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STABILITY OF A CLASS OF FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATION WITH NONLOCAL

INITIAL CONDITIONS

P. MUNIYAPPAN and S. RAJAN

Abstract. The aim of the present paper is to investigate the Hyers-Ulam stability

and generalized Hyers-Ulam stability of a new class of a fractional integro-differential

equation with nonlocal initial conditions.

1. Introduction

“Under what conditions does there exist an additive mapping near an approxi-
mately additive mapping?”, this is the problem proposed by Ulam [16] in 1940.
In the next year, the first positive answer for additive functions defined on Ba-
nach spaces was given by Hyers [8]. The generalization of Hyers result was given
by Rassias [15] in 1978. Since this pioneering result, the stability concept had
been rapidly devoloped and become one of the central subjects in mathematical
analysis.

Motivated by this result, S. M. Jung [9] initiated the application of these con-
cepts in differential equations and integral equations via a fixed point method
by using some ideas of Cadariu and Radu [2]. Following this, many authors
have proved the stability of differential equations, integral equations and integro-
differential equations (see [1], [3], [6], [7] etc.) using the fixed point approach in
Banach spaces.

On the other hand, fractional differential equations have arisen as a major field
of research in recent years. The commentable development in this area is finding
the existence and uniqueness results of linear, nonlinear and integro-differential
equations of fractional order. By contrast, the stability concepts of fractional
order differential equations are very slow. There are very few works only available
on the stability of FDE.

In 2012, Wang [17] proved the Hyers-Ulam stability of the following problem

Dαy(t) = F (t, y(t)), 0 < α < 1.
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For more results, one can see ([5], [12], [14], [13], [18] etc.). This paper is
concerned with the stability of the following fractional integro-differential equation
with the given initial condition

cDαy(t) = F

(
t, y(t),

∫ t

0

k(t, s, y(s))ds,

∫ 1

0

h(t, s, y(s))ds

)
,(1.1)

x(0) =

∫ 1

0

g(s)x(s)ds,(1.2)

where cDα is Caputo derivative of order α, 0 < α < 1, t ∈ I = [0, 1], g(t) ∈ (0, 1],
g ∈ L1 (I,R+), y ∈ Y = C(I,X) is a continuous function on I with values in the
Banach space X, ‖y‖Y = maxt∈I ‖y(t)‖X , F : I×X×X×X → X, k : D×X → X,
and h : D0 × X → X are continuous X valed functions.Here we note that D ={

(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ 1
}

and D0 = I × I. For our convenience let us denote

Ky(t) =
∫ t

0
k(t, s, y(s))ds, Hy(t) =

∫ 1

0
h(t, s, y(s))ds.

In this paper, authors prove the Hyers-Ulam stability of a class of the fractional
order integro-differential equation (1.1) with the given initial condition (1.2) by
applying the fixed point method.

This paper is organized as follows: In Section 2, the Hyers-Ulam stability of
the fractional integro-differential equation (1.1) with the nonlocal initial condition
(1.2) is proved. In Section 3, the generalized Hyers-Ulam stability of the frac-
tional integro-differential equation (1.1) with the nonlocal initial condition (1.2) is
proved.

2. Priliminaries

Assume the following:

(H1) If f ∈(C[0, 1]×X×X×X,X) and a nonnegative, bounded pf ∈L1([0, 1],R),
there exists M > 0, pf (t) ≤M for t ∈ [0, 1], such that

‖f(t, x,Kx,Hx)‖ ≤ pf (t) ‖x‖ for x ∈ X.

(H2) There exist positive constants L1, L2, and L such that

‖f(t, x1, y1, z1)− f(t, x2, y2, z2)‖ ≤ L1 (‖x1 − x2‖+ ‖y1 − y2‖+ ‖z1 − z2‖)

for all x1, y1, z1, x2, y2, z2 ∈ Y , L2 = maxt∈I ‖f(t, 0, 0, 0)‖, and L =
max {L1, L2}.

(H3) There exist positive constants N1, N2, and N such that

‖k(t, s, x1)− k(t, s, x2)‖ ≤ N1 ‖x1 − x2‖

for all x1, x2 ∈ Y , N2 = max(t,s)∈D ‖k(t, s, 0)‖, and N = max {N1, N2}.
(H4) There exist positive constants C1, C2 and C such that

‖h(t, s, x1)− h(t, s, x2)‖ ≤ C1 ‖x1 − x2‖

for all x1, x2 ∈ Y,C2 = max(t,s)∈D0
‖h(t, s, 0)‖, and C = max {C1, C2}.

