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EXISTENCE AND ULAM STABILITY RESULTS FOR

TWO-ORDERS FRACTIONAL DIFFERENTIAL EQUATION

R. ATMANIA and S. BOUZITOUNA

Abstract. In this paper, we deal with the existence of a unique solution and some

Ulam’s type stability concepts for an initial value problem of a class of two-orders

fractional differential equations involving Caputo’s fractional derivative. We inves-
tigate two types of Ulam stability: Ulam-Hyers stability and Ulam-Hyers-Rassias

stability for the considered problem of two fractional orders. We use the Banach
fixed point theorem and fractional calculus. Finally, we give an example to illustrate

the results.

1. Introduction

Fractional differential equations arise naturally in various fields of science and
engineering (mathematical physics, finance, hydrology, biology, thermodynamics,
control theory, mechanic and bioengineering). In fact, fractional derivatives have
a nonlocal character which made them an excellent instrument for the description
of memory and hereditary properties of some processes. Fractional calculus can
be considered as a generalization of ordinary differentiation and integration to
arbitrary order (real or complex). In recent years, there has been a significant
development in fractional differential equations; see the books of Diethelm [5],
Kilbas et al. [13] and Lakshmikantham et al. [14].

Some results on the existence of solutions of fractional differential initial or
boundary value problems were widely discussed by many mathematicians, for
example, we refer to [1, 2, 3, 15, 19, 20]. Recently, Ulam stability for fractional
differential equations has attracted the attention of many mathematicians [4, 11,
12, 17, 18] and the references therein. The classical concept of Ulam-Hyers
stability means that for a Ulam-Hyers stable system one does not seek the exact
solution. It is required to find a function which satisfies a suitable approximation
inequality. This approach can guarantee that there exists a close exact solution
useful in many applications such as numerical analysis and optimization, where
finding the exact solution is impossible. To know more about the problem of
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the so-called Ulam stability posed by Ulam in 1940 and its different types see
[7, 8, 9, 10, 16].

For example in [4], Benchohra and Lazreg established four types of Ulam stabil-
ity for the following initial value problem for implicit fractional-order differential
equation {

CDα
0+y(t) = f(t, y(t),C Dα

0+y(t)), t ∈ [0, T ] , 0 < α ≤ 1

y(0) = y0,

where CDα
0+ is the Caputo fractional derivative, f : [0, T ]× R× R→ R is a given

function y0 ∈ R.
In [12], Ibrahim studied the existence of the solution and the Ulam-Hyers stabil-

ity for the boundary value differential problem for Lane-Emden equation involving
two fractional orders of the form Dβ

0+

(
Dα

0+ +
a

t

)
u(t) + f(t, u(t)) = g(t), t ∈ [0, 1], 0 < α, β ≤ 1

u(0) = µ, u(1) = ν,

where Dα
0+ is the Riemann-Liouville fractional derivative, f(t, u(t)) is a continuous

real valued function and g(t) ∈ C[0, 1].
Motivated by these works, we study the existence of the solution and the Ulam

stability for the following nonlinear fractional differential equation with two orders

(1) CDβ
0+

(
p(t)CDα

0+u(t)
)

+ h(t)u(t) = f(t, u(t)), t ∈ [0, T ]

subject to the initial history condition

(2) u(t) = φ(t), t ∈ [−r, 0],

where CDα
0+ is the Caputo fractional derivative, α, β∈(0, 1) such that 0<α+β≤1,

p(t), h(t) on [0, T ] and φ(t) on [−r, r], r a small positive real, are real given
functions, f : [0, T ]× R→ R is a given function.

In the article [6], Du and Wang initialized an initial value problem involving
Riemann-Liouville fractional order derivative by using an initial history over a
small interval. Following this, we impose to our problem a similar condition (2)
which is more appropriate for this type of initial value problem involving Caputo
fractional two-orders derivatives. The unknown function u(t) is given on a small
interval [−r, 0]. φ(t) is its initial history. This is more helpful for us to obtain
the necessary condition on u(t) when converting the equation (1) into an integral
equation. We need to know the values of u(t) and CDα

0+u(t) at the initial time
t = 0 that can be obtained from the initial history data of u(t) over the small
interval [−r, 0].

