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EQUILIBRIA AND STABLE PATHS IN INFINITE

HORIZON NONLINEAR CONTROL PROBLEMS:

THE LINEAR-QUADRATIC APPROXIMATION

P. BRUNOVSKÝ and M. ZÁKOPČAN

Abstract. Nonlinear discrete time infinite horizon problems with discount are dis-

cussed. It is assumed that the problem without discount admits a nondegenerate

steady state “extremal” solution. Under this and certain additional hypotheses it is
proved that for sufficiently mild discounts the steady state solution exists, for initial

conditions sufficiently close to it the problem has a solution of the stable path type

and that the solution can be approximated by the linear-quadratic truncation of the
problem.

1. Introduction

For several decades, dynamic models based on optimal control theory have been
popular in macroeconomics. In the spirit of the early Ramsey model the inter-
est focused on the presence of equilibria of infinite horizon problems as well as
existence and uniqueness of stable (also called saddle) paths converging to them.
Both discrete time and continuous time problems have been employed, the former
e. g. in real business cycle theory [7], [14], the latter in growth and convergence
economic models [14], [2]. Because equilibria not always and stable paths rarely
admit a closed form expression, approximative methods had to be employed. To
this end the problem has commonly been locally at the equilibrium truncated to
a linear-quadratic one [14], [4]. The purpose of this paper is to provide a rigorous
justification of this method. We have chosen to focus on the discrete time option.
The continuous time is to a large extent analogous, the differences being discussed
in the concluding Section 5.

The optimal control problem discussed in this paper is as follows: Let X ⊆ Rn,
U ⊆ Rm be open, x0 ∈ X, f ∈ C3(X × U,R), F ∈ C3(X × U,X) and β ∈ (0, 1].
By a feasible control/response pair we understand a pair of sequences {ut}∞t=0,
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{xt}∞t=0 satisfying

xt ∈ X,(1)

ut ∈ U,(2)

xt+1 = F (xt, ut) for t = 0, 1, . . .(3)

such that the series

(4) J(x0, {ut}) =

∞∑
t=0

βtf(xt, ut)

converges. We denote by φ(β, x0) the set of all feasible controls and by Φ(β, x0)
the set of all feasible control/response pairs.

The control/response pair ({x̂t}, {ût}) ∈ Φ(β, x0) is called optimal if

(5)

∞∑
t=0

βtf(x̂t, ût) ≥
∞∑
t=0

βtf(xt, ut)

holds for all ({xt}, {ut}) ∈ Φ(β, x0). The problem of finding an optimal control
we will label by (Uβ,x0

), the family of problems (Uβ,x0
) with x0 ∈ X by (Uβ).

The crucial assumption of this paper is that there exists an x0 such that the
problem (Uβ,x0

) has an equilibrium solution, i. e. an optimal control/response
pair {x̂t}, {ût} such that x̂t ≡ x0 and ût ≡ u0 for some u0 and all t. As a rule,
in macroeconomic applications this is commonly the case and this equilibrium
solution can be determined either analytically or numerically.

The interest is to find hypotheses under which the problem (Uβ,x0
) has a unique

“stable path”, i. e., optimal control/response pair for any x0 ∈ X (where typically
X = Rn or X is a neighborhood of x0), with the control and response sequences
converging to (x0, u0), respectively.

The principal goal of the present paper is to formulate and prove verifiable
and interpretable hypotheses of general nature under which this methodology is
justified. Although in economic applications β < 1 as a rule, in order to establish
such hypotheses we imbed the problem (Uβ) for fixed β into a family of problems
including the limit case β = 1. The hypotheses are formulated in terms of this
limit case.

The paper is organized as follows: In Section 2 we introduce the concept of an
extremal control/response pair and the basic hypotheses. In Section 3 we discuss
the linear-quadratic truncation of the problem. In Section 4 we extend the results
of Section 3 to their local version for the full problem. Finally, in the concluding
Section 5 we discuss several issues including the relation of our results to economic
models and to the continuous time version of the problem.

2. The necessary condition of optimality
and the extremal steady state

In this section we introduce the concept of normal extremal steady state for the
extension (U1) of the problem (Uβ) to β = 1. The problem (U1) will serve as
an anchor for the family of problems (Uβ) for β sufficiently close to 1. Since the
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convergence of the series in (4) for β = 1 requires more stringent assumptions on f
than those for the case β < 1 we phrase the anchor problem in terms of necessary
conditions of optimality rather than optimality itself. We derive this condition
under the assumption

Q1: DxF (x, u) is nonsingular for all x ∈ X and u ∈ U .

This assumption as well as additional hypotheses labeled by Q introduced later
will be kept throughout the paper unless said otherwise.

By [5], under Q1, a necessary condition of optimality of a control/response pair
({x̂t}, {ût}) for the problem (Uβ,x0

) is that there exists a constant ψ0 ≥ 0 and a
sequence {ψt}, ψt ∈ Rn for t = 0, 1, 2, . . . such that (ψ0, ψt) 6= 0 and the system
of equations

xt+1 = F (xt, ut),(6)

0 = ψ0DT
u f(xt, ut) + βDT

uF (xt, ut)ψt+1,(7)

ψt = ψ0DT
x f(xt, ut) + βDT

x F (xt, ut)ψt+1(8)

is satisfied for ut = ût, xt = x̂t and all t = 0, 1, . . . . Given β ∈ (0, 1], a triple
of sequences {xt}∞t=0, {ut}∞t=0 and {ψt}∞t=0 satisfying the system (6), (7), (8) (the
superscript T meaning transposition) will be called extremal, equations (7), (8) be-
ing called maximum condition, adjoint equation respectively. The extremal triple
will be called normal if ψ0 6= 0 (in which case one can without loss of general-
ity take ψ0 = 1). By a steady state extremal triple we will understand a triple
(x, u, ψ) ∈ X × U × Rn of constants such that xt ≡ x, ut ≡ u, ψt ≡ ψ is a normal
extremal triple.