(H5) p = L
Γ(α+1)

(
1 + C + N

(α+1)

)
is such that 0 ≤ p ≤ 1.
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Definition 2.1 ([17]). For a nonempty set X, a function d : X ×X → [0,∞]
is called generalized metric on X if and only if d satisfies:

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

This concept differs from the usual concept of a complete metric space by the fact
that not every two points in X have necessarily a finite distance. One might call
such space a generalized complete metric space.

Theorem 2.1 ([4]). Let (X, d) be a generalized complete metric space. Assume
that Λ: X → X is a strictly contractive operator with the Lipschitz constant L < 1.
If there exists a nonnegative integer k such that d(Λk+1x,Λkx) < ∞ for some
x ∈ X, then the following statements are true:
(a) The sequence {Λnx} converges to a fixed end point x∗ of Λ.

(b) x∗ is the unique fixed point of Λ in X∗ =
{
y ∈ X|d(Λkx, y) <∞

}
.

(c) If y ∈ X∗, then d(y, x∗) ≤ 1
1−Ld(Λy, y).

Lemma 1 ([11]). If Q(τ, α) = Γ(α)Iα1−g(τ) =
∫ 1

τ
g(s)(s−τ)α−1ds for τ ∈ [0, 1],

and if g ∈ [I,R] satisfies 0 ≤ g(s) ≤ 1 for 0 ≤ s ≤ 1 and α > 0, then

Q(τ, α)

Γ(α)
< e and

∫ t
0
(t− s)α−1ds

Γ(α)
< e .

Theorem 2.2 ([11]). If (H1)–(H5) are satisfied, then the fractional integro-
differential equation (1.1), with the initial condition (1.2) has a unique solution in
I defined by

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),Kf(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ.

3. Hyers-Ulam Stability

In this section, authors investigate the Hyers-Ulam stability of the fractional
integro-differential equation (1.1) with the integral initial condition (1.2).

Theorem 3.1. Set l := (L(1 + N + M)) < 1. Let L,M, and N be positive

constants with 0 < tα(1−µ)
Γ(α+1)(1−µ−le)−(1−µ)ltα < 1 and I : [0, 1] denote a closed and

bounded interval. Suppose that F : I × R → R is a continuous function satisfying
a Lipschitz condition

(3.1) |F (t, x1, y1, z1)− F (t, x2, y2, z2)| ≤ L (|x1 − x2|+ |y1 − y2|+ |z1 − z2|)

k : I × I × R→ R is a continous function satisfying a Lipschitz condition

(3.2) |k(t, s, f)− k(t, s, g)| ≤ N [|f − g|] for all t, s ∈ I and f, g ∈ R.
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and h : I × I × R→ R is a continous function satisfying a Lipschitz condition

(3.3) |h(t, s, f)− h(t, s, g)| ≤M [|f − g|] for all t, s ∈ I and f, g ∈ R.

If for ε ≥ 0, a continuously differential function y : I → R satisfies

(3.4) |cDαy(t)− F (t, y(t),Ky(t), Hy(t))| ≤ ε

for all t ∈ I, then there exists a unique continuous function y0 : I → R such that

(3.5)

y0(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),Kf(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ)Hf(τ)) dτ.

and

(3.6) |y(t)− y0(t)| ≤ tα(1− µ)

Γ(α+ 1)(1− µ− le)− (1− µ)ltα
ε.

Proof. Let X denote the set of all real valued continuous functions on I. We
define a generalized complete metric (see [9]) on X as follows:

(3.7) d(f, g) = inf{C ∈ [0,∞]||f(t)− g(t)| ≤ C for all t ∈ I}.

Now, define an operator Λ: X → X by

(3.8)

(Λf) (t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),K(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ

for all f ∈ X.
Next we check that Λ is strictly contractive on X.
Let f, g ∈ X and let Cfg ∈ [0,∞] be an arbitrary constant such that d(f, g) ≤

Cfg. Then, by (3.7), we get

(3.9) |f(t)− g(t)| ≤ Cfg

for any t ∈ I.
Using (3.1), (3.2), (3.3), (3.8), and (3.9), we have

|(Λf)t− (Λg)t|

≤ 1

Γ(α)

∫ t

0

(t− s)α−1 |F (s, f(s),Kf(s), Hf(s))− F (s, g(s),Kg(S), Hg(s))|ds

+
e

(1− µ)

∫ 1

0

|F (τ, f(τ),Kf(τ), Hf(τ))− F (τ, g(τ),Kg(τ), Hg(τ))|dτ
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≤ L

