometry
as well as in general theory of relativity.

From the equation (1.3), we get

(1.4) r = nα.
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In 2000, M. C. Chaki and R. K. Maity [12] introduced a new type of a non-flat
Riemannian manifold whose non-zero Ricci tensor satisfies

(1.5) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ),

and they called it a quasi-Einstein manifold, where α, β are scalars such that β 6= 0
and A is a non-zero 1-form defined by g(X, ρ) = A(X) for every vector field X.
ρ denotes the unit vector called the generator of the manifold. An n-dimensional
quasi-Einstein manifold is denoted by (QE)n.

After contraction of the equation (1.5), we have

(1.6) r = αn+ β.

From the equations, (1.2) and (1.5), we can easily obtain

(1.7)
S(X, ρ) = (α+ β)A(X), S(ρ, ρ) = (α+ β),

g(Jρ, ρ) = 0, S(Jρ, ρ) = 0.

A quasi-Einstein manifold arises during the study of exact solutions of Einstein
fields equations as well as considerations of a quasi-umblical hypesurfaces of semi-
Euclidean space. The Walker-space time is an example of quasi-Einstein manifold.
Also quasi-Einstein manifolds can be taken as a model of the perfect fluid space
time in general theory of relativity [22]. So we can say that quasi-Einstein man-
ifolds play an important role in the general theory of relativity. A quasi-Einstein
manifold has been studied by several authors [1, 6, 15, 16] in different ways. In
2001, M. C. Chaki [13] introduced the notion of generalized quasi-Einstein man-
ifolds. Also U. C. De and G. C. Ghosh [20] cited an example of a generalized
quasi-Einstein manifold and studied its geometrical properties in 2004.

A Riemannian manifold (Mn, g), (n ≥ 2) is said to be a generalized quasi-
Einstein manifold if a non-zero Ricci tensor of type (0, 2) satisfies the condition

(1.8) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γC(X)C(Y ),

where α, β and γ are scalars such that β 6= 0, γ 6= 0 and A, C are non-vanishing
1-forms such that

g(X, ρ) = A(X), g(X,µ) = C(X),

g(ρ, ρ) = g(µ, µ) = 1,
(1.9)

where ρ and µ are orthogonal unit vectors. An n-dimensional generalized quasi-
Einstein manifold is denoted by G(QE)n.

After contraction of equation (1.8), we get

(1.10) r = αn+ β + γ.

From the equations (1.2), (1.8) and (1.9), we can easily obtain

(1.11)

S(X, ρ) = (α+ β)A(X), S(X, µ) = (α+ γ)C(X),

S(µ, µ) = α+ γ, S(ρ, ρ) = α+ β,

g(Jρ, ρ) = g(Jµ, µ) = 0,

S(Jµ, µ) = S(Jρ, ρ) = 0.
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In the continuation of above the studies several authors have generalized the no-
tion of quasi-Einstein manifolds, for example, some results on generalized quasi-
Einstein manifolds by Prakasha and Venkatesha [9], super quasi-Einstein manifolds

by C. Özgür [7], pseudo quasi-Einstein manifolds by A. A. Shaikh [2] and also
N(k)-quasi-Einstein manifolds studied by [3, 5, 8, 11, 14].

In 2008, De and Gazi [21] introduced the notion of nearly quasi-Einstein man-
ifolds. A non-flat Riemannian manifold (Mn, g), (n ≥ 2) is called a nearly quasi-
Einstein manifold if its Ricci tensor of type (0, 2) is not identically zero and satisfies
the condition

(1.12) S(X,Y ) = αg(X,Y ) + βE(X,Y ),

where α, β are scalars such that β 6= 0 and E is a non-zero symmetric tensor of type
(0, 2). An n-dimensional nearly quasi-Einstein manifold is denoted by N(QE)n.