The organization of the manuscript is given below. In Section 2, we give some
basic definitions of fractional calculus which are used in this paper. In Section 3,
we study the existence and uniqueness of the solution of the problem (1)–(2). In
Section 4, we develop two types of Ulam stability, namely Ulam-Hyers stability
and Ulam-Hyers-Rassias stability of the fractional differential problem under con-
sideration by using some inequalities. Finally, Section 5 is devoted to the example.
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2. Preliminaries

In this section, we present some definitions and properties from fractional calculus
that used throughout this paper. For more details see [13].

Definition 1. The Riemann-Liouville fractional (arbitrary) integral of order
α > 0 of the function f ∈ L1[0, T ] is formally defined by

Iα0+f(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds,

where Γ is the classical Gamma function.

Definition 2. The Caputo fractional derivative of order α > 0 for a given
function f(t) on [0, T ] is defined by

(3) CDα
0+f(t) = Dα

0+

[
f(t)−

n−1∑
k=0

f (k)(0)

k!
tk
]
,

where n = [α]+1, [α] means the integer part of α and Dα
0+ is the Riemann-Liouville

fractional derivative operator of order α defined by

Dα
0+f(t) =

1

Γ (n− α)

dn

dtn

∫ t

0

(t− s)n−1−αf(s)ds = DnIn−α0+ f(t) for t > 0.

The Caputo fractional derivative CDα
0+f(t) exists for f(t) belonging toACn[0, T ]

the space of functions which have continuous derivatives up to order (n − 1) on
[0, T ] such that f (n−1) ∈ AC1 ([0, T ],R). AC1 ([0, T ],R) also denoted AC[0, T ]
is the space of absolutely continuous functions. In this case, Caputo’s fractional
derivative is defined by

CDα
0+f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−1−αf (n)(s)ds = In−α0+ Dnf(t) for t > 0.

Remark that when α = n, we have CDn
0+f(t) = Dnf(t).

Lemma 3. The fractional integration operator is bounded on C ([0, T ],R) ,in
the sense that for each f ∈ C([0, T ],R) there exists a positive constant A such that

‖Iα0+f‖∞ ≤ A ‖f‖∞ .

Furthermore,

(4) Iα0+t
µ =

Γ (µ+ 1)

Γ (µ+ α+ 1)
tµ+α, µ > −1, α > 0.

Lemma 4. Let f ∈ ACn[0, T ], then the Caputo fractional derivative of order
α > 0 such that n = [α] + 1 is continuous on [0, T ] and

(5) CDα
0+I

α
0+f(t) = f(t), IαC0+ D

α
0+f(t) = f(t)−

n−1∑
k=0

f (k)(0)

k!
tk.

In particular, when 0 < α ≤ 1 we have IαC0+ D
α
0+f(t) = f(t)− f(0).
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Corollary 5. For α > 0, β > 0 the Gamma function satisfies

αΓ(α) = Γ(α+ 1),

∫ 1

0

(1− θ)α−1 θβ−1dθ =
Γ(α)Γ(β)

Γ(α+ β)
.

To define Ulam’s stability, we consider the following fractional differential equa-
tion

(6) CDα
0+u(t) = f(t, u(t)), 0 < α ≤ 1, t ∈ [0, T ]

Definition 6. The equation (6) is said to be Ulam-Hyers stable if there exists
a real number cf > 0 such that for each ε > 0 and for each y ∈ AC([0, T ],R)
solution of the inequality

(7)
∣∣CDα

0+y(t)− f (t, y(t))
∣∣ ≤ ε, t ∈ [0, T ],

there exists a solution u ∈ AC ([0, T ],R) of the equation (6) with

|y(t)− u(t)| ≤ cfε, t ∈ [0, T ].

