
Acta Math. Univ. Comenianae
Vol. LXXXVII, 1 (2018), pp. 35–53

35

STRONGLY n-GORENSTEIN PROJECTIVE, INJECTIVE,

AND FLAT MODULES

N. MAHDOU and M. TAMEKKANTE

Abstract. This paper generalizes the idea of the authors in [3]. Namely, we define

and study a particular case of modules with Gorenstein projective, injective, and
flat, respectively, dimension less or equal n ≥ 0, which we call strongly n-Gorenstein

projective, injective and flat modules. These three classes of modules give us a new
characterization of the first modules, and they are a generalization of the notions

of strongly Gorenstein projective, injective, and flat modules, respectively.

1. Introduction

Throughout the paper, all rings are commutative with identity and all modules
are unitary.
Let R be a ring, and let M be an R-module. As usual, we use pdR(M), idR(M),
and fdR(M), respectively, to denote the classical projective dimension, injective
dimension, and flat dimension of M .

For a two-sided Noetherian ring R, Auslander and Bridger [1] introduced the
G-dimension, GdimR(M), for every finitely generated R-module M . They showed
that GdimR(M) ≤ pdR(M) for all finitely generated R-modules M , and equality
holds if pdR(M) is finite.

Several decades later, Enochs and Jenda [11, 12] introduced the notion of
Gorenstein projective dimension (G-projective dimension for short) as an exten-
sion of G-dimension to modules that are not necessarily finitely generated, and
the Gorenstein injective dimension (G-injective dimension for short) as a dual no-
tion of Gorenstein projective dimension. Then, to complete the analogy with the
classical homological dimension, Enochs, Jenda, and Torrecillas [13] introduced
the Gorenstein flat dimension. Some references are [4, 8, 9, 11, 12, 13, 15].

Recall that an R-module M is called Gorenstein projective if there exists an
exact sequence of projective R-modules

P : . . .→ P1 → P0 → P 0 → P 1 → . . .
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such that M ∼= Im(P0 → P 0) and the functor HomR(−, Q) leaves P exact when-
ever Q is a projective R-module. The complex P is called a complete projective
resolution.

The Gorenstein injective R-modules are defined dually.
An R-module M is called Gorenstein flat if there exists an exact sequence of

flat R-modules
F : . . .→ F1 → F0 → F 0 → F 1 → . . .

such that M ∼= Im(F0 → F 0) and the functor I⊗R – leaves F exact whenever I is
an injective R-module. The complex F is called a complete flat resolution.

The Gorenstein projective, injective, and flat dimensions are defined in terms of
resolutions and denoted by Gpd(−), Gid(−), and Gfd(−), respectively ([8, 15]).

In [4], the authors proved the equality for any associative ring R.

sup{GpdR(M) | M is a (left) R-module}
= sup{GidR(M) | M is a (left) R-module}.

They called the common value of the above quantities the left Gorenstein global
dimension of R and denoted it by l.Ggldim(R). Similarly, they set

l · wGgldim(R) = sup{GfdR(M) | M is a (left) R-module}
which called the left Gorenstein weak dimension of R. Since in this paper, all rings
are commutative, we drop the letter l.

In [3], the authors introduced a particular case of Gorenstein projective, injec-
tive, and flat modules, respectively, which are defined as follows:

Definition 1.1.
(1) A module M is said to be strongly Gorenstein projective (SG-projective for

short) if there exists an exact sequence of projective modules of the form

P = . . .→ P
f→ P

f→ P
f→ P → . . .

such that M ∼= Im(f) and Hom(−, Q) leaves P exact whenever Q is a projec-
tive module.

The exact sequence P is called a strongly complete projective resolution and
denoted by (P, f).

(2) The strongly Gorenstein injective module is defined dually.

(3) A module M is said to be strongly Gorenstein flat (SG-flat for short) if there
exists an exact sequence of flat modules of the form

F = · · · → F
f→ F

f→ F
f→ F → . . .

such that M ∼= Im(f) and I⊗-leaves F exact whenever I is an injective
module. The exact sequence F is called a strongly complete flat resolution
and denoted by (F, f).

The principal role of the strongly Gorenstein projective and injective modules
is to give a simple characterization of Gorenstein projective and injective modules,
respectively, as follows
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Theorem 1.2. ([3, Theorem 2.7]) A module is Gorenstein projective (resp.,
injective) if and only if it is a direct summand of a strongly Gorenstein projective
(resp., injective) module.

Using [3, Theorem 3.5] together with [15, Theorem 3.7], we have the next result.

Proposition 1.3. Let R be a coherent ring. A module is Gorenstein flat if and
only if it is a direct summand of a strongly Gorenstein flat module.

This result allows us to show that the strongly Gorenstein projective, injective
and flat modules have simplier characterizations than their Gorenstein correspon-
dent modules.

Theorem 1.4. ([3, Propositions 2.9 and 3.6])
(1) A module M is strongly Gorenstein projective if and only if there exists a short

exact sequence of modules: 0→M → P →M → 0 where P is projective and
Ext(M,Q) = 0 for any projective module Q.

(2) A module M is strongly Gorenstein injective if, and only if, there exists a
short exact sequence of modules: 0→M → I →M → 0, where I is injective
and Ext(E,M) = 0 for any injective module E.

(3) A module M is strongly Gorenstein flat if and only if there exists a short
exact sequence of modules: 0 → M → F → M → 0, where F is flat and
Tor(M, I) = 0 for any injective module I.

Along this paper, we need the following Lemmas:

Lemma 1.5. Let 0→ N → N ′ → N ′′ → 0 be an exact sequence of R-modules.
Then:
(1) GpdR(N) ≤ max{GpdR(N ′),GpdR(N ′′)− 1}

with equality if GpdR(N ′) 6= GpdR(N ′′).

(2) GpdR(N ′) ≤ max{GpdR(N),GpdR(N”)}
with equality if GpdR(N ′′) 6= GpdR(N) + 1.