In 2008, A. A. Shaikh and A. K. Jana introduced the concept of a pseudo
generalized quasi-Einstein manifold and also verified it by a suitable example.
A Riemannian manifold (Mn, g), (n ≥ 2) is called a pseudo generalized quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition

(1.13) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + γC(X)C(Y ) + δD(X,Y ),

where α, β, γ and δ are non-zero scalars and A, C are non-vanishing 1-forms such
that

(1.14)
g(X, ρ) = A(X), g(X,µ) = C(X),

g(ρ, ρ) = g(µ, µ) = 1

for every vector field X. ρ and µ are mutually orthogonal unit vector fields called
the generators of the manifold. D is a non-zero symmetric tensor of type (0, 2)
with zero trace, which satisfies the condition

(1.15) D(X, ρ) = 0

for every vector field X. Also α, β, γ and δ are called the associated scalars. A
and C are the associated 1-forms of the manifold and D is called the structure
tensor of the manifold. Such type of the manifold is denoted by P (GQE)n.

Now contracting the equation (1.13), we have

(1.16) r = αn+ β + γ + δD.

From equations (1.13)–(1.15) and (1.2), we have

(1.17)

S(X, ρ) = (α+ β)A(X), S(X, µ) = (α+ γ)C(X),

S(ρ, ρ) = (α+ β) + δD(ρ, ρ), S(µ, µ) = (α+ γ) + δD(µ, µ),

g(Jρ, ρ) = g(Jµ, µ) = 0,

S(Jµ, µ) = δD(Jµ, µ), S(Jρ, ρ) = δD(Jρ, ρ).
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The notion of a Bochner curvature tensor was introduced by S. Bochner [18]. The
Bochner curvature tensor B is defined by
(1.18)

B(Y,Z, U, V ) = R(Y,Z, U, V )− 1

2(n+ 2)

{
S(Y, V )g(Z,U)− S(Y,U)g(Z, V )

+ g(Y, V )S(Z,U)− g(Y, U)S(Z, V ) + S(JY, V )g(JZ,U)

− S(JY, U)g(JZ, V ) + S(JZ,U)g(JY, V )− g(JY, U)S(JZ, V )

− 2S(JY, Z)g(JU, V )− 2g(JY, Z)S(JU, V )
}

+
r

(2n+ 2)(2n+ 4)

{
g(Z,U)g(Y, V )− g(Y,U)g(Z, V )

+ g(JZ,U)g(JY, V )− g(JY, U)g(JZ, V )− 2g(JY, Z)g(JU, V )
}
,

where r is a scalar curvature of the manifold.
In a Hermitian manifold, a Bochner curvature tensor satisfies the condition

(1.19) B(X,Y, U, V ) = −B(X,Y, V, U).

In 2012, S. K. Hui and R. S. Lemence [17] studied a generalised quasi-Einstein
manifold addmitting a W2-curvature tensor and proved that if a W2-curvature
tensor satisfiesW2·S = 0, then either the associated scalars β and γ are equal or the
curvature tensor R satisfies a definite condition. D. G. Prakasha and H. Venkatesha
[9] studied some results on generalised quasi-Einstein manifolds and proved that in
generalized quasi-Einstein manifold, if a conharmonic curvature tensor satisfies L ·
S = 0, then either M is a nearly quasi-Einstein manifold N(QE)n or the curvature
tensor R satisfies a definite condition. After studying of these developments in
quasi-Einstein manifold (QE)n, generalized quasi-Einstein manifold G(QE)n and
a pseudo generalized quasi-Einstein manifold P (GQE)n, we plan to study another
type of Bochner Ricci semi-symmetric Hermitian manifold.

2. Bochner Ricci semi-symmetric Hermitian manifold

Let (Mn, g) be a Riemannian manifold and ∇ be the Levi-Civita connection on
(Mn, g) then, a Riemannian manifold is said to be locally symmetric if ∇R = 0,
where R is the Riemannian curvature tensor of (Mn, g). The locally symmetric
manifold has been studied by different geometers through different aproaches.
The notion has been developed, e.g., a semi-symmetric manifold by Szabo [23],
recurrent manifold by Walker [4], conformally recurrent manifold by Adati and
Miyazawa [19].