Definition 7. The equation (6) is Ulam-Hyers-Rassias stable with respect to
ψ ∈ C ([0, T ],R+) if there exists a real number cf > 0 such that for each ε > 0
and for each y ∈ AC ([0, T ],R) solution of the inequality∣∣CDα

0+y(t)− f (t, y(t))
∣∣ ≤ εψ(t), t ∈ [0, T ]

there exists a solution u ∈ AC ([0, T ],R) of the equation (6) with

|y(t)− u(t)| ≤ cfψ(t)ε, t ∈ [0, T ].

Definition 8. A function y ∈ AC ([0, T ],R) is a solution of the inequality (7)
if and only if there exists a function g ∈ C ([0, T ],R) such that for every t ∈ [0, T ],
|g(t)| ≤ ε and CDα

0+y(t) = f (t, y(t)) + g(t).

3. Existence and Uniqueness

In this section, we are concerned with the existence of a unique solution for the
problem (1)–(2). Let us start by recalling what we mean by a solution.

Definition 9. A function u ∈ AC ([0, T ],R) ∩ C ([−r, T ] ,R) is said to be a
solution of the initial value problem (1)–(2) if it satisfies the equation (1) on [0, T ]
and the initial condition (2) on the small interval [−r, 0].
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In the sequel, we introduce the following assumptions:

(H1) f (t, u) is continuous, bounded for any (t, u) ∈ [0, T ] × R and there exists
constant L > 0 such that for any u, v ∈ R and t ∈ [0, T ], we have

|f (t, u)− f (t, v)| ≤ L |u− v| .
(H2) p ∈ AC ([0, T ],R) such that p(t) 6= 0, t ∈ [0, T ], h ∈ C ([0, T ],R), φ ∈

C1 ([−r, r] ,R) with p(0) = p0,

(8) φ(0) = φ0 and CDα
0+φ(t)

∣∣
t=0

= φα,

where φ0, p0 and φα are real constants.

(H3) For sup
t∈[0,T ]

|h(t)| = η and inf
t∈[0,T ]

|p(t)| = q, we have

(9) k := Tα+β
[L+ η]

Γ (α+ β + 1) q
< 1.

Now we convert the initial value problem to an integral equation which is also
used in the existence and the stability studies.

Indeed, we are interested in the solution of the problem (1) with (8) on the
interval [0, T ] in view of the supplementary data of u(t) on the interval [−r, 0].

Lemma 10. A function u ∈ C ([−r, T ],R) is a solution of the following frac-
tional integral equation for t ∈ [0, T ]

(10)

u(t) = φ0 + p0φα

t∫
0

(t− s)α−1

Γ(α)p(s)
ds

+

t∫
0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
[f (τ, u (τ))− h (τ)u (τ)] dτds,

with u(t) = φ(t) for t ∈ [−r, 0] , if and only if u is a solution of the fractional
two-orders initial value problem (1)–(2).

Proof. First, we apply CDα
0+ to (10) and obtain with CDα

0+φ0 = 0

CDα
0+u(t) =

1

p(t)
Iβ0+ [f(t, u(t))− h(t)u(t)] +

p0
p(t)

φα.

Then, we apply CDβ
0+ to p(t)CDα

0+u(t) to get (1). For t = 0, (10) coincides with
the initial function φ0 = u(0). Furthermore, under (H1)–(H2) we conclude that u
is in AC ([0, T ] ,R).

Conversely, we apply the fractional integral Iβ0+ to (1) to obtain, in view of
Lemma 4,

(11) p(t)CDα
0+u(t)− p(0)CDα

0+u(0) = Iβ0+ [f(t, u(t))− h(t)u(t)] .

Using the fact that u ∈ C ([−r, T ],R) and φ ∈ C1 ([−r, r] ,R), we obtain

CDα
0+u(0) = CDα

0+u(t)
∣∣
t=0

= CDα
0+φ(t)

∣∣
t=0

= φα.
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Then, after dividing (11) by p(t), we apply Iα0+ to get

u(t) = φ0 + Iα0+

[
1

p(t)
Iβ0+ [f (t, u(t))− h(t)u(t)] +

p0
p(t)

φα

]
,

where u(0) = φ(0) = φ0, which is the solution and this completes the proof. �

Now, we give the existence result based on the Banach contraction fixed point
theorem.