(3) GpdR(N ′′) ≤ max{GpdR(N ′),GpdR(N) + 1}
with equality if GpdR(N ′) 6= GpdR(N).

Proof. Using [15, Theorems 2.20 and 2.24], the argument is analogous to the
one of [7, Corollary 2, p. 135]. �

Dually we have:

Lemma 1.6. Let 0→ N → N ′ → N ′′ → 0 be an exact sequence of R-modules.
Then:
(1) GidR(N) ≤ max{GidR(N ′),GidR(N ′′) + 1}

with equality if GidR(N ′) 6= GidR(N ′′).

(2) GidR(N ′) ≤ max{GidR(N),GidR(N ′′)}
with equality if GidR(N ′′) + 1 6= GidR(N).

(3) GidR(N ′′) ≤ max{GidR(N ′),GidR(N)− 1}
with equality if GidR(N ′) 6= GidR(N).
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And using [15, Proposition 3.11] and Lemma 1.6, we get the following lemma.

Lemma 1.7. Let 0 → N → N ′ → N ′′ → 0 be an exact sequence of modules
over a coherent ring R. Then:
(1) GfdR(N) ≤ max{GfdR(N ′),GfdR(N ′′)− 1}

with equality if GfdR(N ′) 6= GfdR(N ′′).

(2) GfdR(N ′) ≤ max{GfdR(N),GfdR(N ′′)}
with equality if GfdR(N ′′) 6= GfdR(N) + 1.

(3) GfdR(N ′′) ≤ max{GfdR(N ′),GfdR(N) + 1}
with equality if GfdR(N ′) 6= GfdR(N).

In [15], Holm gave a characterization of modules with finite Gorenstein projec-
tive, injective and flat dimensions ([15, Theorems 2.20, 2.22 and 3.14]). In this
three characterizations, Holm imposed the finitness of theses dimensions. Almost
by definition, one has the inclusion

{M | pd(M) ≤ n} ⊆ {M | Gpd(M) ≤ n}.

The main idea of this paper is to introduce and study an intermediate class of
modules called strongly n-Gorenstein projective modules. Similarly, we define the
strongly n-Gorenstein injective and flat modules.

The simplicity of these modules manifests in the fact that they have simplier
characterizations than their corresponding Gorenstein modules. Moreover, with
such modules, we are able to give nice new characterizations of modules with
Gorenstein projective, injective, and flat dimensions equal to n.

2. Strongly n-Gorenstein projective and injective modules

In this section, we introduce and study strongly n-Gorenstein projective and in-
jective modules which are defined as follows:

Definition 2.1. Let n be a positive integer.
(1) An R-module M is said to be strongly n-Gorenstein projective if there exists

a short exact sequence

0→M → P →M → 0,

where pd(P ) ≤ n and Extn+1(M,Q) = 0 whenever Q is projective.

(2) An R-module M is said to be strongly n-Gorenstein injective if there exists
a short exact sequence

0→M → I →M → 0,

where id(I) ≤ n and Extn+1(E,M) = 0 whenever E is injective.

A direct consequence of the above definition is such that, the strongly 0-Goren-
stein projective modules are just the strongly Gorenstein projective modules (by
[3, Proposition 2.9]). Also every module with finite projective dimension less than
or equal to n is a strongly n-Gorenstein projective module.
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In [6], the authors introduced n-Strongly Gorenstein projective modules as
follows: Let n ≥ be a positive integer. An R-module M is called n-strongly
Gorenstein projective if there exists an exact sequence

0→M → Pn−1 → · · · → P0 →M → 0,

where each Pi is projective such that HomR(·, Q) leaves the sequence exact when-
ever Q is a projective R-module. It is clear that every n-strongly Gorenstein pro-
jective module is Gorenstein projective ([6, Proposition 2.5]). The class of strongly
0-Gorenstein projective modules and the class of 1-strongly Gorenstein projective
module, (in the sens of [6]) coincide with the class of strongly Gorenstein projective
modules. However, in general case, the notion of strongly n-Gorenstein projective
modules and that of m-strongly Gorenstein projective modules are different.

Example 2.2.
(1) Let n ≥ 1 be an integer and let R be a ring with gldim(R) = n. There exists

an R-module M such that pdR(M) = n. Then, M is a strongly n-Gorenstein
projective module which is not m-strongly Gorenstein projective for any pos-
itive integer m.

(2) Consider the local ring R := k[[X,Y ]]/(XY ), where k is a field. Set X the
residue class of X in R. Then, the ideal (X) is a 2-strongly Gorenstein
projective R-module which is not a strongly n-Gorenstein projective module
for any positive integer n.

Proof. (1) We have the exact sequence

0→M →M ⊕M →M → 0

with pdR(M ⊕M) = n and Extn+1
R (M,Q) = 0 for each module (in particular,

projective module) Q. Hence, M is a strongly n-projective module. However,
GpdR(M) = pdR(M) = n. Then, M cannot be an m-strongly Gorenstein projec-
tive module for some positive integer m since every m-strongly Gorenstein projec-
tive module is Gorenstein projective ([6, Proposition 2.5]).

(2) The ideal (X) is a 2-strongly Gorenstein projective R-module which is
not strongly Gorenstein projective (by [6, Example 2.6]). If (X) is a strongly
n-Gorenstein projective module for some positive integer n, then there exists an
exact sequence

0→ (X)→ P → (X)→ 0

with pdR(P ) ≤ n. The module (X) is Gorenstein projective (since it is a 2-strongly
Gorenstein projective). Then, P is a Gorenstein projective module with finite
projective dimension (by [15, Theorem 2.5]), and so a projective module (by [15,
Proposition 2.27]). Thus, (X) is a strongly Gorenstein projective module, which
is impossible. �

The main difference between the notion of strongly n-Gorenstein projective
modules and that of m-strongly Gorenstein projective module is that all n-strongly
Gorenstein projective module are Gorenstein projective but strongly n-Gorenstein
projective modules can have Gorenstein projective dimension > 0.
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Proposition 2.3. Let n be a positive integer and M be a strongly n-Gorenstein
projective module. Then, the following holds:
(1) 0 → N → Pn → · · · → P1 → M → 0 is an exact sequence, where all Pi

are projective, then N is a strongly Gorenstein projective module and conse-
quently, Gpd(M) ≤ n.