That is, a steady state extremal of (Uβ) is a solution (x, u, ψ) ∈ X × U × Rn
of the system of equations

x = F (x, u),(9)

0 = DT
u f(x, u) + βDT

uF (x, u)ψ,(10)

ψ = DT
x f(x, u) + βDT

x F (x, u)ψ.(11)

Denote

(12) H(x, u, ψ) = f(x, u) + βψTF (x, u)

the Hamiltonian of the problem (Uβ). Then, we can write (6), (7), (8) for ψ0 = 1
as

βxt+1 = DψH(xt, ut, ψt+1),(13)

0 = DT
uH(xt, ut, ψt+1),(14)

ψt = DT
xH(xt, ut, ψt+1)(15)

and (9), (10), (11) as

DψH(x, u, ψ) = βx,(16)

DT
uH(x, u, ψ) = 0,(17)
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DT
xH(x, u, ψ) = ψ.(18)

We assume

Q2: There exists a steady state extremal triple (x1, u1, ψ1) for (U1).

We denote A1 = DxF (x1, u1), B1 = DuF (x1, u1), P1 = D2
xxH(x1, u1, ψ1),

Q1 = D2
uxH(x1, u1, ψ1) and R1 = D2

uuH(x1, u1, ψ1).
Further, we assume

Q3: D2
(x,u)H(x1, u1, ψ1) =

(
P1 QT1
Q1 R1

)
is negative definite.1

Q4: The pair of matrices (A1, B1) is controllable.

Recall that the pair of matrices (A,B) is called controllable if
rank (B AB . . . An−1B) = n. Further, if (A,B) is controllable then it is sta-
bilizable i. e. there exists an m × n matrix Z such that all the eigenvalues of
A + BZ are inside the unit circle (see [9]). Note that if n = m and rank B = n,
then (A,B) is trivially controllable.

Further, note that if is a controllable pair of matrices then this remains true for
all pairs of matrices in a sufficiently small neighborhood of (A,B). Therefore, if
O has been chosen sufficiently small, controllability (and, thus, stabilizability) of
(A1, B1) assumed in Q4 extends to (Aβ , Bβ) for all β ∈ O. Finally,we have

Proposition 2.1. Let A be n × n and let (A,B) be controllable. Then,
rank(A− I B) = n.

Proof. Let c(A− I B) = 0. Then, cB = 0, cA = c. Substituting for c from the
second equality we recurrently obtain cAB = 0, . . . , cAn−1B = 0, so c = 0 because
of controllability. �

Corollary 2.1. From Q3 and Q4 it follows that the Jacobian matrix

K =

 P1 QT1 (A1
T − I)

Q1 R1 B1
T

(A1 − I) B1 0


of the system of equations (16), (17), (18) for (x, u, ψ) at (x1, u1, ψ1) is nonsin-
gular.

Because K is nonsingular, from the implicit function theorem it follows that
the steady state extremal (x1, u1, ψ1) is locally unique and extends to a locally
unique C2 family of steady state extremals β 7→ (xβ , uβ , ψβ) of (Uβ) for β from a
neighborhood O of 1.

For fixed 0 < β ≤ 1 denote y = x − xβ , v = u − uβ , µ = ψ − ψβ , Aβ =
DxF (xβ , uβ), Bβ = DuF (xβ , uβ), kβ = Dxf(xβ , uβ), lβ = Dufβ(xβ , uβ), Pβ =

D2
xxH(xβ , uβ , ψβ), Qβ = D2

uxH(xβ , uβ , ψβ) and Rβ = D2
uuH(xβ , uβ , ψβ); Aβ , Bβ ,

kβ , lβ , Pβ , Qβ , Rβ depend C2 continuously on β.

1The brackets in the subscript of the symbol D2
(x,u)

mean the second derivative with respect

to the variables x, u with the variable ψ fixed rather that the mixed second derivatives in the

variables x, u.
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In this notation the steady state extremal equations (17), (18) read

lβ + βBTβ ψβ = 0,(19)

kβ + (βATβ − I)ψβ = 0.(20)

Furthermore the conditions of normal extremality (13), (14), (15) can be writ-
ten as

xt+1 = xβ +Aβyt +Bβvt + Ξ(yt, vt),(21)

0 = lβ + βBTβ ψβ +Qβyt +Rβvt + βBTβ µt+1 + Θ(yt, vt, µt+1),(22)

ψt = kβ + βATβψβ + Pβyt +QTβ vt + βATβµt+1 + Ψ(yt, vt, µt+1)(23)

with

(24) Ξ = o(‖yt‖+ ‖vt‖), Θ, Ψ = o(‖yt‖+ ‖vt‖+ ‖µt+1‖).