Theorem 11. Assume that (H1)–(H3) are satisfied. Then the problem (1)–(2)
has a unique solution.

Proof. First, we denote by X = C ([0, T ],R) the Banach space of all continuous
functions from [0, T ] into R with the sup norm ‖u‖∞ = sup

t∈[0,T ]

|u(t)|

Define the operator A : X → X by

Au(t) = φ0 +

t∫
0

(t− s)α−1

Γ(α)p(s)

×
[ s∫

0

(s− τ)
β−1

Γ (β)
[f (τ, u (τ))− h (τ)u (τ)] dτ + p0φα

]
ds.

It is clear that the fixed points of the operator A are solutions of the problem (1),
(8) with the additional condition (2).

Let us denote δ :=
ηTα+β

qΓ (α+ β + 1)
which satisfies 0 < δ < k defined by (9) and

M := sup
(t,u)∈[0,T ]×R

|f (t, u)|.

Then, we define the nonempty convex closed set of X as follows

BR = {u ∈ X : ‖u− φ0‖∞ ≤ R}

such that

(12) R ≥
[

[M + η |φ0|]Tα+β

qΓ (α+ β + 1)
+
|p0φα|Tα

Γ(α+ 1)q

]
1

(1− δ)
.

To show that ABR ⊂ BR for each u ∈ BR
‖Au− φ0‖∞

≤ sup
t∈[0,T ]

t∫
0

(t− s)α−1

Γ(α) |p(s)|

[ s∫
0

(s− τ)
β−1

Γ (β)
|f (τ, u (τ))|+ |h (τ)| |u (τ)|dτ + |p0φα|

]
ds

≤ 1

Γ(α)Γ (β + 1) q
[M + η ‖u− φ0‖∞ + η |φ0|] sup

t∈[0,T ]

t∫
0

(t− s)α−1sβds

+ |p0φα|
supt∈[0,T ] t

α

Γ(α+ 1)q
,
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which yields

‖Au− φ0‖∞

≤ 1

Γ(α)Γ (β + 1) q
[M + ηR+ η |φ0|] sup

t∈[0,T ]

1∫
0

(t− θt)α−1 (θt)
β
tdθ

+
|p0φα|Tα

Γ(α+ 1)q

≤ ηTα+β

qΓ (α+ β + 1)
R+

[M + η |φ0|]Tα+β

qΓ (α+ β + 1)
+
|p0φα|Tα

Γ(α+ 1)q
.

We conclude from (12) that

‖Au− φ0‖∞ ≤ R.

BR is stable by A. We proceed to prove that A is a contraction mapping. For each
u, v ∈ BR and for all t ∈ [0, T ] we have

|(Au) (t)− (Av) (t)|

≤ sup
t∈[0,T ]

t∫
0

(t− s)α−1

Γ(α) |p(s)|

×
[ s∫

0

(s− τ)
β−1

Γ (β)
(|f (τ, u (τ))− f (τ, v (τ))|+ |h (τ)| |u (τ)− v (τ)|) dτ

]
ds

≤ sup
t∈[0,T ]

t∫
0

(t− s)α−1

Γ(α) |p(s)|

[ s∫
0

(s− τ)
β−1

Γ (β)
[L+ η] |u (τ)− v (τ)|dτ

]
ds

≤ sup
t∈[0,T ]

tα+β
[L+ η]

Γ (α+ β + 1) q
‖u− v‖∞ .

Thus,

‖Au−Av‖∞ ≤ k ‖u− v‖∞ .

A is a contraction by (9). The conclusion of the theorem follows by the Banach
fixed point theorem. This completes the proof. �

4. Ulam stability

In this section, we study two types of Ulam stability of the two-orders fractional
differential equation (1) which are Ulam-Hyers and Ulam-Hyers-Rassias stabilities.