(2) Moreover, if 0 → M → P → M → 0 is a short exact sequence, where
pd(P ) < ∞, then Gpd(M) = pd(P ) and consequently M is a strongly k-
Gorenstein projective module with k := pd(P ).

Proof. (1) If n = 0, the result holds from [3, Proposition 2.9]. Otherwise, since
M is a strongly n-Gorenstein projective module, there is a short exact sequence

0→M → P →M → 0,

where pd(P ) ≤ n. Consider the following n-step projective resolution of M

0→ N → Pn → · · · → P1 →M → 0.

Hence, there is a module Q such that the following diagram is commutative.

0 0 0 0
↓ ↓ ↓ ↓

0→ N → Pn → · · · → P1 → M → 0
↓ ↓ ↓ ↓

0→ Q → Pn ⊕ Pn → · · · → P1 ⊕ P1 → P → 0
↓ ↓ ↓ ↓

0→ N → Pn → · · · → P1 → M → 0
↓ ↓ ↓ ↓
0 0 0 0

Clearly, Q is projective since pd(P ) ≤ n and for every projective module K,
Ext(N,K) = Extn+1(M,K) = 0. Thus, by [3, Proposition 2.9], N is a strongly
Gorenstein projective module (then, Gorenstein projective). So, Gpd(M) ≤ n.

(2) From the short exact sequence 0→M → P →M → 0 and [15, Proposition
2.27], Lemma 1.5, and since Gpd(M) is finite by (1) above, we have

k := pd(P ) = Gpd(P ) = max{Gpd(M),Gpd(M)} = Gpd(M).

Thus, Gpd(M) = pd(P ). By [15, Theorem 2.20], Extk+1(M,K) = 0 whenever K
is projective. Consequently, M is a strongly k-Gorenstein projective module. �

Using [15, Theorem 2.20], a direct consequence of Proposition 2.3, is that every
strongly n-Gorenstein projective module is a strongly m-Gorenstein projective
module whenever n ≤ m.

Proposition 2.4.
(1) If (Mi)i∈I is a family of strongly n-Gorenstein projective modules, then⊕

i∈IMi is strongly n-Gorenstein projective.

(2) If (Mi)i∈I is a family of strongly n-Gorenstein injective modules, then
∏
i∈IMi

is strongly n-Gorenstein injective.
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Proof. It is clear since pd(⊕Mi) = sup{pd(Mi)} and id(
∏
Mi) = sup{id(Mi)},

and also since

Exti(⊕Mi, N) ∼= ⊕Exti(Mi, N) and Exti(M,
∏

Ni) ∼=
∏

Exti(M,Ni)

for every modules M,N,Mi, Ni and all i ≥ 0. �

It is clear that for a positive integer n and an R-module M .

“pd(M) ≤ n” =⇒ “M is strongly n-Gorenstein; projective” =⇒ “Gpd(M) ≤ n”

The converse is false as the following two examples shows

Example 2.5. Consider the quasi-Frobenius local ring R := K[X]/(X2), where
K is a field and we by X, denote the residue class in R of X. Let S be a Noetherian
ring such that gldim(S) = n. Consider a finitely generated S-module M of S such
that pdS(M) = n. Set T = R× S and set E := (X)×M . Then:
(1) E is a strongly n-Gorenstein projective T -module and GpdT (E) = n.

(2) However, pdT (E) =∞.

Proof. (1) Consider the short exact sequence of R-modules

0→ (X)
κ→ R

φ→ (X)→ 0,

where κ is the injection and φ is the multiplication by X. And consider also the
short exact sequence of S-module:

0→M
ι→M ⊕M π→M → 0

where ι and π, respectively, the canonical injection and projection. Hence, we
have the short exact sequence of R× S-module

(?) 0→ E → R× (M ⊕M)→ E → 0.

By [17, Lemma 2.5(2)], pdT (R × (M ⊕M)) = pdS(M ⊕M) = n. On the other
hand, by [5, Theorem 3.1] and [4, Propositions 2.8 and 2.12], we have

Ggldim(T ) = max{Ggldim(R),Ggldim(S)} = gldim(S) = n <∞.

Then, GpdT (E) <∞. Therefore, applying Lemma 1.5 to (?),

GpdT (E) ≤ max{GpdT (R× (M ⊕M)),GpdT (E)− 1}.

Thus, GpdT (E) ≤ GpdT (R× (M ⊕M)). Using Lemma 1.5 again to (?), we have

GpdT (R× (M ⊕M)) ≤ max{GpdT (E),GpdT (E)} = GpdT (E)

So, GpdT (E) = GpdT (R×(M⊕M)). On the other hand, by [15, Propostion 2.27],
GpdT (R×(M⊕M)) = pdT (R×(M⊕M)) = n. Consequently, GpdT (E) = n and
by (?) and [15, Theorem 2.20], E is a strongly n-Gorenstein projective T -module,
as desired.
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(2) Using [17, Lemma 2.5(2)], pdT (E) = sup{pdR(X),pdS(M)}. Now, sup-
pose that pdR(X) < ∞. Thus, by [4, Proposition 2.8 and Corollary 2.10], X is

projective, and then free since R is local. Absurd, since X
2

= 0. Consequently,
pdT (E) =∞. �

Example 2.6. Consider the Noetherian local ring R := K[[X,Y ]]/(XY ), where
K is a field, and we denote by X the residue class in R of X. Let S be a Noetherian
ring such that gldim(S) = n. Let M be a finitely generated S-module such that
pdS(M) = n. Set T = R× S, and set E := (X)×M . Then:
(1) GpdT (E) = n.