Γ(α)

∫ t

0

(t− s)α−1 [|f(s)− g(s)|+ |Kf(s)−Kg(s)|+ |Hf(s)−Hg(s)|] ds

+
eL

(1− µ)

∫ 1

0

[|f(τ)− g(τ)|+ |Kf(τ)−Kg(τ)|+ |Hf(τ)−Hg(τ)|] ds

≤ L(1 +N +M)

Γ(α)
Cfg

∫ t

0

(t− s)α−1ds+
eL(1 +N +M)

(1− µ)
Cfg

∫ 1

0

ds

≤ L(1 +N +M)tα

Γ(α+ 1)
Cfg +

eL1(1 +N +M)

(1− µ)
Cfg

≤ L(1 +N +M)

[
tα

Γ(α+ 1)
+

e

1− µ

]
Cfg

for all t ∈ I. That is

d (Λf,Λg) ≤
[

ltα

Γ(α+ 1)
+

l e

1− µ

]
Cfg.

Hence we can conclude that

d (Λf,Λg) ≤
[

ltα

Γ(α+ 1)
+

l e

1− µ

]
Cfg ≤

[
ltα

Γ(α+ 1)
+

l e

1− µ

]
d(f, g)

for all f, g ∈ X. Let g0 be any arbitrary element in X. Then there exists a
constant 0 < C <∞ with

|(Λg0)(t)− g0(t)| =
∣∣∣ 1

Γ(α)

∫ t

0

(t−s)α−1F (s, f(s),Kf(s), Hf(s))ds− 1

(1− µ)Γ(α)

×
∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ − g0(t)
∣∣∣ ≤ C

for all t ∈ I, since F (t, (g0)(t), Kg0(t), Hg0(t)) and (g0)(t) are bounded on I.
Thus, (3.7) implies that

(3.10) d(Λg0, g0) <∞.
Therefore according to Theorem 2.1, there exists a continuous function y0 : I → R
such that the sequence {Λng0} converges to y0 and Λy0 = y0, that is, y0 is a
solution of (1.1), (1.2). We will now verify that

{g ∈ X | d(g0, g) <∞} = X.

Since g and g0 are bounded on I, for any g ∈ X, there exists a constant 0 < Cg <∞
such that

|g0(t)− g(t)| ≤ Cg
Hence, we have d(g0, g) <∞ for all g ∈ X. That is {g ∈ X | d(g0, g) <∞} = X.

Therefore, in view of Theorem 2.1, we conclude that y0 given by (3.5) is the
unique continuous function. From (3.4) we have

−ε ≤c Dα
a+y(t)− F (t, y(t),Ky(t), Hy(t)) ≤ ε

for all t ∈ I.
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If we integrate each term in the above inequality from 0 to t and substitute the
initial condition, we obtain∣∣∣y(t)− 1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),Kf(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ | ≤ tα

Γ(α+ 1)
ε

for any t ∈ I.
That is, it holds that

|y(t)− (Λy)(t)| ≤ tα

Γ(α+ 1)
ε,

i.e,

(3.11) d(y,Λy) ≤ tα

Γ(α+ 1)
ε

for each t ∈ I.
Finally, Theorem 2.1 together with (3.11) implies that

d(y, y0) ≤ 1

1−
[

ltα

Γ(α+1) + l e
1−µ

]d(y,Λy) ≤ tα(1− µ)

Γ(α+ 1)(1− µ− l e)− (1− µ)ltα
ε,

that is, the inequality (3.6) is true for all t ∈ I. �

4. Generalized Hyers-Ulam stability

In this section, authors established generalized Hyers-Ulam stability of the frac-
tional integro-differential equation (1.1) with initial condition (1.2).

Theorem 4.1. Set l := (L(1 + N + M)) < 1. Let I = [0, 1] be a closed
and bounded interval, and L, M , N , P1, and P2 be positive constants with 0 <[
lP1 + leP2

1−µ

]
< 1. Assume that F : I × R → R is a continuous function satisfying

the Lipschitz condition (3.1) and K : I × I × R → R is a continuous function
satisfying a Lipschitz condition (3.2), H : I × I × R → R is a continuous func-
tion satisfying a Lipschitz condition (3.3). If a continuously differential function
y : I → R satisfies

(4.1) |cDαy(t)− F (t, y(t),Ky(t), Hy(t))| ≤ ϕ(t)

for all t ∈ I, where ϕ : I → (0,∞) is a continuous function with

(4.2)

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

∣∣∣∣ ≤ P1ϕ(t) and

∫ 1

0

ϕ(s)ds ≤ P2ϕ(t)

for all t ∈ I, then there exists a unique continuous function y0 : I → R such that

(4.3)

y0(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),K(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ
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and

(4.4) |y(t)− y0(t)| ≤ (1− µ)P1

(1− µ)− [l(1− µ)P1 + leP2]
ϕ(t) for all t ∈ I.