Because of (19) and (20), equations (21), (22), (23) turn to

yt+1 = Aβyt +Bβvt + Ξ(yt, vt),(25)

0 = Qβyt +Rβvt + βBTβ µt+1 + Θ(yt, vt, µt+1),(26)

µt = Pβyt +QTβ vt + βATβµt+1 + Ψ(yt, vt, µt+1).(27)

By Q3 and continuity, the matrix

(28)

(
Pβ QTβ
Qβ Rβ

)
is negative definite provided O has been chosen sufficiently small. Therefore Rβ
is nonsingular for β ∈ O and by the implicit function theorem, from (26) we can
express vt as

(29) vt(yt, µt+1) = −R−1β Qβyt − βR−1β BTβ µt+1 + o(‖yt‖+ ‖µt+1‖).

Substituting (29) into (25), (27) we eliminate vt to obtain the reduced system

yt+1 = Aβyt + βBβµt+1 + o(‖yt‖+ ‖µt+1‖),(30)

µt = Pβyt + βAT
βµt+1 + o(‖yt‖+ ‖µt+1‖),(31)

where Pβ = (Pβ −QTβR
−1
β Qβ), Bβ = −BβR−1β BTβ , Aβ = (Aβ −BβR−1β Qβ).

Now, we assume

Q5: The matrix A1 is nonsingular.

Then, Aβ is nonsingular for β ∈ O as well, provided O has been chosen small
enough. Applying the implicit function theorem once more we can express µt+1

from (31) to obtain

µt+1 =
1

β
(AT

β )−1(µt −Pβyt) + o(‖yt‖+ ‖µt‖)

Substituting this expression for µt+1 into (30) we end up with
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Proposition 2.2. The triple ({x̂t}, {ût}, {ψ̂t}) is a normal extremal triple if

and only if ŷt = x̂t − xβ, µ̂t = ψ̂t − ψβ satisfy the system of equations

yt+1 = [Aβ −Bβ(AT
β )
−1

Pβ ]yt + Bβ(AT
β )
−1
µt + o(‖yt‖+ ‖µt‖),(32)

µt+1 = − 1

β
(AT

β )
−1

Pβyt +
1

β
(AT

β )
−1
µt + o(‖yt‖+ ‖µt‖)(33)

and v̂t = ût − uβ is given by the formula (29) with Pβ = (Pβ − QTβR
−1
β Qβ),

Bβ = −BβR−1β BTβ , Aβ = (Aβ − BβR−1β Qβ) and yt = ŷt, µt = µ̂t. The right

hand sides of (32), (33) are C2.

3. The linear-quadratic approximation

In this section we deal in detail with the problem (Uβ,x0) with linear dynamics and
the objective function vanishing at 0 and terms of order higher than two missing.
Under the standing hypotheses Q1–Q5 we establish existence and uniqueness of
the optimal control as well as the presence of the linear space consisting of stable
paths for particular initial values x0. The results will be of global nature, i. e. we
take X = Rn, U = Rm.

The truncation

yt+1 = Aβyt +Bβvt,(34)

0 = Qβyt +Rβvt + βBTβ µt+1,(35)

µt = Pβyt +QTβ vt + βATβµt+1(36)

of the system (25)–(27) obtained by dropping the higher order terms represents
the system of conditions of normal extremality for the “linear-quadratic” optimal
control problem (1)–(4) with X = Rn, U = Rm, x = y, u = v

F (y, v) = F lqβ (y, v) = Aβy +Bβv,(37)

f(y, v) = f lqβ (y, v) =
1

2
yTPβy + vTQβy +

1

2
vTRβv(38)

and denote this problem by (Ulq
β ).

For (Ulq
β ), the systems of equations (30)–(31) and (32)–(33) read

yt+1 = Aβyt + βBβµt+1,(39)

µt = Pβyt + βAT
βµt+1,(40)

and

yt+1 = [Aβ −Bβ(AT
β )
−1

Pβ ]yt + Bβ(AT
β )
−1
µt,(41)

µt+1 = − 1

β
(AT

β )
−1

Pβyt +
1

β
(AT

β )
−1
µt,(42)

respectively.
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Furthermore, (29) truncates to

(43) vt(yt, µt+1) = −R−1β Qβyt − βR−1β BTβ µt+1.

Before exploiting extremality as a necessary condition of optimality we settle
the problem of existence of optimal control.

Proposition 3.1. For every feasible control/response pair ({yt}, {vt}) of the

problem (Ulq
β ) with 1 ≥ β ∈ O one has βt(‖yt‖+ ‖vt‖)→ 0 for t→∞.

Proof. Since β will be fixed in this proof we will drop it as a subscript.
By Q3, f lq is negative definite. Hence, there is a q > 0 such that

(44) f lq(y, v) ≤ −q(‖y‖+ ‖v‖)2.
Suppose that {βt(yt, vt)}

∞
t=0 does not converge to (0, 0).

Consider first β < 1. Then there is a sequence tj →∞ such that

(45) βtj (‖ytj‖+ ‖vtj‖) > η > 0,

therefore there exists tj0 such that

(46) ‖ytj‖+ ‖vtj‖ >
η

βtj
>

η

βtj0
≥ 1

for every tj > tj0.
From (46) it follows that

(‖ytj‖+ ‖vtj‖)2 ≥ ‖ytj‖+ ‖vtj‖,
hence

βtjf lq(ytj , vtj ) ≤ −qη < 0.

For N = 0, 1, 2, . . . denote

(47) J lqN (y0, {vt}) =

N∑
t=0

βtf lq(yt, vt).

Because f lq(yt, vt) ≤ 0 for all t, we have

J lqN (y0, {vt}) ≤
∑
tj≤N

βtjf lq(ytj , vtj )

≤ −(#{tj : tj ≤ N})qη → −∞,
for N →∞, a contradiction.

