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THE DIOPHANTINE EQUATIONS 2" +3.2™ 49 = 22

K. GUETH anD L. SZALAY

ABSTRACT. In this paper, we study the diophantine equations, 2 £3-2™ 49 = 22,
and apart from the plus case with the condition, n < m we solve completely the
problem. The method resembles the treatment was used, to solve the equation
2™ 4 2™ 4 1 = 22, The more general problem 2" + a - 2™ + o? = z2, where « is an
odd prime such that 2 is a non-quadratic residue modulo « is also considered.

1. INTRODUCTION

There are several works on determining full squares in specified infinite sets of
integers, and some of them claim a few nonzero digits in base p. For instance, the
simple equation 2" 41 = 2 with positive integers n asks the odd integers z having
two 1 bits in the binary expansion of its square. Szalay [7] studied the analogous
equation with three 1 bits. He proved that the equation 2" + 2™ + 1 = 22 with
integers n > m > 0 and x > 0 has only the solutions (n,m,x) = (2¢,¢ + 1,2" + 1)
with integer ¢ > 1, and (n,m,z) = (1,0,2), (5,4,7), (9,4,23). The proof of
the theorems of this paper is built upon the method worked out in [7]. The
equation 2" — 2™ 41 = 22 was also considered there. The solutions are (n,m,z) =
(2t,t + 1,2" — ) (t=2), (n,mx) = (t,t,1) (¢t > 1), and (n,m,z) = (5,3,5),
(7,3,11), (15,3,181). Luca [5] extended the problem to arbitrary odd prime base
p and proved that the equation p™ + p™ + 1 = 2 possesses no integer solutions.
Bennett and Bugeaud [1] showed that if s™ +s™ + 1 = 22 holds for an odd integer
s with n > m > 0, then min{ged(s, z — 1), gcd(s,z + 1)} > 2'/% and the exponent
1/6 can be replaced by an arbitrary real number less then 1/4 if z is large enough.

The question arises naturally: what happens if the square is replaced by any
pure power? The same paper of Bennett and Bugeaud [1] contains the following
result. If s” + s™ + 1 = 2* holds for the positive integers s, n > m, k > 2
with ged(k, p(s)) = 1, then (s,n,m,x*) = (2,5,4,7%), (2,9,4,23%), (3,7,2,13%),
or (2,2t,t+1,(2t +1)?) (¢t > 1). When we omit the condition ged(k, ¢(s)) = 1,
but we assume s = 2 or 3, then the equation has the same set of solutions (see [2]

and [1]).
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Another extension of the problem appears when one takes different bases of
powers. In this direction, Hajdu and Pink [3] completely solved the diophantine
equation 1 + 2% +t* = z¥ assuming odd ¢ < 50. Later Bérczes et al. [4] examined
the more general equation 1+ s® +t® = z* and provided all the solutions with the
conditions k >4, 1 < s,t <50, and s # ¢ (mod 2).

Now we consider a new variation of the equations 2" 4 2™ 4+ 1 = 22 as follows.
By multiplying the second 2-power by 3, and replacing the constant 1 term by
9, we obtain the title equations. We will show that in the negative case, and in
the positive case with n > m there is an infinite family of solutions described by
one parameter, respectively, and there exist a few sporadic solutions which do not
belong to the aforementioned family. More precisely, we obtained the following
two theorems.

Theorem 1. If 2" —3-2™+9 = 22 holds for some non-negative integers n, m
and x, then

e cither (n,m,z) = (2t,t+1,[2" — 3|), t €N,

e or (n,m,x)=(6,3,7).

Theorem 2. If 2" +3-2™ + 9 = 22 holds for some non-negative integers
n > m and x, then

o cither (n,m,x) = (2t,t + 1,2 +3), 1 <teN,

o or(n,m,x)=(2,0,4), (6,5,13), (8,3,17).
Based on a computer search, we conjecture that in the case n < m there are only
four solutions to 2" 4+ 3-2™ + 9 = z2.

Conjecture 1. Assume that 2" +3-2™+9 = 22 is fulfilled for some non-negative
integers n < m and z. Then

(n,m,z) = (0,1,4), (4,5,11), (6,8,29), (6,13,157).

Although elementary approach may also be possible, the proofs of the two

theorems use willfully the method of [7] to demonstrate that it works for other

problems. In the next section, we describe the auxiliary lemmata useful in the
proofs.