(2) There is no positive integer k for such E which is a strongly k-Gorenstein
T -module.

Proof. (1) By [5, Lemma 3.2] and [15, Theorem 2.27],

n = pdS(M) = GpdS(M) = GpdS(E ⊗T S) ≤ GpdT (E)

On the other hand, see [4, Propostions 2.8 and 2.10 and 2.12 ], the conditions of
[5, Lemma 3.3] are satisfied. Hence, we have

GpdT (E) ≤ max{GpdR(X),GpdS(M)} = pdS(M) = n.

Consequently, GpdT (E) = n, as desired.

(2) Suppose the existence of a positive integer k such that E is strongly
k-Gorenstein projective T -module. Then, there exists a short exact sequence of
T -modules 0 → E → P → E → 0, where pdT (P ) < ∞. Since R is a projective
T -module, and since (X) ∼=R E⊗TR, we have a short exact sequence of R-modules

0→ (X)→ P ⊗T R→ (X)→ 0.

Notice that pdR(P ⊗T R) < ∞ since R is a projective T -module. Using [4,
Propositions 2.8 and 2.10], we get that P ⊗T R is a projective R-module and
that (X), is a Gorenstein projective R-module. So, by [15, Theorem 2.20], (X)
is strongly Gorenstein projective module. That is absurd due to (by [3, Exam-
ple 2.13(2)]). �

Now, we give our main result of this paper.

Theorem 2.7. Let M be an R-module and n a positive a integer. Then,
GpdR(M) ≤ n if and only if M is a direct summand of a strongly n-Gorenstein
projective module.

Proof. If n = 0, the result holds from [3, Theorem 2.7]. So, assume that
0 < Gpd(M) ≤ n. From [15, Theorem 2.10], there is an exact sequence of
R-module 0→ K → G→M where G is Gorenstein projective and pd(K) ≤ n−1.
By the definition of Gorenstein projective module, there is a short exact sequence

0→ G→ P → G0 → 0,
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where P is projective and G′ is Gorenstein projective. Hence, consider the follow-
ing pushout diagram

0 0
↓ ↓
K = K
↓ ↓

0→ G → P → G0 → 0
↓ ↓ ‖

0→ M → D → G0 → 0
↓ ↓
0 0

From the vertical middle short exact sequence, pd(D) ≤ pd(K) + 1 ≤ n. Now,
consider the Gorenstein projective resolution of M

0→ Gn → Pn → · · · → P1 →M → 0,

where all Pi are projective and Gn is Gorenstein projective. Devise this sequence
on short exact sequence as

0→ G1 → P1 → M → 0
0→ G2 → P2 → G1 → 0

...
...

...
0→ Gn → Pn → Gn−1 → 0.

Clearly, by Lemma 1.5, for all 1 ≤ i ≤ n, Gpd(Gi) ≤ n− i ≤ n.
Consider also the following projective resolution of Gn

· · · → Pn+2 → Pn+1 → Gn → 0

and devise this long sequence on short exact sequences as 0 → Gi+1 → Pi+1 →
Gi → 0 for all i ≥ n. It is clear that for all i ≥ n, Gi is a Gorenstein projective
module (by [15, Theorem 2.5]).

On the other hand, since G0 is Gorenstein projective, there is a co-proper right
projective resolution of G0

0→ G0 → P 1 → P 2 → P 3 → . . .

such that for every i ≥ 1, Gi = Im(P i → P i+1) is Gorenstein projective. If we
devise this sequence on short exact sequence, we get 0→ Gi → P i+1 → Gi+1 → 0
for all i ≥ 0.
Briefly, we have

...
...

...
0→ G1 → P 2 → G2 → 0
0→ G0 → P 1 → G1 → 0
0→ M → D → G0 → 0
0→ G1 → P1 → M → 0
0→ G2 → P2 → G1 → 0

...
...

...



44 N. MAHDOU and M. TAMEKKANTE

Thus, we have a sum short exact sequence 0 → N → Q → N → 0, where
N = ⊕i≥1Gi ⊕M ⊕i≥0 Gi and Q = ⊕i≥1Pi ⊕ D ⊕i≥1 P i. And clearly pd(Q) =
pd(D) ≤ n and Gpd(N) = max{Gpd(Gi),Gpd(Gi),Gpd(M)} ≤ n (by [15,
Proposition 2.19]). Thus, by [15, Theorem 2.20], N is a strongly n-Gorenstein
projective module and M is a direct summand of N .

The condition “if” follows from [15, Propostion 2.19] and Proposition 2.3. �

Dually, we have the following theorem.

Theorem 2.8. Let M be an R-module and n be a positive integer. Then,
GidR(M) ≤ n if and only if M is a direct summand of a strongly n-Gorenstein
injective module.

Proof. The proof is similar to the one of Theorem 2.7 by replacing the direct
sum by the direct product and by using [15, Theorem 2.15], the dual of [15,
Propostion 2.19] and [3, Theorem 2.7]. �

Remark 2.9. From the proof of Theorem 2.7, if Gpd(M) = n, then there exists
a strongly n-Gorenstein projective module N such that Gpd(N) = n and M is a
direct summand of N .

Proposition 2.10. For any module M and any positive integer n, the following
statements are equivalent:

1. M is strongly n-Gorenstein projective.

2. There is an exact sequence 0 → M → Q → M → 0, where pd(Q) ≤ n and
Exti(M,P ) = 0 for every module P with finite projective dimension and all
i > n.

3. There is an exact sequence 0 → M → Q → M → 0, where pd(Q) < ∞ and
Exti(M,P ) = 0 for every projective module P and all i > n.