Let now β = 1. Then, using (44) and (45), one obtains

J lqN (y0, {vt}) ≤
∑
tj≤N

f lq(ytj , vtj )

≤ −(#{tj : tj ≤ N})qη2 → −∞,
for N →∞, a contradiction. �

Proposition 3.2. For every 1 ≥ β ∈ O and every y0 there exists an optimal

control sequence for the problem (Ulq
β,y0

).
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Proof. Since we will deal with fixed y0, β in our proof, we will drop them as
subscripts. Denote

(48) J lq(y0, {vt}) =

∞∑
t=0

βtf lq(yt, vt),

then J lq(y0, {vt}) = limN→∞ J lqN (y0, {vt}) with J lqN (y0, {vt}) defined in (47).
Further denote

(49) σ = sup
{vt}∈φ(β,y0)

J lq(y0, {vt}).

Because of Q3, σ ≤ 0.
Because (A,B) is stabilizable, there exists a matrix Z such that the spectrum

of A+BZ is inside the unit circle. Consequently, there exist 0 < λ < 1 and C > 0
such that

‖(A+BZ)
t‖ ≤ Cλt

for every t. The response {yt} of the control {vt} generated recurrently by the

feedback rule vt = Zyt satisfies yt = (A+BZ)
t
y0. Therefore,

‖yt‖ ≤ Cλ
t‖y0‖

for every t.
Hence we have

|J lq(y0, {Zyt})| ≤
∞∑
t=0

1

2
βt|yTt Pyt + 2yTt Q

TZyt + yTt Z
TRZyt|

=

∞∑
t=0

1

2
βt|y0T (AT + ZTBT )

t
(P + 2QTZ + ZTRZ)(A+BZ)

t
y0|

≤
∞∑
t=0

1

2
C2βtλ

2t‖P + 2QTZ + ZTRZ‖‖y0‖2

= D

∞∑
t=0

βtλ
2t

for some constant D > 0. Thus, Φ(β, y0) is not empty and σ is finite.
It follows that there exists a sequence {{(ykt , vkt )}∞t=0}∞k=0 of feasible control/res-

ponse pairs such that:

(50) J lq(y0, {vkt }) =

∞∑
t=0

βtf lq(ykt , v
k
t )↗ σ

for k →∞.
Fix t. Because of (44), the sequence {(ykt , vkt )}∞k=0 is bounded. Therefore there

exists a convergent subsequence of {(ykt , vkt )}∞k=0. We denote the limit of this
subsequence as (y∞t , v

∞
t ).

Employing the well known diagonal sequence construction we obtain a subse-

quence {{(ykjt , v
kj
t )}∞t=0}∞j=0 of the sequence {{(ykt , vkt )}∞t=0}∞k=0), which converges



EQUILIBRIA AND STABLE PATHS IN CONTROL PROBLEMS 87

to the sequence {(y∞t , v∞t )}∞t=0 pointwise. Obviously, it satisfies y∞0 = y0 and, by
continuity of F , we have y∞t+1 = F (y∞t , v

∞
t ) for all t.

Without loss of generality assume that the convergent subsequence coincides
with the original one. Then we have

(51) J lqN (y0, {v∞t }) = lim
k→∞

J lqN (y0, {vkt }) =

N∑
t=0

βtf lq(y∞t , v
∞
t ).

Because f lq(y, v) is negative definite, the sequences {J lqN (y0, {vkt })}∞N=0 are non-

increasing and satisfy J lqN (y0, {vkt }) ≤ 0 for all N, k, including k = ∞. Therefore,
from (50) it follows that

J lqN (y0, {v∞t }) ≥ σ
for all N . Since {J lqN (y0, {v∞t })}∞N=0 is nonincreasing and bounded from below, it
converges, so

J lq(y0, {v∞t }) = lim
N→∞

J lqN (y0, {v∞t }) ≥ σ.

The reverse inequality is trivial, hence

(52) J lq(y0, {v∞t }) = σ = max
{vt}∈φ(β,y0)

J lq(y0, {vt}).

�

Proposition 3.3. If (ŷt, v̂t) is an optimal control/response pair then there is a
solution µ̂t of the adjoint equation (36) such that {(ŷt, v̂t, µ̂t)} is a normal extremal
triple.

Proof. Recall that, because of Q1, existence of a solution {(µ̂0, µ̂t)} completing
{(ŷt, v̂t)} to an extremal triple, i. e. satisfying (µ0, µt) 6= 0 and

yt+1 = Aβyt +Bβvt,(53)

0 = µ0(Qβyt +Rβvt) + βBTβ µt+1,(54)

µt = µ0(Pβyt +QTβ vt) + βATβµt+1(55)

follows from [5]. It remains to prove µ̂0 6= 0.
Suppose the contrary. Then, because of (54), (55) we have

BTβ µ̂t = 0,(56)

µ̂t = βATβ µ̂t+1,(57)

respectively for all t. For any chosen t it follows 0 = BTβ µ̂t−j = βj(AjβBβ)T µ̂t
for j = 0, . . . , n − 1, hence µ̂t = 0 because of Q4. Then {(µ̂0, µ̂t)} = 0 which
contradicts the extremality definition. �

Since optimal responses of {vt} for β = 1 have to converge to zero by Proposition
3.1 and satisfy system of equations (41), (42) with a suitable sequence {µt}, the
following corollary of Proposition 3.2 holds

Corollary 3.1. For each y0 there exists a solution {(yt, µt)} of the system (41),
(42) with β = 1 such that yt → 0 for t→∞.
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Next we show that such a solution is unique.
Let us denote by

(58) Mβ =

(
Aβ −Bβ(AT

β )
−1

Pβ Bβ(AT
β )
−1

− 1
β (AT

β )
−1

Pβ
1
β (AT

β )
−1

)
the matrix of the system of equations (41), (42).