Lemma 12. If y ∈ AC ([0, T ],R) is a solution of the fractional differential
inequality for each ε > 0

(13)
∣∣∣CDβ

0+

(
p(t)CDα

0+y(t)
)

+ h(t)y(t)− f (t, y(t))
∣∣∣ < ε
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and the initial condition (2) then y is a solution of the following integral inequality∣∣∣∣y(t)− φ0 − p0φα

t∫
0

(t− s)α−1

Γ(α)p(s)
ds

−
t∫

0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
[f (τ, y (τ))− h (τ) y (τ)] dτds

∣∣∣∣
<

Tα+β

qΓ (α+ β + 1)
ε.

Proof. Let y ∈ AC ([0, T ],R) be a solution of the inequality (13) for each ε > 0.
Then, from Definition 8 and Lemma 10 for some continuous function g(t) such
that |g(t)| < ε , t ∈ [0, T ] , we have

y(t) = φ0 + p0φα

t∫
0

(t− s)α−1

Γ(α)p(s)
ds

+

t∫
0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
[f (τ, y (τ))− h (τ) y (τ) + g (τ)] dτds.

Then, we use properties of Iα0+ to get

∣∣∣Iα0+( 1

p(t)
Iβ0+g(t)

)∣∣∣ ≤ t∫
0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
|g (τ)|dτds

< ε
Tα+β

qΓ (α+ β + 1)
,

which is (12). The proof is complete. �

Theorem 13. Assume that the assumptions (H1)–(H3) hold. Then the problem
(1)–(2) is Ulam-Hyers stable.

Proof. Under (H1)–(H3), the problem (1)–(2) has a unique solution in
AC ([0, T ],R)∩C ([−r, T ],R). Let y ∈ AC ([0, T ],R) be a solution of the inequality
(13), then for each t ∈ [0, T ]

|y(t)− u(t)|

≤

∣∣∣∣∣∣y(t)− φ0 −
t∫

0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
[f (τ, y (τ))− h (τ) y (τ)] dτds

−p0φα

t∫
0

(t− s)α−1

Γ(α)p(s)
ds

∣∣∣∣∣∣
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+

t∫
0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
|f (τ, y (τ))− f (τ, u (τ))|dτds

+

t∫
0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
|h (τ)| |y (τ)− u (τ)|dτds

≤ ε Tα+β

qΓ (α+ β + 1)
+ Tα+β

[L+ η]

Γ (α+ β + 1) q
‖y − u‖∞ .

Thus, in view of (H3)

‖y − u‖∞ ≤ ε
Tα+β

qΓ (α+ β + 1) (1− k)
.

Then, there exists a real number Kf =
Tα+β

qΓ (α+ β + 1) (1− k)
> 0 such that

|y(t)− u(t)| ≤ Kfε.

Thus (1)–(2) has the Ulam-Hyers stability, which completes the proof. �

In the next, we introduce the following function

(H4) ψ ∈ C ([0, T ],R) an increasing function which satisfies the property
Iγ0+ψ(t) ≤ λψ,γψ(t), 0 < γ < 1 for some constant λψ,γ > 0.

Lemma 14. Assume that ψ satisfies (H4). If y ∈ AC ([0, T ],R) is a solution
of the inequality

(14)
∣∣∣CDβ

0+

(
p(t)CDα

0+y(t)
)

+ h(t)y(t)− f (t, y(t))
∣∣∣ < εψ(t) for each ε > 0

and the initial condition (2) then y is a solution of the following integral inequality

(15)

∣∣∣∣y(t)− φ0 − p0φα

t∫
0

(t− s)α−1

Γ(α)p(s)
ds

−
t∫

0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
[f (τ, y (τ))− h (τ) y (τ)] dτds

∣∣∣∣
< ε

λ2ϕ
q
ψ(t).

