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ABOUT A MEAN VALUE THEOREM FOR PRODUCT

OF TWO FUNCTIONS AND SOME RELATED RESULTS

D. Ş. MARINESCU and M. MONEA

Abstract. The aim of this paper is to present some mean value theorems involving

Riemann integral. The starting point is represented by the recent result due to

Mingarelli et al. We prove a stronger result and obtain the Mingarelli’s result as
consequence. We show the applicability of our results when solving some problems

recently appeared in some mathematical journals.

1. Introduction

The mean value theorems represent one of the most useful mathematical analysis
tools. Starting from Rolle or Lagrange Theorem, we can find more results, gener-
alizations or extensions. Sahoo and Riedel’s book [10] present a large collection
of old and new mean value theorems. The readers can consult the references [4],
[5], [9], [11], or [12] to find some recent results.

In [8], Mingarelli et al. proved the following integral mean value theorem.

Theorem 1.1. Let f, g [0, 1] → R be two continuous functions and w [0, 1] →
[0,∞) be a continuously differentiable and non-constant function such that
w′(x) ≥ 0 for any x ∈ [0, 1]. Then there exists c ∈ (0, 1) such that∫ 1

0

f(x)dx ·
∫ c

0

w(x) · g(x)dx =

∫ 1

0

g(x)dx ·
∫ c

0

w(x) · f(x)dx.

The aim of this paper is to present some results related to Theorem 1.1. Our
main result is given in Theorem 2.1 in Section 2. Also, some consequences of this
theorem are presented in that section, including Theorem 1.1 under less restrictive
conditions on w. In Section 3, we discuss some recent results included in the
references list of this paper. We present a new proof or a new version of these
results (Corollaries 3.1 and 3.2).
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2. Generalizations of the theorem 1.1

First, we recall that C[0, 1] represents the set of all real continuous functions de-
fined on [0, 1], and C1[0, 1] represents the set of all real continuously differentiable
functions defined on the same interval. Denote W, the set of all non-constant
and non-decreasing functions w [0, 1] → [0,∞). The main result of this paper is
following now.

Theorem 2.1. Let w ∈ W and f ∈ C1[0, 1] be such that f (0) = f (1). Then
there exists c ∈ (0, 1) such that

(2.1)

∫ c

0

w(x)f ′(x)dx = 0.

Proof. We can assume that the function f is non-constant, otherwise the result
is trivial. First, we consider the case f(0) = 0. We introduce the function F [0, 1]→
R defined by

F (t) =

∫ t

0

w(x)f ′(x)dx

for any t ∈ [0, 1]. Since f is continuous and w is non-decreasing, then f is Riemann-
Stieltjes integrable on [0, t] with respect to w for any t ∈ [0, 1] (see [1, Theo-
rem 7.27]). Also, w is Riemann-Stieltjes integrable on [0, t] with respect to f (see
[1, Theorem 7.6]). Moreover, f is continuously differentiable, so we have∫ t

0

w(x)f ′(x)dx =

∫ t

0

w(x)df(x).

(see [1, Theorem 7.8]). Due to these facts, we can use the integration by parts
formula and we obtain

F (t) =

∫ t

0

w(x)df(x) = w(t)f(t)− w(0)f(0)−
∫ t

0

f(x)dw(x).

Since we assume f(0) = 0, we get

(2.2) F (t) = w(t)f(t)−
∫ t

0

f(x)dw(x), t ∈ [0, 1],

and

(2.3) F (1) = −
∫ 1

0

f(x)dw(x).

Now, we can assume that w(x) > 0 for any x ∈ (0, 1]. If not, we find a ∈ (0, 1]
such that w(a) = 0 and from monotonicity of w, we get w(x) = 0 for any x ∈ [0, a]
and the equality (2.1) holds for any point c ∈ (0, a).

Further, we assume by contradiction that F (t) 6= 0 for any t ∈ (0, 1). The
function F is continuous (see [1, Theorem 7.32]), so we can assume that F is
positive on (0, 1). Then, the equality (2.3) goes to

F (1) =

∫ 1

0

f(x)dw(x) ≤ 0.
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From Weierstrass theorem, there exists a ∈ (0, 1) such that min
x∈[a,b]

f(x) = f(a) and

f(a) < 0. Further, we have

F (a) = f(a)w(a)−
∫ a

0

f(x)dw(x).

Since ∫ a

0

f(x)dw(x) ≥ f(a)

∫ a

0

dw(x) = f(a)w(a)− f(a)w(0),

we obtain

F (a) ≤ f(a)w(0) ≤ 0.