A (2n× 2n) matrix M is called symplectic, if it satisfies

MTΩM = Ω

with

Ω =

(
0 I
−I 0

)
and I the (n× n) identity matrix.

The eigenvalues of a symplectic matrix (including multiplicity) form reciprocal
pairs, i. e., if λ is an eigenvalue of matrixM , then so is 1

λ , with the same multiplicity
(see [1]).

A block matrix:

M =

(
A B
C D

)
,

A, B, C and D being (n× n), is symplectic if and only if the identities

ATD − CTB = I,(59)

ATC = CTA,(60)

DTB = BTD(61)

are satisfied.
In a straightforward way we can verify that M1 is symplectic.
Uniqueness of the optimal control will be obtained by combining the existence

theorem of optimal control for the problem (Ulq
1 ) and the symplectic structure of

M1.
Denote

(62) ESβ = {(y0, µ0) | (yt(y0, µ0), µt(y0, µ0))→ (0, 0) for t→∞},

where (yt(y0, µ0), µt(y0, µ0)) is a solution of the system of equations (41), (42)
with initial point (y0, µ0). Because of linearity of the system (41), (42), ESβ is a

linear subspace of Rn+n. It is the invariant subspace of Mβ corresponding to the
part of the spectrum inside the unit sphere. Correspondingly, we denote by EUβ
the complementary invariant subspace of the complement of the spectrum.

Theorem 3.1. The spectrum of M1 does not contain eigenvalues with absolute
value 1; n of its eigenvalues have moduli smaller than 1, n ones have moduli
exceeding 1. There exists an (n× n) matrix L1 such that

(63) ES1 = {(y, µ) ∈ Rn × Rn | µ = L1y}.
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Proof. From Corollary 3.1 we know that for every y0 ∈ Rn there exists a µ0 ∈ Rn
such that (yt(y0, µ0), µt(y0, µ0)) → (0, 0) for t→∞. In other words, the natural
projection (y, µ)→ y projects ES1 surjectively. Consequently, dim ES1 ≥ n.

On the other hand, since M1 is symplectic, dim ES1 ≤ n, so dim ES1 = n and
(y, µ)→ y is an injection. The representation (63) follows. �

Corollary 3.2. For given y0, the solution {(yt, µt)} of the system (41), (42)
with β = 1 satisfying yt → 0 for t→∞ is unique, µ0 being given as µ0 = L1y0

Because of continuous dependence of the spectra of matrices on their entries,
the matrices Mβ for β from a sufficiently small neighborhood of 1 inherit the
splitting of the spectrum of M1. That is, n of their eigenvalues lie inside the unit
circle whereas n of them lie outside. Furthermore the invariant subspaces ESβ of
the part of their spectra inside the unit circle are defined by:

(64) ESβ = {(y, µ) ∈ Rn × Rn | µ = Lβy}
with Lβ → L1 for β → 1. Assume that the neighborhood O has been chosen so
small that for β ∈ O the representation (64) is valid.

For β ∈ O let λβ > 1 be smaller than the minimum of absolute values of the
eigenvalues of Mβ outside the unit circle. Then, if O has been chosen sufficiently
small, one has

(65) λβ >
1

β
> 1

for β ∈ O.

Theorem 3.2. For β ∈ O there exists a unique optimal control/response pair

{(ŷt, v̂t)} for the problem (Ulq
β,y0

). The control {v̂t} being generated by the feedback
law

(66) v̂t = Zβ ŷt

with

(67) Zβ = −[R−1β Qβ +R−1β BT
β (AT

β )
−1

(Lβ −Pβ)].

Consequently, one has

(68) ŷt+1 = (Aβ +BβZβ)ŷt,

There exists a unique sequence {µ̂t} such that ({ŷt}, {v̂t}, {µ̂t}) is a normal ex-
tremal triple and one has

µ̂t = Lβ ŷt,

{(ŷt, v̂t, µ̂t)} → (0, 0, 0) for t→∞.

Proof. For β = 1 uniqueness of optimal control/response pair and its conver-
gence to (0, 0) follows from the previous theorem.

Let now 1 > β ∈ O. From Proposition 3.2 we know that for every y0 there is

an optimal control/response pair {(ŷt, v̂t)} for the problem (Ulq
β,y0

). The response

{ŷt} is the y-component of a solution {(ŷt, µ̂t)} of the system of equations (41),
(42) with the matrix Mβ .
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First, we derive the formulas (66) for optimal control and (68) for the optimal
response of the problem (Uβ,x0

) for both β < 1 and β = 1. Since µ̂t = Lβ ŷt, from
(42) we obtain

µ̂t+1 =
1

β
[−(AT

β )
−1

Pβ + (AT
β )
−1
Lβ ]ŷt.

From (43) we obtain (66). Substituting (66) to (34) we obtain (68).
Now we claim that ŷt → 0 for β < 1. Suppose the contrary. Then (y0, µ0) /∈ ESβ .

Therefore there exists a constant c > 0 such that:

‖(ŷt, µ̂t)‖ ≥ cλtβ‖(y0, µ0)‖.