Proof. Let y ∈ AC ([0, T ],R) be a solution of the inequality (14) for each ε > 0.
From Definition 8 and Lemma 10, for some continuous function g(t) such that
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|g(t)| < εψ(t) for each ε > 0, t ∈ [0, T ],∣∣∣∣y(t)− φ0 −
t∫

0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
[f (τ, y (τ))− h (τ) y (τ)] dτds

− p0φα

t∫
0

(t− s)α−1

Γ(α)p(s)
ds

∣∣∣∣
≤

t∫
0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)
|g (τ)|dτds <

t∫
0

(t− s)α−1

Γ(α)p(s)
εIβ0+ψ(s)ds

≤ ε
t∫

0

(t− s)α−1

Γ(α)p(s)
λψ,βψ(s)ds ≤ ελψ,βλψα

q
ψ(t) < ε

λ2ψ
q
ψ(t),

where λψ = max (λψ,α, λψ,β). This completes the proof. �

Theorem 15. Assume that the assumptions (H1)–(H4) hold, then the problem
(1)–(2) is Ulam-Hyers-Rassias stable with respect to ψ.

Proof. Under (H1)–(H3), the problem (1)–(2) has a unique solution in
AC ([0, T ],R)∩C ([−r, T ],R). Let y ∈ AC ([0, T ],R) be a solution of the inequality
(14) then for each t ∈ [0, T ]

|y(t)− u(t)|

=

∣∣∣∣y(t)− φ0 −
t∫

0

(t− s)α−1

Γ(α)p(s)

×
[ s∫

0

(s− τ)
β−1

Γ (β)
[f (τ, u (τ))− h (τ)u (τ)] dτ − p0φα

]
ds

∣∣∣∣
≤ ε

λ2ψ
q
ψ(t) +

t∫
0

(t− s)α−1

Γ(α)p(s)

s∫
0

(s− τ)
β−1

Γ (β)

× (|f (τ, u (τ))− f (τ, y (τ))|+ |h (τ)| |u (τ)− y (τ)|) dτds

≤ ε
λ2ψ
q
ψ(t) + Tα+β

[L+ η]

Γ (α+ β + 1) q
‖y − u‖∞ .

Hence, it follows that there exists a real number Hf =
λ2ψ

q (1− k)
> 0 such that

|y(t)− u(t)| ≤ ε
λ2ψ

q (1− k)
ψ(t) = Hfεψ(t), t ∈ [0, T ].

This gives the wanted result and completes the proof. �
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5. Example

Consider the following nonlinear problem

(16)


CD

1
2

0+

( 1

1 + t
CD

1
3

0+u(t)
)

+
sin t

5
· u(t)

=
t

100 + t
cosu(t), t ∈ [0, 1],

u(t) = et, t ∈ [−0, 005, 0] ,

where

α =
1

3
, β =

1

2
, p(t) =

1

(1 + t)
, h(t) =

sin t

5
,

f(t, u(t)) =
t

100 + t
cosu(t), φ(t) = et,

which satisfy clearly (H1)–(H2) for any u, v ∈ R

|f (t, u)− f (t, v)| ≤ t

100 + t
|cosu− cos v| ≤ 1

100
|cosu− cos v| .

The unique solution exists for

L =
1

100
, η = sup

t∈[0,1]
|h(t)| = 1

5
, q = inf

t∈[0,1]
|p(t)| = 1

2
,

satisfying the condition (9)

(17) k =
[L+ η]

Γ (α+ β + 1) q
=

1

100
+

1

5

Γ

(
1

3
+

1

2
+ 1

)
1

2

= 0.446 50 < 1.

It follows from Theorem 13 that the problem (16) is Ulam-Hyers stable on [0, 1] .
Now, we choose ψ(t) = t3 which satisfies (H4) and in view of (4) we have

Iγ0+ψ(t) =
Γ (4)

Γ (4 + γ)
t3+γ ≤ 3Γ (3)

(3 + γ) Γ (3 + γ)
t3 ≤ 1

Γ (γ + 1)
t3, 0 < γ < 1.

For α = 1
3 and β = 1

2 we have

λψ,α =
1

Γ
(
1
3 + 1

) = 1.119 8, λψ,β =
1

Γ
(
1
2 + 1

) = 1.128 4

then we take λψ = max (λψ,α, λψ,β) = 1.128 4 to get (15) satisfied. Hence Ulam–
Hyers-Rassias stability with respect to ψ is obtained.
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