This contradicts the fact that F is positive on [0, 1] and concludes this part of the
proof.

Now, we remove the condition f(0) = 0. We define the function g [0, 1]→ R by

g(x) = f(x)− f(0)

for any x ∈ [0, 1]. By using the previous reasoning, we find c ∈ (0, 1) such that∫ c

0

w(x)g′(x)dx = 0.

Since g′(x) = f ′(x) for any x ∈ [0, 1], we get the desired result. �

We remark that this result fails for constant functions w. For example, if we
choose f(x) = x2 − x and w(x) = 1 for any x ∈ [0, 1], then for any c ∈ (0, 1), we
obtain ∫ c

0

w(x)f ′(x)dx = f(c)− f(0) = c2 − c < 0.

As a consequence of Theorem 2.1, we obtain the following results.

Corollary 2.2. Let w ∈W and h ∈ C[0, 1] such that
∫ 1

0
h(t)dt = 0. Then there

exists c ∈ (0, 1) such that ∫ c

0

w(x)h(x)dx = 0.

Proof. We apply Theorem 2.1. to the functions w and f [0, 1]→ R, defined by

f(x) =

∫ x

0

h(t)dt

for any x ∈ [0, 1]. �

Corollary 2.3. Let w ∈ W and f, g ∈ C1[0, 1] be such that f(0) = g(0) = 0.
Then there exists c ∈ (0, 1) such that

f(1) ·
∫ c

0

w(x)g′(x)dx = g(1) ·
∫ c

0

w(x)f ′(x)dx.
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Proof. If f(1) = g(1) = 0, the conclusion is trivial. Further, we assume that
g(1) 6= 0. Let the function h [0, 1]→ R, be defined by the formula

h(x) =
f(1)

g(1)
· g(x)− f(x).

We have h ∈ C1[0, 1] and h(0) = h(1) = 0. From Theorem 2.1, there exists
c ∈ (0, 1) such that ∫ c

0

w(x)h′(x)dx = 0,

which is equivalent to

f(1)

g(1)

∫ c

0

w(x)g′(x)dx =

∫ c

0

w(x)f ′(x)dx,

and the conclusion follows now. �

Observe that the function w from Theorem 1.1 is continuously differentiable
with a non-negative derivative. This means that this function is non-decreasing.
Due to this fact, we can weaken the hypothesis of this theorem to obtain the
following form.

Proposition 2.4. Let w ∈ W and f, g ∈ C[0, 1]. Then there exists c ∈ (0, 1)
such that

(2.4)

∫ 1

0

f(x)dx ·
∫ c

0

w(x)g(x)dx =

∫ 1

0

g(x)dx ·
∫ c

0

w(x)f(x)dx.

Proof. We consider the functions F,G [0, 1] → R defined by F (t) =
∫ t
0
f(x)dx

and G(t) =
∫ t
0
g(x)dx. These functions satisfy the hypothesis of Corollary 2.3 and

we find c ∈ (0, 1) such that

F (1) ·
∫ c

0

w(x)G′(x)dx = G(1) ·
∫ c

0

w(x)F ′(x)dx.

Since F (1) =
∫ 1

0
f(x)dx, G(1) =

∫ 1

0
g(x)dx, and F ′(t) = f(t), G′(t) = g(t), we

obtain the conclusion. �

If we choose w(x) = x for any x ∈ [0, 1], we find c ∈ (0, 1) such that∫ 1

0

f(x)dx ·
∫ c

0

xg(x)dx =

∫ 1

0

g(x)dx ·
∫ c

0

xf(x)dx.

This equality, proposed in [6], represents the starting point of Mingarelli’s paper.

3. Solutions of some recently posed problems

In this section we present two problems, recently published in the American Math-
ematical Monthly. In fact, we obtain the solutions for these problems as conse-
quences of our work.
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The next corollary represents a generalization of the mean value theorem from [2].

Corollary 3.1. Let w ∈ W ∩ C1[0, 1] with w(0) = 0 and f ∈ C1[0, 1] with
f(0) = f(1). Then, there exists c ∈ (0, 1) such that∫ c

0

w′(x)f(x)dx = w(c)f(c).

Proof. Due to the integration by parts formula, we obtain∫ t

0

w′(x)f(x)dx = w(t)f(t)−
∫ t

0

w(x)f ′(x)dx

for any t ∈ [0, 1]. By using Theorem 2.1, we find c ∈ (0, 1) such that∫ c

0

w(x)f ′(x)dx = 0,

and the conclusion follows. �

If we choose w(x) = x2 for any x ∈ [0, 1], we find a point c ∈ (0, 1) such that∫ c

0

2xf(x)dx = c2f(c),

which is the equality from [2].