According to Z. I. Szabo [23], if the manifold M satisfies the condition

(2.1) (R(X,Y ).R)(U, V )W = 0, X, Y, U, V,W ∈ χ(M),

for all vector fields X and Y , then the manifold is called a semi-symmetric mani-
fold.
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For a (0, k)-tensor field T on M, k ≥ 1, and a symmetric (0, 2)-tensor field A
on M , the (0, k + 2)-tensor fields R, T and Q(A, T) are defined by

(2.2)
(R.T )(X1, . . . , Xk;X,Y ) = − T (R(X,Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1, R(X,Y )Xk)

and

(2.3)
Q(A, T )(X1, . . . , Xk;X,Y ) = − T ((X ∧A Y )X1, X2, . . . , Xk)

− · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk),

where X ∧A Y is the endomorphism given by

(2.4) (X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y.

Definition 2.1 ([10]). A semi-Riemannian manifold is said to be Ricci semi-
symmetric if the following condition is satisfied

(2.5) (R(X, Y ).S)(Z,W ) = −S(R(X,Y )Z,W )− S(Z,R(X,Y )W ) = 0

for all X,Y, Z ∈ χ(Mn).

Now we set the following definition.

Definition 2.2. An even dimensional Hermitian manifold (Mn, g) is said to be
Bochner Ricci semi-symmetric Hermitian manifold if the Bochner curvature tensor
satisfies the condition B · S = 0, i.e.,

(2.6) (B(X, Y ).S)(Z,W ) = −S(B(X,Y )Z,W )− S(Z, (B(X,Y )W ) = 0

for all X,Y, Z ∈ χ(Mn).

3. Bochner Ricci semi-symmetric
quasi-Einstein Hermitian manifold (QEH)n

In this section, we introduce the following definitions.

Definition 3.1. A Hermitian manifold is said to be a quasi-Einstein Hermitian
manifold if it satisfies the equation (1.5). Throughout this paper, we denote the
quasi-Einstein Hermitian manifold by (QEH)n.

Definition 3.2. A quasi-Einstein Hermitian manifold is said to be a Bochner
Ricci semi-symmetric quasi-Einstein Hermitian manifold (QEH)n if it satisfies the
equation (2.6).

If we take a Bochner Ricci semi-symmetric quasi-Einstein Hermitian manifold,
then from the equations (1.5) and (2.6), we have

(3.1)
α[B(X,Y, Z,W ) +B(X,Y,W,Z)]

+ β[A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )] = 0,

where g(B(X,Y )W,Z) = B(X,Y,W,Z).
Now from the equations (1.19) and (3.1), we have

(3.2) β[A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )] = 0,
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this implies either

(3.3) β = 0,

or

(3.4) A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W ) = 0.

From the equation (3.2), if β = 0, then from the equation (1.5), we have

(3.5) S(X,Y ) = αg(X,Y ).

Thus we come to the conclusion.

Theorem 3.3. Every Bochner Ricci semi-symmetric quasi-Einstein Hermitian
manifold (QEH)n is either Bochner Ricci semi-symmetric Einstein manifold or
1-form A satisfying

A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W ) = 0.

4. Bochner Ricci semi-symmetric generalised quasi-Einstein
Hermitian manifold G(QEH)n

In this section, we introduce the following definitions.

Definition 4.1. A Hermitian manifold is said to be generalised quasi-Einstein
Hermitian manifold if it satisfies the equation (1.8). Throughout this paper, we
denote the generalised quasi-Einstein Hermitian manifold by G(QEH)n.