2. LEMMATA

Lemma 1. Let 0 # D € Z. If |D| < 2% and 2" + D = 2? has a solution (n, ),
then
n < 18 4+ 2log, |D|.
Proof. This is [6, Corollary 2] due to Beukers. O
Lemma 2. Ift, x and y are positive integers satisfying
(1) ¥ —9=2"(2"-9), y>4, z>4,
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then

o cither (z,y) = (321713 (2271 — 1)) with t > 2,

e or (t,z,y) =(1,7,13), (2,4,11), (2,17,67).

Proof. Observe that if t is fixed, then the equivalent form 9- (2% —1) = (2tz—vy)-
(2tz+1) of (1) can be easily solved. Accordingly, (1) has only the solution (z,y) =
(7,13) if t = 1, further (x,y) = (4,11), (17,67), and (6, 21) are deduced from ¢t = 2.
But the last pair is included in the infinite family (z,y) = (3-2¢71,3- (2271 —1)).
Suppose now that ¢ > 3, y > 4, and = > 4 satisfy (1). Then y is necessarily odd
and we have

-3 +3 _
(2) yT_y?:Qm 2(9c2—9).

The greatest common divisor of (y—3)/2 and (y+3)/2is 1 or 3. Hence 22¢~2 divides
exactly one of the terms on the left hand side of (2). Consequently, y = 2%~1k +3
with some integer k£ > 1, moreover, it follows that

2
-9
(3) L =2 3k =a? -9,

By (1), we even conclude
(4) y < 2.

Assume first that y = 22~k + 3. Then by (4), we obtain 271k + 1 < x and
together with (3), the inequality 3k +9 > 2tk + 1 follows. Thus

8 > (2" — 3)k,

and we deduce t = 3 and k = 1. Subsequently, y = 35, and then 22 = 28, a
contradiction.
Now we suppose that y = 22! ~1k—3. Combining it with (4), it results 2! "1k < .
Then (3) provides 3 > k. We distinguish three cases according to the value of k.
The case k = 1 leads to 2272 + 6 = 22, and the factorization 6 = (z — 2¢71) .
(x + 2¢~1) shows no solution. Similarly, if k = 2, then 2! + 3 = 22, and there is
no solution with ¢ > 3. Finally, £ = 3 returns with the infinite family

r=3-2"" y=3. (221 -1),
where ¢t > 3, and together with (x,y) = (6,21), we get the complete family. O
Remark 3. At the application of this lemma only those cases are important
where z is odd, i.e., (¢,2,y) = (1,7,13), (2,17,67).

3. PROOF OF THE THEOREMS

3.1. Proof of Theorem 1.
Proof. Considering the equation
(5) 2" —3.2™ 4+ 9=2a?
modulo 3, it follows that n is even. Obviously, each element of the set
F={(n,m)eN?*|n=2t,m=t+1,tcN}
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with suitable 2 € N satisfies (5). Let S denote the set of all solutions (n,m) to
(5), further let E = {(6,3)}. We have to show that S = F U E.

The condition n < m+1 immediately leads to 0 < z? < 2m+1_3.2m49 = 9—2™,
Thus m < 3, and we easily check the possible range. We obtain the solutions

(n,m,x) =(0,1,2), (2,2,1), (4,3,1),

but these are included in the infinite family F'.

In the sequel, we may assume that n > m+2. First verify the cases m € {0, 1, 2}.
Lemma, 1 provides the upper bound n < 23.2if m =0, and n < 21.2if m =1 or 2.
Checking the possible ranges, we find no solution with n > m + 2. We note that
the same outcome can be obtained without the application of Beukers’s lemma if
one recalls that n is even, hence the corresponding integer equals the difference of
two squares.

Suppose now that m > 3. Subsequently, n > 5. Clearly, x is odd, further x > 5.
Observe that if (n,m) € S, n > m + 2 hold, then 2"~™ — 3 = (22 — 9)/2™ € N,
further

2% —9\2
)
Hence a solution (n,m) of (5) provides (2n — 2m,n —m +1) € F C S. Then the
transformation

22n—2m _ 3 . 2n—m+1 + 9 — (

7: (n,m) — (2n —2m,n —m+ 1), n>m-+2,

induces a map of S\ {(0,1),(2,2),(4,3)} into F' ~ {(0,1),(2,2)}.
The map 7 has a great importance with useful properties. If (n,m) € S, then
let §(n,m) € Z denote the distance n —m of the exponents n and m.

Property 1. 6(t(n,m)) = 6(n,m) — 1. In particular, 7(n,m) # (n,m), i.e., the
map has no fixed points.