Corollary 3.2 ([7, C. Lupu]). Let ϕ ∈ C1[0, 1] with ϕ(0) = 0 and ϕ(1) = 1,
and suppose that ϕ′(x) 6= 0 for any x ∈ [0, 1]. Let f ∈ C[0, 1] be such that∫ 1

0

f(x)dx =

∫ 1

0

ϕ(x)f(x)dx.

Then there exists c ∈ (0, 1) such that∫ c

0

ϕ(x)f(x)dx = 0.

Proof. We observe that under the hypothesis, the function ϕ is increasing and
positive. Now, let F [0, 1]→ R be defined by

F (x)

∫ x

0

f(t)dt.

By using the integration by parts formula, we obtain∫ 1

0

ϕ(x)f(x)dx = ϕ(1)F (1)− ϕ(0)F (0)−
∫ 1

0

ϕ′(x)F (x)dx

=

∫ 1

0

f(x)dx−
∫ 1

0

ϕ′(x)F (x)dx.

The assumption yields ∫ 1

0

ϕ′(x)F (x)dx = 0.
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Since ϕ′ ·F ∈ C[0, 1], by the mean value theorem for Riemann integral, there exists
α ∈ (0, 1) such that

0 =

∫ 1

0

ϕ′(x)F (x)dx = ϕ′(α)F (α).

Since ϕ′(α) ≥ 0, we conclude that F (α) = 0, which means that∫ α

0

f(x)dx = 0.

Further, we consider the functions g [0, 1]→ R, g(x) = f(αx), and u[0, 1]→ [0,∞),
u(x) = ϕ(αx). It is clear that g ∈ C[0, 1] and u ∈W. Moreover,∫ 1

0

g(x)dx =

∫ 1

0

f(αx)dx =
1

α

∫ α

0

f (y) dy = 0.

Corollary 2.2 gives us a point β ∈ (0, 1) such that

0 =

∫ β

0

u(x)g(x) dx =

∫ β

0

ϕ(αx)f(αx) dx =
1

α

∫ αβ

0

ϕ(y)f(y)dy.

Now, the proof is complete if we choose c = αβ. �

We conclude our paper with the next corollary.

Corollary 3.3 ([3, P. C. Le Van]). Let n be a positive integer and f ∈ C[0, 1]

be such that
∫ 1

0
f(x)dx = 0. Then there exists c ∈ (0, 1) such that

n

∫ c

0

xnf(x)dx = cn+1f(c).

Proof. Applying Corollary 2.2 to the functions w(x) = xn and f , we find d ∈
(0, 1) such that ∫ d

0

xnf(x)dx = 0.

We consider the function F [0, 1]→ R,

F (t) =


1

tn

∫ t

0

xnf(x)dx, t ∈ (0, 1],

0, t = 0.

We have lim
x→0+

F (x) = 0, so the function F is continuous on [0, d] . Moreover,

F (d) = 0 and F is differentiable on (0, 1). Then there exists c ∈ (0, d) such that
F ′(c) = 0.

Since

F ′(t) =
tnf(t) · tn − ntn−1 ·

∫ t
0
xnf(x)dx

t2n

=
tn+1f(t)− n

∫ t
0
xnf(x)dx

tn+1

for any t ∈ [0, 1], the equality F ′(c) = 0 yields the conclusion. �



ABOUT A MEAN VALUE THEOREM FOR PRODUCT OF TWO FUNCTIONS 7

References

1. Apostol T., Mathematical Analysis, Addison-Wesley, 1974.
2. Khurshudyan A., On a mean value theorem for Riemann integral, J. Diff. Equations, Prob-

lem 2010-1 (2010), 68–69.

3. Le Van P. C., Problem 11872, Amer. Math. Monthy 122(9) (2015), 900.
4. Lupu C. and Lupu T., Mean value theorems for some linear integral operators, Electron. J.

Diff. Equ. 2009 (2009), Art. ID 117, 1–15.

5. Lupu C., Mean value problems of Flett type for a Volterra operator, Electron. J. Diff. Equ.
2013 (2013), Art. ID 53, pp. 1–7.

6. Lupu C., Problem 11290, Amer. Math. Monthy 114 (2007), Art. ID 4, p. 359.

7. Lupu C., Problem 11814, Amer. Math. Monthy, 122 (2015), Art. Id. 1, p. 74.
8. Mingarelli A. B., Pacheco J. M. and Plaza A., A mean value property for pairs of integrals,

Acta Math. Univ. Comenian. 78(1) (2009), 65–70.
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