Definition 4.2. A generalised quasi-Einstein Hermitian manifold is said to
be a Bochner Ricci semi-symmetric generalised quasi-Einstein Hermitian manifold
G(QEH)n if it satisfies the equation (2.6).

If we take a Bochner Ricci semi-symmetric generalised quasi-Einstein Hermitian
manifold then from the equations (1.8) and (2.6), we have

(4.1)

α[B(X,Y, Z,W ) +B(X,Y,W,Z)]

+ β[A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )]

+ γ[C(B(X,Y )Z)C(W ) + C(Z)C(B(X,Y )W )] = 0,

where g(B(X,Y )W,Z) = B(X,Y,W,Z).
Now from the equations (1.19) and (4.1), we have

(4.2)
β[A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )]

+ γ[C(B(X,Y )Z)C(W ) + C(Z)C(B(X,Y )W )] = 0.

Putting Z = ρ and W = µ in a equation (4.2), we have

(4.3) βA(B(X,Y )µ) + γC(B(X,Y )ρ) = 0.

Since we know that

C(B(X,Y )ρ) = g(B(X,Y )ρ, µ) = B(X,Y, ρ, µ)

and
A(B(X,Y )µ) = g(B(X,Y )µ, ρ) = B(X,Y, µ, ρ),
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then from the equation (4.3), we get

(4.4) βB(X,Y, µ, ρ) + γB(X,Y, ρ, µ) = 0.

From the equations (1.19) and (4.4), we have

(4.5) (β − γ)B(X,Y, µ, ρ) = 0,

this implies either β = γ or B(X,Y, µ, , ρ) = 0.
From the equation (4.5), if β = γ, then from the equation (1.8), we have

(4.6) S(X,Y ) = αg(X,Y ) + βE(X,Y ),

where E(X,Y ) = A(X)A(Y ) + C(X)C(Y ). This is a nearly quasi-Einstein mani-
fold.

Thus we state the conclusion.

Theorem 4.3. Every Bochner Ricci semi-symmetric generalised quasi-Einstein
Hermitian manifold G(QEH)n is either a Bochner Ricci semi-symmetric nearly
quasi-Einstein manifold N(QE)n or

B(X,Y, µ, ρ) = 0.

Putting Z = W = ρ in the equation (4.2), we have

(4.7) βA(B(X, Y )ρ) = 0.

This implies either β = 0 or A(B(X,Y )ρ) = B(X,Y, ρ, ρ) = 0. If β = 0, then from
the equation (1.8), we have

(4.8) S(X,Y ) = αg(X,Y ) + γC(X)C(Y ),

which implies that the manifold is a quasi-Einstein manifold.
Thus, we have the lollowing conclusion.

Theorem 4.4. A Bochner Ricci semi-symmetric generalised quasi-Einstein
Hermitian manifold G(QEH)n is a quasi-Einstein manifold.

Now again putting Z = µ and W = µ in the the equation (4.2), we get

(4.9) γC(B(X, Y )µ) = 0,

this implies either γ = 0 or C(B(X,Y )µ) = g(B(X,Y )µ, µ) = B(X,Y, µ, µ) = 0.
If γ = 0, then from the equation (1.8), we have

(4.10) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ),

this is a quasi-Einstein manifold.
Thus we conclude.

Theorem 4.5. A Bochner Ricci semi-symmetric generalised quasi-Einstein
Hermitian manifold G(QEH)n is a quasi-Einstein manifold.
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5. Bochner Ricci semi-symmetric pseudo generalised quasi-Einstein
Hermitian manifold P (GQEH)n

In this section, we introduce the following definitions.

Definition 5.1. A Hermitian manifold is said to be a pseudo generalised quasi-
Einstein Hermitian manifold if it satisfies the equation (1.13). Throughout this pa-
per, we denote the generalised quasi-Einstein Hermitian manifold by P (GQEH)n.

Definition 5.2. A pseudo generalised quasi-Einstein Hermitian manifold is said
to be a Bochner Ricci semi-symmetric pseudo generalised quasi-Einstein Hermitian
manifold P (GQEH)n if it satisfies the equation (2.6).