Proof. 1 ⇒ 2. By definition of strongly n-Gorenstein projective modules, we
have just to prove that for every i > n and all module P with finite projective
dimension, we have Exti(M,P ) = 0. That is clear from [15, Theorem 2.20] since
Gpd(M) ≤ n (by Proposition 2.3).
2⇒ 3. Obvious.
3 ⇒ 1. Since Exti(M,P ) = 0 for every projective module P and all i > n, from
the short exact sequence 0→M → Q→M → 0, we have for all i > n,

· · · → 0 = Exti(M,P )→ Exti(Q,P )→ Exti(Q,P ) = 0→ . . .

Thus Exti(Q,P ) = 0. On the other hand, Gpd(Q) = pd(Q) <∞ (by [15, Proposi-
tion 2.27]). Then, from [15, Theorem 2.20], pd(Q) = Gpd(Q) ≤ n. Consequently,
M is strongly n-Gorenstein projective. �

Proposition 2.11. If Ggldim(R) <∞ then:
1. M is strongly n-Gorenstein projective if and only if there exists an exact

sequence 0→M → Q→M → 0, where pd(Q) ≤ n.

2. M is strongly n-Gorenstein injective if and only if there exists an exact se-
quence 0→M → E →M → 0, where id(E) ≤ n.
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Proof. (1) The condition “only if” is clear by definition of the strongly n-Goren-
stein projective module. So, we claim the “if” condition. Since Ggldim(R) < ∞,
Gpd(M) <∞. Thus, there is an integer k such that Exti(M,P ) = 0 for all i > k
and for all projective module P . Thus, using the long exact sequence

· · · → Exti(Q,P )→ Exti(M,P )→ Exti+1(M,P )→ Exti+1(Q,P )→ . . . ,

we deduce that Extn+1(M,P ) = Extn+j(M,P ) for all j > 0 (since pd(Q) ≤ n).
Thus, if j > k, we conclude that for every projective module P , Extn+1(M,P ) = 0.
Consequently, M is strongly n-Gorenstein projective.

(2) The proof is dual to (1). �

Proposition 2.12. Let M be a strongly n-Gorenstein projective R-module
(n ≥ 1). Then, there is an epimorphism ϕN �M , where N is strongly Gorenstein
projective and K = Ker(ϕ) satisfies pd(K) = Gpd(M)− 1 ≤ n− 1.

Proof. Assume that M is a strongly n-Gorenstein projective module.
The proof will be similar to the one of [15, Theorem 2.10]. For completness we

include the proof here. Let 0 → N → Pn → · · · → P1 → M → 0 be an exact
sequence, where all Pi are projective and N is strongly Gorenstein projective (the
existence of this sequence is guaranted by Proposition 2.3). By definition of a
strongly Gorenstein projective module, there is an exact sequence 0 → N →
Q → · · · → Q → N → 0, where Q is projective and such that the functor
Hom(−, P ) leaves this sequence exact whenever P is projective. Thus, there exist
homomorphism, Q → Pi for i = 1, . . . , n and N → M such that the following
diagram is commutative.

0→ N → Q → · · · → Q → N → 0
‖ ↓ ↓ ↓

0→ N → Pn → · · · → P1 → M → 0

This diagram gives a chain map between complexes

0→ Q → · · · → Q → N → 0
↓ ↓ ↓

0→ Pn → · · · → P1 → M → 0

which induces an isomorphism in homology. Its mapping cone is exact, and all
the modules in it, except for P1 ⊕N , which is strongly Gorenstein projective, are
projective. Hence the kernel K of ϕ P1 ⊕ N � M satisfies pd(K) ≤ n − 1, as
desired. �

Proposition 2.13.

(A) Let 0→ N
α→ P

β→ N ′ → 0 be an exact sequence of R-modules.

Case 1 “P projective and Gpd(N ′) = n <∞”

(1) If N ′ is strongly Gorenstein projective, then so is N .

(2) If n ≥ 1 and N ′ is strongly n-Gorenstein projective, then N is strongly
(n− 1)-Gorenstein projective and Gpd(N) = n− 1.
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Case 2 “pd(P ) = n <∞”

If N is a strongly Gorenstein projective module, then N ′ is strongly (n+ 1)-
-Gorenstein projective.

(B) Let 0→N
µ→N ′

ν→Q→0 be an exact sequence, where pd(Q)=n<∞.

(1) If n > 0 and N ′ is strongly Gorenstein projective, then N is strongly
(n− 1)-Gorenstein projective.

(2) If Q is projective then N is strongly Gorenstein projective if and only if
N ′ is strongly Gorenstein projective.

Proof. (A) Case 1
(1) Clear.
(2) IfN ′ is strongly n-Gorenstein projective module, there is a short exact sequence
0 → N ′ → Q → N ′ → 0 where pd(Q) ≤ n. Since Gpd(N ′) = n we deduce
that pd(Q) = n (by Proposition 2.3). On the other hand, we have the following
commutative diagram:

0 0 0
↓ ↓ ↓

0→ N → P → N ′ → 0
↓ ↓ ↓

0→ Q′ → P ⊕ P → Q → 0
↓ ↓ ↓

0→ N → P → N ′ → 0
↓ ↓ ↓
0 0 0

Since P is projective, we get pd(Q′) = n− 1, and since Gpd(N ′) = n, we deduce
that Gpd(N) = n − 1 (by Lemma 1.5). Thus, N ′ is strongly (n − 1)-Gorenstein
projective (by [15, Theorem 2.20]).