Because for β ∈ O, λβ satisfies (65), the series
∑∞
t=0 β

tf lqβ (yt, vt) diverges,
contradicting our hypothesis. This proves our claim.

The convergence of ({v̂t}, {µ̂t}) to (0, 0) follows trivially. �

Denote

(69) V lqβ (y0) = sup
{vt}∈φ(β,y0)

J lq(y0, {vt})

the value functions of the problem (Ulq
β ).

Corollary 3.3. One has

(70) V lqβ (y0) =

∞∑
t=0

βtf lq(ŷt, Zβ ŷt) =
1

2
yT0 Wβy0

with

(71) Wβ =

∞∑
t=0

βt(AT
β + ZT

β B
T
β )

t
(Pβ + 2QT

βZβ + ZT
β RβZβ)(Aβ +BβZβ)

t
.

Proof. Because optimal response ŷt satisfies (68) for every t, one has

(72) ŷt = (A+BZ)
t
y0.

Substituting (66) to (38), we obtain:

(73) f lq(ŷt, v̂t) =
1

2
ŷTt (P + 2QTZ + ZTRZ)ŷt.

The substitution (72) to (73) leads to:

(74) f lq(ŷt, v̂t) =
1

2
yT0 [(AT + ZTBT)

t
(P + 2QTZ + ZTRZ)(A+BZ)

t
]y0.

By (74) we have:

(75) V lqβ(y0) = lim
N→∞

N∑
t=0

βtf lq(ŷt, v̂t) =
1

2
yT0 Wβy0

with Wβ defined in (71). �
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4. The Full Problem

In this section we deal with the full problem for fixed 1 > β ∈ O, where O has been
chosen so small that all the conclusions of Sections 2, 3 hold. We prove that the
optimal feedback law (66) and the value function (75) are linear resp. quadratic
approximations of their local at xβ counterparts for the full nonlinear problem.
To this end, in the optimal problem (Uβ) we choose X = {x ∈ Rn : ‖y‖ < η},
U = {u ∈ Rm : ‖v‖ < η} with η sufficiently small. Since β is fixed in this section
we will drop it as a subscript.

Proposition 4.1. There exists a δ > 0 such that, for y0 = x0 − xβ , ‖y0‖ < δ,
Φ(β, x0) 6= ∅ for problem (Ux0

) with 1 > β ∈ O; for every ({xt}, {ut}) ∈ Φ(β, x0)
one has βt(‖yt‖+ ‖vt‖)→ 0 for t→∞.

Proof. Because the pair of matrices (A,B) is stabilizable, for 1 > β ∈ O there
exists a matrix Z such that the spectrum of A+BZ = DxF (x, u) +DuF (x, u)Z is
inside the unit circle. For g(y) = F (x+y, u+Zy)−F (x, u) = (A+BZ)y+o(‖y‖)
one has Dg(0) = A+BZ. Let 0 < η1 <

η
1+‖Z‖ . By [8], for sufficiently small δ > 0

one has gt(y0) < η1 for ‖y0‖ < δ and all t. However, one has gt(y0) = yt = xt− x,
where {xt} is the response of the control {ut} with ut = vt + u generated by the
feedback rule ut = u + Z(xt − x), or equivalently vt = Zyt. Hence ‖ut − u‖ =
‖vt‖ < η and, consequently, Φ(x0, β) 6= ∅ as soon as ‖y0‖ < δ.

Because X and U are taken bounded, boundedness of feasible pairs is trivial
and convergence βt(‖yt‖+ ‖vt‖)→ 0 follows. �

Recall that for 1 > β ∈ O the deviations of the normal extremal responses of
(U) from x are the y-components of solutions of the system (32), (33), estimate
(65) holds and that ES is expressed by (62).

For µt = ψt − ψ denote zt = (yt, µt) and write (32), (33) as

(76) zt+1 = G(zt) = Mzt + o(‖zt‖),
G being the vector of the right-hand sides of the system of equations (32), (33),
with M = Mβ defined by (58).

Let Ω = {z = (y, µ) : ‖y‖+ ‖µ‖ < η},
(77) WS(0) = {z ∈ Ω : Gt(z)→ 0 for t→∞ and Gt(z) ∈ Ω for every t ≥ 0},
the local stable manifold of the fixed point 0 of the system (32), (33).

By [8, Theorem D.1], for sufficiently small Ω, WS(0) is a C2 manifold tangent
to ES at the origin 0; trajectories of points off WS(0) leave Ω for t → ∞. Thus
we have

Corollary 4.1. If O and η > 0 are sufficiently small then

(78) WS(0) = {z = (y, µ) ∈ Ω : µ = h(y)},
where

(79) h(y) = Ly + o(‖y‖)
is C2 differentiable.
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Corollary 4.2. For η > 0 and δ > 0 sufficiently small there is a unique
µ0 = h(y0) such that the solution (yt, µt) of (32), (33) through (y0, µ0) satisfies
‖yt‖+ ‖vt‖+ ‖µt‖ < η for t > 0 with vt given by the formula (29).

For fixed y0 denote this solution (ŷt, v̂t, µ̂t). As a consequence, for ‖x0−x‖ < δ
sufficiently small the full problem (Ux0) with 1 > β ∈ O has a unique solution

(x̂t, ψ̂t), where x̂t = ŷt + x, ψ̂t = µ̂t + ψ, of (32), (33) through (x0, ψ0) such that

(x̂t, ût, ψ̂t) with ût = v̂t + u stay close to the steady state extremal triple (x, u, ψ)
for all t.