Proof. Let X denote the set of all real valued continuous functions on I. We set
a generalised complete metric (see [9]) on X as follows

(4.5) d(f, g) = inf {C ∈ [0,∞] | |f(t)− g(t)| ≤ Cϕ(t) for allt ∈ I}

Define an operator Λ: X → X by

(4.6)

(Λf) (t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),K(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ

for all t ∈ I and f ∈ X.
Now we check that Λ is strictly contractive on X.
For any f, g ∈ X, let Cfg ∈ [0,∞] be an arbitrary constant with d(f, g) ≤ Cfg,

that is, by (4.5), we have

(4.7) |f(t)− g(t)| ≤ Cfgϕ(t)

for any t ∈ I.
Then from (3.1), (3.2), (3.3), (4.2), (4.6) and (4.7) it follows that

|(Λf)t− (Λg)t|

≤ 1

Γ(α)

∫ t

0

(t− s)α−1 |F (s, f(s),Kf(s), Hf(s))− F (s, g(s),Kg(S), Hg(s))|ds

+
e

(1− µ)

∫ 1

0

|F (s, f(s),Kf(s), Hf(s))− F (s, g(s),Kg(S), Hg(s))|ds

≤ L

Γ(α)

∫ t

0

(t− s)α−1 [|f(s)− g(s)|+ |Kf(s)−Kg(s)|+ |Hf(s)−Hg(s)|] ds

+
eL

(1− µ)

∫ 1

0

[|f(τ)− g(τ)|+ |Kf(τ)−Kg(τ)|+ |Hf(τ)−Hg(τ)|] ds

≤ L(1 +N +M)

Γ(α)
Cfg

∫ t

0

(t− s)α−1ϕ(s)ds+
eL(1 +N +M)

(1− µ)
Cfg

∫ 1

0

ϕ(s)ds

≤ lP1Cfgϕ(t) +
l e

(1− µ)
P2Cfgϕ(t)

≤
[
lP1 +

l eP2

1− µ

]
Cfgϕ(t)

for all t ∈ I. That is,

d (Λf,Λg) ≤
[
lP1 +

l eP2

1− µ

]
Cfgϕ(t).
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Hence we can conclude that

d (Λf,Λg) ≤
[
lP1 +

l eP2

1− µ

]
d(f, g)

for any f, g ∈ X, where we note that 0 <
[
lP1 + l eP2

1−µ

]
< 1.

From (4.6), it follows that for an arbitrary g0 ∈ X, there exists a constant
0 < C <∞ with

|(Λg0)(t)− g0(t)| =
∣∣∣ 1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),K(s), Hf(s))ds

− 1

(1−µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ−g0(t)
∣∣∣

≤ Cϕ(t)

for all t ∈ I, since F (t, g0(t),Kg0(t), Hg0(t)) and g0(t) are bounded on I and
mint∈I ϕ(t) > 0.

Thus (4.5) implies that

d(Λg0, g0) <∞.
Therefore, according to theorem 2.1, there exists a continuous function y0 : I → R
such that the sequence {Λng0} converges to y0 in (X, d) and Λy0 = y0, that is, y0

is a solution of (1.1)–(3.2) for every t ∈ I.
We will now verify that

{g ∈ X | d(g0, g) <∞} = X,

Since g and g0 are bounded on I for any g ∈ X and mint∈I ϕ(t) > 0, there exists
a constant 0 < Cg <∞ such that

|g0(t)− g(t)| ≤ Cg
Hence, we have d(g0, g) <∞ for all g ∈ X. That is, {g ∈ X | d(g0, g) <∞} = X.

Therefore, from Theorem 2.1, we conclude that y0 is the unique continuous
function with the property (3.5).

From (4.1), we have

(4.8) − ϕ(t) ≤c Dα
a+y(t)− F (t, y(t),Ky(t), Hy(t)) ≤ ϕ(t)

for all t ∈ I.
If we integrate each term in the above inequality and substitute the boundary

conditions, we obtain∣∣∣y(t)− 1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),K(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ
∣∣∣

≤ 1

Γ(α)

∫ t

0

(t− s)α−1ϕ(s)ds

for any t ∈ I.
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Thus, by (4.2) and (4.6), we get

|y(t)− (Λy)(t)| ≤ P1ϕ(t)

for each t ∈ I, which implies that

(4.9) d(y,Λy) ≤ P1ϕ(t).