Case 2
Since N is a strongly Gorenstein projective module, there is an exact sequence

0→ N
u→ Q

v→ N → 0 where Q is projective and Ext(N,K) = 0 for every module
K with finite projective dimension. Thus, since pd(P ) <∞, the short sequence

0→ Hom(N,P )
◦v→ Hom(Q,P )

◦u→ Hom(N,P )→ 0

is exact. Hence, for α : N → P , there is a morphism λ : Q → P such that
α = λ ◦ u. Thus, the following diagram is commutative

0→ N
u→ Q

v→ N → 0
α ↓ φ ↓ ↓ α

0→ P
i→ P ⊕ P j→ P → 0,

where φQ→ P ⊕P is defined by φ(q) = (λ(q), α ◦ v(q)), and i and j, respectively,
the canonical injection and projection. Thus, applying the Snake Lemma, we
deduce an exact sequence of the form:

0→ N ′ → (P ⊕ P )/φ(Q)→ N ′ → 0
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and clearly pd(P ⊕ P/φ(Q)) ≤ n + 1 and Gpd(N ′) ≤ n + 1. Thus, by [15,
Theorem 2.20], N ′ is strongly (n+ 1)-Gorenstein projective, as desired.

(B)
Suppose that N ′ is strongly Gorenstein projective. Thus, there is an exact se-

quence 0 → N ′
u→ P

u→ N ′ → 0, where P is projective and Ext(N,K) = 0 for
every module K with finite projective dimension. Then, similar as in (A) Case 2,
there is a morphism φP → Q⊕Q such that the following diagram is commutative

0→ N ′
u→ P

v→ N ′ → 0
ν ↓ φ ↓ ↓ ν

0→ Q
i→ Q⊕Q j→ Q → 0

Hence, applying Snake Lemma, we get an exact sequence of the form 0 → N →
Ker(φ)→ N → 0.
(1) If n > 0, then pd(Ker(φ)) = n− 1 and also Gpd(N) = n− 1 (by Lemma 1.5).

Therefore, N is strongly (n−1)-Gorenstein projective (by [15, Theorem 2.20]).

(2) If Q is projective, then Ker(φ) is projective and N is Gorenstein projective.
Thus, N is strongly Gorenstein projective. Conversely, if N is strongly Goren-
stein projective, it is clear that N ′ ∼= N⊕P is strongly Gorenstein projective,
as desired.

�

Dually, we have the following proposition.

Proposition 2.14.

(A) Let 0→ N
α→ I

β→ N ′ ↔ 0 be an exact sequence of R-modules.
Case 1 “I is injective and Gid(N) = n <∞”

(1) If N is strongly Gorenstein injective, then so is N ′.

(2) If n ≥ 1 and N is strongly n-Gorenstein injective then N ′ is strongly
(n− 1)-Gorenstein injective and Gid(N ′) = n− 1.

Case 2 “id(P ) = n <∞”
If N ′ is a strongly Gorenstein injective module, then N is strongly (n + 1)-
Gorenstein injective.

(B) Let 0→ E
µ→ N ′

ν→ N → 0 be an exact sequence, where id(E)=n<∞.

(1) If n > 0 and N ′ is strongly Gorenstein injective, then N is strongly
(n− 1)-Gorenstein injective.

(2) If E is injective, then N is strongly Gorenstein injective if and only if
N ′ is strongly Gorenstein injective.

Corollary 2.15. Let R be a ring. The following statements are equivalent:

(1) Every Gorenstein projective module is strongly Gorenstein projective.

(2) Every module such that Gpd(M) ≤ 1 is strongly 1-Gorenstein projective.
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Proof. Assume that every Gorenstein projective module is strongly Gorenstein
projective and consider a module M such that Gpd(M) ≤ 1. Consider a short
exact sequence 0→ N → P →M → 0, where P is projective, and so N is Goren-
stein projective. Hence, by the hypothesis, condition, N is a strongly Gorenstein
projective module. Thus, by Proposition 2.13 (Case 2), M is strongly 1-Gorenstein
projective module, as desired.

Conversely, assume that every module such Gpd(M)≤1 is strongly 1-Gorenstein
projective. Let M be a Gorenstein projective module. Thus, by the hypothesis
condition M is strongly 1-Gorenstein projective. Then, there is an exact sequence
0 → M → Q → M → 0, where pd(Q) ≤ 1. Since M is Gorenstein projective,
so is Q and then it is projective (by [15, Theorem 2.5 and Proposition 2.27]).
Consequently, M is a strongly Gorenstein projective module. �

Proposition 2.16. Let R be a ring. The following statements are equiva-
lent:

(1) Every module is strongly n-Gorenstein projective.

(2) Every module is strongly n-Gorenstein injective.

Proof. We prove only one implication and the other is similar.
Assume that every module is strongly n-Gorenstein projective. Thus Ggldim(R)≤n
(by Proposition 2.3 and the hypothesis condition). Now, consider an arbitrary
module M . Clearly Gid(M) ≤ n (since Ggldim(R) ≤ n). Then, for every injective
module I, Extn+1(I,M) = 0 ([15, Theorem 2.22]). On the other hand, there is an
exact sequence 0→M → P →M → 0, where pd(P ) ≤ n. By [4, Corollary 2.10],
id(P ) ≤ n. Consequently, M is strongly n-Gorenstein injective, as desired. �

Proposition 2.17. Let R be a ring with finite Gorenstein global dimension and
n be a positive integer. The following statements are equivalent:

(1) Ggldim(R) ≤ n.

(2) Every strongly Gorenstein projective module is a strongly n-Gorenstein in-
jective module.

(3) Every strongly Gorenstein injective module is a strongly n-Gorenstein pro-
jective module.

Proof. We claim that Ggldim(R) ≤ n if and only if every strongly Gorenstein
projective module is a strongly n-Gorenstein injective module. The proof of the
other equivalence is analogous. So, suppose that Ggldim(R) ≤ n, and consider
a strongly Gorenstein projective module M . For such module, there is an exact
sequence 0→M → P →M → 0, where P is projective. From [4, Corollary 2.10],
id(P ) ≤ n. Hence, from Proposition 2.11, M is strongly n-Gorenstein injective.