To distinguish the unique solutions of (32), (33) through (y0, µ0) from those of
the equations (41), (42) for the truncated problem we label the latter ones by the
superscript lq.

The following proposition is a consequence of the fact that ({ŷt}, {µ̂t}) resp.

({ŷlqt }, {µ̂
lq
t }) lie in WS(0) resp. ES well known in the field of dynamical systems.

Nevertheless, for the convenience of the reader we present an outline of its proof.

Proposition 4.2. For η > 0 and δ > 0 sufficiently small there are κ > 0, ω > 0
and 0 < λ < 1 such that

‖ŷt‖+ ‖v̂t‖+ ‖µ̂t‖ ≤ κλt‖y0‖,(80)

‖ŷt − ŷlqt ‖+ ‖v̂t − v̂lqt ‖+ ‖µ̂t − µ̂lqt ‖ ≤ ω‖y0‖2.(81)

Proof. Denote Π the projection of Rn to ES annihilating EU and ζ = Πz. The
spectrum of MS = ΠM |ES : ES → ES is the part of the spectrum of M inside the
unit circle. Therefore, there is a κ1 > 0 and a 0 < λ1 < 1 such that

(82) ‖(MS)t‖ ≤ κ1λt1.
Since WS(0) is tangent to ES at 0 and C2, one has

(83) ‖z −Πz‖ = O(‖z‖2)

and the restriction of G to WS(0) can locally be represented by its projection to
ES as

(84) ζt+1 = MSζt + γ(ζt)

with ‖γ(ζ)‖ ≤ κ2‖ζ‖2 for some κ2 > 0. By [8, Theorem 4.33], 0 is a locally
exponentially stable fixed point of (84), i.e., there is a κ3 > 0 and a λ1 < λ < 1
such that for ζ0 from a sufficiently small neighborhood of 0 one has

(85) ‖ζt‖ ≤ κ3λt‖ζ0‖.
The inequality (80) with a suitable κ > 0 follows from (85) because of (79), (29),
(33).

To prove (81) denote ξt = ζt − ζlqt . One has ξ0 = 0 and, because of ζt ∈ ES ,

ξt+1 = MSξt + γ(ζt),

hence,

ξt =

t−1∑
s=0

(MS)t−1−sγ(ζs),
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‖ξt‖ ≤ κ1λt−1−sκλs(‖ζ0‖)2 = κκ1(‖ζ0‖)2,(86)

from which (81) follows because of (83). �

Theorem 4.1. Let O, η, δ are sufficiently small. Then for ‖y0‖ < δ, {(x̂t, ût)}
is the optimal control/response pair.

Proof. We have

(87) H(x, u, ψ) = H(x, u, ψ + µ) = H(x, u, ψ) + βµTF (x, u).

Because D2
(x,u)H(x, u, ψ) is negative definite, H(x, u, ψ + µ) is strictly concave

in (x, u) and has a negative definite Hessian in X × U , provided O, η have been

chosen sufficiently small. Since H is strictly concave in (x, u), so is Ĥ(x, ψ+ µ) =
supu∈U H(x, u, ψ + µ) in x.

To prove that ût is an optimal control we show that for any other ut admissible
J(x0, {ut})− J(x0, {ût}) ≤ 0.

From the concavity of H we obtain

H(xt, ut, ψ̂t+1)−H(x̂t, ût, ψ̂t+1) ≤ sup
u∈U

H(xt, u, ψ̂t+1)−H(x̂t, ût, ψ̂t+1)

= Ĥ(xt, ψ̂t+1)− Ĥ(x̂t, ψ̂t+1)

≤ DxĤ(x̂t, ψ̂t+1)(xt − x̂t).
Taking into account that x0 = x̂0 and that (15) holds one obtains

JN (x0, {ut})− JN (x0, {ût}) =

N∑
t=0

βt[f(xt, ut)− f(x̂t, ût)]

=

N∑
t=0

βt[H(xt, ut, ψ̂t+1)−H(x̂t, ût, ψ̂t+1)− βψ̂T
t+1(F (xt, ut)− F (x̂t, ût))]

≤
N∑
t=0

βt[DxĤ(x̂t, ψ̂t+1)(xt − x̂t)− βψ̂T
t+1(xt+1 − x̂t+1)]

=

N∑
t=0

βt[ψ̂t(xt − x̂t)− βψ̂T
t+1(xt+1 − x̂t+1)]

= ψ̂T
0 (x0 − x̂0)− βN+1ψ̂T

N+1(xN+1 − x̂N+1)

= −βN+1ψ̂T
N+1(xN+1 − x̂N+1)→ 0

for N →∞. Hence

J(x0, {ut})− J(x0, {ût}) = lim
N→∞

(
JN (x0, {ut})− JN (x0, {ût})

)
≤ 0.

�
Denote

(88) V (x0) = J(x0, {ût}) =

∞∑
t=0

βtf(x̂t, ût).

the value function of the problem (Ux0).
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Theorem 4.2. For x0 sufficiently near x the (locally) optimal control {ût} is
generated by the C1 feedback law

(89) v̂t = Zŷt + o(‖ŷt‖),
with Z = Zβ defined in (67). Consequently, one has

(90) ŷt+1 = (A+BZ)ŷt + o(‖ŷt‖).
The function V is C2 in a sufficiently small neighborhood of x and satisfies

(91) V (x) =
f(x, u)

1− β
+ ψ

T
(x− x) + V lq(x− x) + o(‖x− x‖2)

with V lq defined in (70).