Finally, using Theorem 2.1 together with (4.9), we conclude that

(4.10)

d(y, y0) ≤ 1

1−
[
lP1 + l eP2

1−µ

]d(y,Λy)

≤ (1− µ)P1

(1− µ)− [l(1− µ)P1 + l eP2]
ϕ(t).

Consequently, this yields the inequality (4.4) for all t ∈ I. �

In Theorem 4.1, we have examined the generalized Hyers-Ulam stability of the
fractional integro-differential equation (1.1) defined on a bounded and closed in-
terval. Now we will show that theorem (4.1) is also valid for the case of unbounded
intervals.

Theorem 4.2. For a given nonnegative real number T , let I denote either
(−∞, 1] or R or [1,∞). Let L,M,N, P1, and P2 be positive constants with 0 <[
lP1 + leP2

1−µ

]
< 1. Suppose that F : I × R→ R is a continuous function satisfying

a Lipschitz condition (3.1) for all t ∈ I and x, y ∈ R. If a continuously differential
function y : I → R satisfies the differential inequality (4.1) for all t ∈ I, where
ϕ : I → (0,∞) is a continuous function satisfying (4.2) for each t ∈ I, then there
exists a unique continuous function y0 : I → R satisfying (3.5) and (4.4) for all
t ∈ I.

Proof. Let I = R. We first show that y is a unique continuous function. For
any n ∈ N, we define In = [−n, n]. In accordence with Theorem (4.1), there exists
a unique continuous function yn : In → R such that

(4.11)

yn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),Kf(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ

and

|y(t)− yn(t)| ≤ 1

1−
[
lP1 + l eP2

1−µ

]d(y,Λy)

≤ (1− µ)P1

(1− µ)− [l(1− µ)P1 + l eP2]
ϕ(t)

for all t ∈ I.
The uniqueness of yn implies that if t ∈ In, then

(4.12) yn(t) = yn+1(t) = yn+2(t) = . . .
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For any t ∈ R, we define n(t) ∈ N as

(4.13) n(t) = min{n ∈ N | t ∈ In}.

Moreover, let us define a function y0 : R→ R by

(4.14) y0(t) = yn(t)(t).

We claim that y0 is continuous. We take the integer n1 = n(t1) for an arbitrary
t1 ∈ R. Then, t1 belongs to the interior of In1+1 and there exists ε > 0 such that
y0(t) = yn1+1(t) for all t with t1 − ε < t < t1 + ε. Since yn1+1 is continuous at
t1, y0 is continuous at t1 for any t1 ∈ R. Now, we will prove that u0 satisfies (3.5)
and (4.5) for all t ∈ R. Let n(t) be an integer for an arbitrary t ∈ R. Then, from
(4.11) and (4.14), we have t ∈ In(t) and

y0(t) = yn(t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (s, f(s),Kf(s), Hf(s))ds

− 1

(1− µ)Γ(α)

∫ 1

0

Q(τ, α)F (τ, f(τ),Kf(τ), Hf(τ)) dτ.

(4.15)

Since n(s) ≤ n(t) for any s ∈ In(t), the last equality is correct and we have

yn(t)(s) = yn(s)(s) = y0(s)

by (4.12) and (4.14).
Since t ∈ In(t) for all t ∈ R, by (4.12) and (4.14), we have

|y(t)− y0(t)| ≤
∣∣y(t)− yn(t)(t)

∣∣
≤ 1

1−
[
lP1 + leP2

1−µ

]d(y,Λy)

≤ (1− µ)P1

(1− µ)− [l(1− µ)P1 + leP2]
ϕ(t)

for all t ∈ R. Finally, we prove that y0 is unique. Assume that x0 : R → R is
another continuous function satisfying (3.5) and (4.5) with x0 in place of y0 for
all t ∈ R. Let t ∈ R be a discretionary number. Since the restrictions x0|In(t) and
y0|In(t) satisfy (3.5) and (4.5) for all t ∈ In(t), the uniqueness of yn(t) = y0|In(t)

suggests that

(4.16) y0(t) = y0|In(t)
(t) = x0|In(t)

(t) = x0(t).

Similarly, the proof can be done for the classes I = (−∞, T ] and I = [0,∞). �
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