Conversely, suppose that every strongly Gorenstein projective module is strongly
n-Gorenstein injective module and let P be a projective module (then strongly
Gorenstein projective). By the hypothesis condition, P is strongly n-Gorenstein
injective. Thus, there is an exact sequence 0 → P → E → P → 0, where
id(E) ≤ n. Hence, P ⊕P ∼= E. Consequently, id(P ) ≤ n. Then, from [4, Theorem
2.1 and Lemma 2.2], Ggldim(R) ≤ n, as desired. �
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3. Strongly n-Gorenstein flat modules

In this section, we introduce and study the strongly n-Gorenstein flat modules
which are defined as follows.

Definition 3.1. An R-module M is said to be strongly n-Gorenstein flat, if
there exists a short exact sequence

0→M → F →M → 0,

where fdR(P ) ≤ n and Torn+1
R (M, I) = 0 whenever I is injective.

A direct consequence of the above definition is such that the strongly 0-Goren-
stein flat modules are just the strongly Gorenstein flat modules (by [3, Proposition
3.6]). Also every module with finite flat dimension less than or equal to n is a
strongly n-Gorenstein flat module.

In [21], the authors introduced n-Strongly Gorenstein flat modules1 as follows:
Let n ≥ be a positive integer. An R-module M is called n-strongly Gorenstein
flat if there exists an exact sequence of R-modules.

0→M → Fn−1 → · · · → F0 →M → 0,

where each Fi is flat such that . ×R I leaves the sequence exact whenever I is
an injective R-module. It is clear that every n-strongly Gorenstein flat module is
Gorenstein flat. The class of strongly 0-Gorenstein flat modules and the class of
1-strongly Gorenstein flat modules in the sense of [21]) coincide with the class of
strongly Gorenstein flat modules. However, in general case, the notion of strongly
n-Gorenstein flat modules and that of m-strongly Gorenstein flat modules are
different.

Example 3.2.
(1) Let n ≥ 1 be an integer and let R be a ring with wdim(R) = n. There

exists an R-module M such that fdR(M) = n. Then, M is a strongly
n-Gorenstein flat module which is not an m-strongly Gorenstein flat module
for each positive integer m.

(2) Consider a Noetherian local ring R := k[[X,Y ]]/(XY ), where k is a field. Set
X the residue class of X in R. Then, the ideal (X) is a 2-strongly Gorenstein
projective R-module which is not a strongly n-Gorenstein projective module
for each positive integer n.

Proof. (1) We have the exact sequence

0→M →M ⊕M →M → 0

with fdR(M ⊕ M) = n and Torn+1
R (M, I) = 0 for each module (in particular,

injective module) I. Hence, M is a strongly n-flat module. However, GfdR(M) =
fdR(M) = n ≥ 1 (by [2, Theorem 2.2]). Then, M cannot be an m-strongly Goren-
stein flat module for each positive integer m since every m-strongly Gorenstein
flat module is Gorenstein flat.

1In [21], the definition of n-Strongly Gorenstein flat modules is given in the associative context.

Here, we use the commutative version of this definition.
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(2) The ideal (X) is a 2-strongly Gorenstein projective S-module which is
not strongly Gorenstein projective (by [21, Example 4.8]). If (X) is a strongly
n-Goren- stein flat module for some positive integer n, then there exists an exact
sequence

0→ (X)→ F → (X)→ 0

with fdR(P ) ≤ n. The module (X) is Gorenstein flat (since it is 2-strongly Goren-
stein flat). Then, by [15, Theorem 3.7], F is a Gorenstein projective module with
finite flat dimension, and so a flat module by [2, Theorem 2.2]. Thus, (X) is a
strongly Gorenstein projective flat module, which is impossible. �

The main difference between the notion of strongly n-Gorenstein flat modules
and that of m-strongly Gorenstein flat module is that all n-strongly Gorenstein
flat module are Gorenstein flat but strongly n-Gorenstein projective modules can
have Gorenstein flat dimension> 0.

Proposition 3.3. Let n be a positive integer and M be a strongly n-Gorenstein
flat R-module. Then, the following statements hold.

(1) If 0→ N → Pn → · · · → P1 →M → 0 is an exact sequence, where all Pi are
projective, then N is a strongly Gorenstein flat module, and consequently,
Gfd(M) ≤ n.

(2) Moreover, if 0 → M → F → M → 0 is a short exact sequence, where
fd(F ) < ∞, then Gfd(M) = fd(F ), and consequently, M is a strongly k-
Gorenstein flat module with k := pd(P ).

Proof. (1) Using an n-step projective resolution of M and [3, Proposition 3.6],
the proof is analogous to Proposition 2.3.

(2) Consider an exact short sequence (∓) 0 → M → F → M → 0, where
fd(F ) <∞. We claim Gfd(M) = fd(F ).

Consider an n step projective resolution

0→ N → Pn → · · · → P1 →M → 0

From (1) above, N is a strongly Gorenstein flat module. Thus, there is a short
exact sequence (?) 0 → N → P → N → 0, where P is flat and Tor(N, I) = 0
whenever I is injective. Hence, from (?), for all i > 0, Tori(N, I) = 0. So, we have
Torn+i(M, I) = Tori(N, I) = 0.

Now, suppose that fd(F ) := k and let I be an arbitrary injective. From the
short exact sequence (∓), we have the long exact sequence

. . .Tori+1(F, I)→ Tori+1(M, I)→ Tori(M, I)→ Tori(F, I)→ . . .

Hence, for all i > k, Tori(M, I) = Tori+1(M, I) = · · · = Tori+n(M, I) = 0. In

particular, Tork+1(M, I) = 0. Consequently, M is a strongly k-Gorenstein flat
module. Then, from (1) above, Gfd(M) ≤ k = fd(F ).