Proof. By substituting (79) to (33) one obtains

(92) µ̂t+1 =
1

β
(AT)−1(L−P)ŷt + o(‖ŷt‖).

From (29) we obtain (89). Substituting (89) to (25) one obtains (90). Using
(9)–(11), (25)–(27) we obtain (for simplicity arguments x, u of f, F dropped if
x = x, u = u)

JN (x0, {ût}) =

N∑
t=0

βtf(x+ ŷt, u+ v̂t)

=

N∑
t=0

βt
(
f +Dxfŷt +Dufv̂t +

1

2
ŷTt D

2
xxfŷt + v̂Tt D

2
xufŷt

+
1

2
v̂Tt D

2
uufv̂t + o(‖ŷt‖2 + ‖v̂t‖2)

)
=

1− βN+1

1− β
f +

N∑
t=0

βt
(
ψ
T

(I − βDxF )ŷt − βψTDuF v̂t

+
1

2
ŷTt D

2
xxfŷt + v̂Tt D

2
xufŷt +

1

2
v̂Tt D

2
uufv̂t + o(‖ŷt‖2 + ‖v̂t‖2)

)
=

1− βN+1

1− β
f +

N∑
t=0

βt
(
ψ
T

(I − βDxF )ŷt − βψTDuF v̂t

+
1

2
ŷTt P ŷt + ŷTt Qv̂t +

1

2
v̂Tt Rv̂t − β

[
1

2
ŷTt D

2
xx{ψ

T
F} ŷt

+ ŷTt D
2
xu{ψ

T
F}v̂t +

1

2
v̂Tt D

2
uu{ψ

T
F}v̂t

]
+ o(‖ŷt‖2 + ‖v̂t‖2)

)
=

1− βN+1

1− β
f +

N∑
t=0

βt
(1

2
ŷTt P ŷt + ŷTt Qv̂t +

1

2
v̂Tt Rv̂t + ψ

T
ŷt

−β[Dx{ψ
T
F}ŷt +Du{ψ

T
F}v̂t +

1

2
ŷTt D

2
xx{ψ

T
F}ŷt

+ŷTt D
2
xu{ψ

T
F}v̂t +

1

2
v̂Tt D

2
uu{ψ

T
F}v̂t] + o(‖ŷt‖2 + ‖v̂t‖2)

)
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=
1− βN+1

1− β
f +

N∑
t=0

βt
(1

2
ŷTt P ŷt + ŷTt Qv̂t +

1

2
v̂Tt Rv̂t

+[ψ
T

(ŷt − β[F (ŷt + x, v̂t + u)− F (x, u)]) + o(‖ŷt‖2 + ‖v̂t‖2)]
)

=
1− βN+1

1− β
f +

N∑
t=0

βtψ
T

(ŷt − βŷt+1)

+

N∑
t=0

βt
(
f lq(ŷt, v̂t) + o(‖ŷt‖2 + ‖v̂t‖2)

)
=

1− βN+1

1− β
f +

N∑
t=0

βtψ
T

(ŷt − βŷt+1)

+

N∑
t=0

βtf lq(ŷt, v̂t) + o(‖x0 − x‖2).(93)

Using (81) we obtain

(94)

∞∑
t=0

βtf lq(ŷt, v̂t) =

∞∑
t=0

βtf lq(ŷlqt , v̂
lq
t ) + o(‖x0 − x‖2).

This, together with (93), yields (91) �

5. Concluding Remarks

Let us note that virtually all the hypotheses except Q2, Q3 are of “generic”
nature, they are satisfied “almost always” in a well defined measure theoretic or
topological sense. This means that there is no reason to expect that they would
not be satisfied unless the problem exhibits some symmetry. On the other hand,
Hypotheses Q2, Q3 are crucial: they say that the problem has an equilibrium
solution representing maximum of an associated nonlinear programming problem.

One of our goals was to find a general condition the data of the problem should
satisfy in order that the “saddle point property” of [4] is met. Such a condition
is Q3 for the limit case β = 1 which takes care of β sufficiently close to 1 as well.
Unfortunately, in most of the interesting economic examples the Hessian of f at
the steady state is merely negative semidefinite. In [3] a two dimensional example
is worked out in detail. It is based on the discretization of the continuous time
model of [13], the definiteness condition Q3 being secured by a somewhat artificial
quadratic term of utility loss associated with the effort to increase human capital.

A nearly complete analogy to the theory of this paper holds for continuous time
systems. Because of the invertibility of the dynamics of a continuous time system,
hypothesis Q1 is satisfied automatically. On the other hand, the proofs of the
analogies of Propositions 3.1 and 3.2 become more technical. Those technicalities
can be taken care of similarly as in the proofs of Theorems 2,3 of [6].

In addition to the quoted paper there is a series of papers studying problems
similar to ours, the engineering optimal stabilization problem serving as motiva-



96 P. BRUNOVSKÝ and M. ZÁKOPČAN

tion(cf. [11], [10], [12], [15]). In those papers linear terms in the Taylor expansion
of the cost function at equilibrium are missing. The presence of linear terms in
our problem makes it necessary to derive the linear-quadratic approximation from
an associated problem involving second derivatives at equilibrium of the dynam-
ics and the equilibrium adjoint vector. Let us note that in the one-dimensional
problem [14], [7] this can be done in an explicit elementary way by placing all the
nonlinearity to the objective function,
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