If we take a Bochner Ricci semi-symmetric pseudo generalised quasi-Einstein
Hermitian manifold, then from the equations (1.13) and (2.6), we have

(5.1)

α[B(X,Y, Z,W ) +B(X,Y,W,Z)]

+ β[A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )]

+ γ[C(B(X,Y )Z)C(W ) + C(Z)C(B(X,Y )W )]

+ δ[D(B(X,Y )Z,W ) +D(Z,B(X,Y )W )] = 0,

where g(B(X,Y )W,Z) = B(X,Y,W,Z). Now from the equations (1.19) and (5.1),
we get

(5.2)

β[A(B(X,Y )Z)A(W ) +A(Z)A(B(X,Y )W )]

+ γ[C(B(X,Y )Z)C(W ) + C(Z)C(B(X,Y )W )]

+ δ[D(B(X,Y )Z,W ) +D(Z,B(X,Y )W )] = 0.

Putting Z = ρ and W = µ in the equation (5.2), we have

(5.3) βA(B(X,Y )µ)+γC(B(X,Y )ρ))+δ[D(B(X,Y )ρ, µ)+D(ρ,B(X,Y )µ)] = 0.

Now if we take D(B(X,Y )ρ, µ) = D(ρ,B(X,Y )µ) = 0, then from the equation
(5.3), we obtain

(5.4) βA(B(X,Y )µ) + γC(B(X,Y )ρ) = 0.

Since we know that

C(B(X,Y )ρ) = g(B(X,Y )ρ, µ) = B(X,Y, ρ, µ)

and

A(B(X,Y )µ) = g(B(X,Y )µ, ρ) = B(X,Y, µ, ρ),

then from the equation (5.4), we have

(5.5) βB(X,Y, µ, ρ) + γB(X,Y, ρ, µ) = 0.

From the equations (1.19) and (5.5), we have

(5.6) (β − γ)B(X,Y, µ, ρ) = 0,

this implies either β = γ or B(X,Y, µ, ρ) = 0.
Thus we state the conclusion.
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Theorem 5.3. In a Bochner Ricci semi-symmetric pseudo generalised quasi-
Einstein Hermitian manifold, if D(B(X,Y )ρ, µ) = D(ρ,B(X,Y )µ) = 0, then
either the scalars β and γ are equal or

B(X,Y, µ, ρ) = 0.

Now we propose the following corollary.

Corollary 5.4. In a Bochner Ricci semi-symmetric pseudo generalised quasi
Einstein Hermitian manifold, if D(B(X,Y )ρ, ρ) = 0, then

S(X,Y ) = αg(X,Y ) + γC(X)C(Y ) + δD(X,Y ).

Proof. Putting Z = W = ρ and D(B(X,Y )ρ, ρ) = 0 in the equation (5.2), we
have

(5.7) βA(B(X,Y )ρ) = 0,

this implies either β = 0 or A(B(X,Y )ρ) = B(X, Y, ρ, ρ) = 0. If β = 0, then from
the equation (1.13), we have

(5.8) S(X,Y ) = αg(X,Y ) + γC(X)C(Y ) + δD(X,Y ).

�

Similarly, putting Z = W = µ and D(B(X,Y )µ, µ) = 0 in the equation (5.2),
we get

(5.9) γC(B(X, Y )µ) = 0,

this implies either γ = 0 or C(B(X, Y )µ) = B(X, Y, µ, µ) = 0.
If γ = 0, then from the equation (1.13), we have

(5.10) S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + δD(X,Y ).

Thus we conclude the following corollary.

Corollary 5.5. In a Bochner Ricci semi-symmetric pseudo generalised quasi-
Einstein Hermitian manifold, if D(B(X,Y )µ, µ) = 0, then

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ) + δD(X,Y ).
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