Conversely, we claim fd(F ) ≤ Gfd(M). Applying HomZ(−,Q/Z) to the short
exact sequence 0→M → F →M → 0 we get the exactness of 0→ HomZ(M,Q/Z)
→ HomZ(F,Q/Z) → HomZ(M,Q/Z) → 0. On the other hand, from [15, Propo-
sition 3.11], Gid(HomZ(M,Q/Z)) ≤ Gfd(M) ≤ n and by [19, Lemma 3.51 and
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Theorem 3.52], id(HomZ(F,Q/Z)) = fd(F ) < ∞. Hence, by [15, Theorem 2.22]
and the injective counterpart of Proposition 2.10, HomZ(M,Q/Z) is a strongly
n-Gorenstein injective module. So, from the injective counterpart of Proposi-
tion 2.3 and by [15, Proposition 3.11],

fd(F ) = id(HomZ(F,Q/Z)) = Gid(HomZ(M,Q/Z)) ≤ Gfd(M).

Thus, we have the desired equality. �

Theorem 3.4. Let R be a coherent ring, M be an R-module and n be a positive
integer. Then, Gf(M) ≤ n if and only if M is a direct summand of a strongly
n-Gorenstein flat module.

Proof. Using [3, Theorem 3.5], [15, Proposition 3.13, Theorems 3.14 and 3.23],
Lemma 1.7, and Proposition 3.3, the proof of this result is analogous to the one
of Theorem 2.7. �

Proposition 3.5. For a module M and a positive integer n, the following state-
ments are equivalent:

(1) M is strongly n-Gorenstein flat.

(2) There is an exact sequence 0 → M → F → M → 0, where fd(F ) ≤ n and
Tori(M, I) = 0 for every module I with finite injective dimension and all
i > n.

(3) There is an exact sequence 0 → M → F → M → 0, where fd(F ) < ∞ and
Tori(M, I) = 0 for every injective module P and all i > n.

Proof. (1)⇒ (2) Assume that M is a strongly n-Gorenstein flat module. Then,
there is an exact sequence 0→M → F →M → 0, where fd(F ) ≤ n. On the other
hand, if 0 → N → Pn → · · · → P1 → M → 0 is an n-step projective resolution
of M , by Proposition 3.3, N is a strongly Gorenstein flat module. Thus, there
is a short exact sequence (?) 0 → N → P → N → 0, where P is flat and
Tor(N, I) = 0 whenever id(I) < ∞ (from [3, Proposition 3.6]). Hence, from (?),
for all i > 0, Tori(N, I) = 0. So, we have Torn+i(M, I) = Tori(N, I) = 0, as
desired.

(2)⇒ (3) Obvious.
(3) ⇒ (1) As in the proof of Proposition 2.10(3 ⇒ 1), we prove that for ev-

ery injective module I and all i > n, we have Tori(F, I) = 0. Suppose that
m := fd(F ) > n and let M be an arbitrary module. Pick a short exact sequence
0→M → I → I/M → 0, where I is injective. So, we have the long exact sequence

· · · → Tori+1(F, I)→ Tori+1(F, I/M)→ Tori(F,M)→ Tori(F, I)→ . . .

Thus, for i > n, we have Tori(F,M) = Tori+1(F, I/M). Hence, Torm(F,M) =
Torm+1(F, I/M) = 0. Then, fd(F ) ≤ m − 1. Absurd. Thus, fd(F ) ≤ n. So, it is
clear that M is a strongly n-Gorenstein flat module, as desired. �

Proposition 3.6. Let M be a strongly n-Gorenstein flat module over a coherent
ring R (n ≥ 1). Then, there is an epimorphism ϕ N � M , where N is strongly
Gorenstein flat and K = Ker(ϕ) satisfies fd(K) = Gfd(M)− 1 ≤ n− 1.
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Proof. Using [3, Proposition 3.6] and [15, Lemma 3.17], the proof is analogous
to that in [15, Lemma 3.17] and Proposition 2.12. �

Proposition 3.7. Let M be an R-module and n be a positive integer. Then,
following statements are equivalent:

(1) M is a strongly n-Gorenstein projective and M admits a finite n-presentation.

(2) M is a strongly n-Gorenstein flat module and M admits a finite n+ 1-pre-
sentation.

Proof. Any way, in this Proposition M , admits a finite n-presentation. Thus,
we can consider an n-step free resolution 0 → N → Fn → · · · → F1 ⇁ M → 0,
where Fi are finitely generated free and N is finitely generated.

(1) If M is strongly n-Gorenstein projective module, then N is a finitely gener-
ated strongly Gorenstein projective module. Thus, from [3, Proposition 3.9], N is a
finitely presented strongly Gorenstein flat module. Then, M admits a finite (n+1)-
-presentation and for all injective module I, we have Torn+1(M, I)=Tor(N, I)=0.
On the other hand, there is an exact sequence 0 → M → Q → M → 0, where
fd(Q) ≤ pd(Q) ≤ n. Consequently, M is a strongly n-Gorenstein flat module
which admits a finite n+ 1-presentation.

(2) Now, if M is a strongly n-Gorenstein flat module which admits a finite
(n+ 1)- -presentation. Then, N is a finitely presented strongly flat module. Thus,
from [3, Proposition 3.9], N is a strongly Gorenstein projective module. Hence, for
every projective module P , Extn+1(M,P ) = Ext(N,P ) = 0. On the other hand,
there is an exact sequence 0 → M → F → M → 0, where fd(F ) ≤ n. But, from
this short exact sequence we see that F also admits a finite (n+ 1)-presentation.
Thus, pd(F ) = fd(F ) ≤ n. Consequently, M is a strongly n-Gorenstein projective
module, as desired. �

Corollary 3.8. If R is a coherent ring and M a finitely presented module.
Then, M is strongly n-Gorenstein projective if and only if M is strongly n-Goren-
stein flat.

Finally, it is clear that for a module M and a positive integer n, we have:

“fd(M) ≤ n” =⇒ “M is strongly n-Gorenstein flat” =⇒ “Gf(M) ≤ n”.

Also, the converse are false, in general, by the same Examples (2.5 and 2.6)
in Section 2, since T is Noetherian and E is finitely presented (since E is finitely
generated and T is Noetherian) (by Corollary 3.8).
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