Property 2. If (n,m) € F ~ {(0,1),(2,2), (4,3)}, more precisely, if (n,m) =
(2t,t + 1), t > 3, then 7(n,m) = (2t — 2,t) € F is the ‘lower neighbor’ solution
of (n,m) in F. Thus the elements of the set F' are ordered by 7. Moreover
§(T(2t,t+1)) =t —2 shows by ¢ > 3 that all positive integers occur as a difference
of the exponents in the solution of (5).

Property 3. If (n,m) is an exceptional solution, i.e., (n,m) € S\ F,
7(n,m) € F since 7(n,m) = (26(n,m),d(n,m) + 1). Especially, 7(6,3) = (
Note that 7(4,3) = (2,2) and 7(2,2) = (0,1) also hold.

By Properties 1-3, we have to prove that there is exactly one case when (n, m) #
(n1,mq) and 7(n,m) = 7(n1,m1). In other words, we must show that the system
of the equations
- 2" — 3.2 +9=2?

6
2n+d73.2m+d+9:y2

in positive integers n, m, d, x, y with 3 < m, m 4+ 2 <n has exactly one solution

with odd = < y.
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These equalities imply
(7) y?—9=2%(22-9).

Take (6) modulo 3. Thus d must be even since n is even. Put d = 2t and apply
Lemma 2. In the solutions provided by the lemma, the parity of x is even, except
the cases when (d,z,y) = (2,7,13), (4,17,67). Hence we distinguish two cases.

First suppose £ = 17. Then 2" — 3 -2™ + 9 = 172 does not hold. Indeed,
2" —3.2m =172-9 = 23.35 so m = 3, and then 2"~ —3 = 35 is a contradiction.

Hence only (d,z,y) = (2,7,13) is possible, and it gives n = 6, m = 3 via
2" —3.2m 4+ 9 =72 and 2712 - 3.2m*+2 1 9 = 132, Observe that we have found the
exceptional solution (n,m,z) = (6,3,7) while the pair (n+d,m+d,y) = (8,5,13)
appears in F'.

The proof of Theorem 1 is completed. U

3.2. Proof of Theorem 2.

Proof. Recall that along this subsection we always assume n > m. We follow the
method we used during the previous proof. The machinery is the same, therefore,
we are concentrating only on the deviation. We know that n must be even again,
we have the infinite family

F={(nm)eN?|n=2t,m=t+1,tecN"}

of solutions to 2" 4+ 3-2™ + 9 = z2. We use Beukers’s lemma (Lemma 1) to
handle the cases n = m,, and m = 0, which provide only (n,m,z) = (2,0,4) as
exceptional solution (i.e., not in F'). Here an elementary treatment would also
be possible. When n > m > 1 then taking square of both sides of the equality
2n=m 4 3 = (22 — 9)/2™ leads to the transformation

7: (n,m)— (2n —2m,n —m+1).
Map 7 has again the same three properties, and now we must study the system
2" +3-2"4+9=2a"
(8) gntd 4 3. omtd g — 2

in positive integers n, m, d, x, y with m+1 <n,z =y =1 (mod 2). The system
above implies again (7)

y2—9:2d(332—9).

A modulo 3 consideration of (8) shows that d is also even.
Lemma 2 admits only (d,z,y) = (2,7,13), (4,17,67) because x is odd. Both
are possible since

M 43.2m4+9=7%> and 2""24+3.2m2 41 9=13?%
further
2" 4+3.2"49=17> and 2"t 43.2mT L9 =672

are solvable by (n,m) = (4,3), and (n,m) = (8,3), respectively. Thus we have
found the two exceptional solutions (n,m,z) = (6,5,13) and (8,3,17).
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The proof of Theorem 2 is completed. U
4. GENERAL REMARKS

The methods we used in the proof of Lemma 2 and in the proofs of the theorems
can be applied for other equations. Assume that « is a fixed odd prime such that
2 is a quadratic non-residual modulo . Then the equations

2" + - 2™ + o = 22
can be handled by a similar way (n > m is supposed at 2" + a - 2™ + o2 = 22).
Indeed, the non-quadratic residual condition guarantees that n is even. Clearly,
it plays a crucial role to reduce to even d in the analogous equation of (6) or (8)

(and then (7)). The transformation 7 exists analogously with the same properties.
Finally, the solution of the equation

y2 _ 042 — 22t(.’172 _ Oé2>

corresponding to Lemma 2 can be treated by the same machinery.
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