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THE DIOPHANTINE EQUATIONS 2n ± 3 · 2m + 9 = x2

K. GUETH and L. SZALAY

Abstract. In this paper, we study the diophantine equations, 2n±3 ·2m +9 = x2,

and apart from the plus case with the condition, n < m we solve completely the
problem. The method resembles the treatment was used, to solve the equation

2n + 2m + 1 = x2. The more general problem 2n ±α · 2m +α2 = x2, where α is an

odd prime such that 2 is a non-quadratic residue modulo α is also considered.

1. Introduction

There are several works on determining full squares in specified infinite sets of
integers, and some of them claim a few nonzero digits in base p. For instance, the
simple equation 2n+1 = x2 with positive integers n asks the odd integers x having
two 1 bits in the binary expansion of its square. Szalay [7] studied the analogous
equation with three 1 bits. He proved that the equation 2n + 2m + 1 = x2 with
integers n ≥ m ≥ 0 and x ≥ 0 has only the solutions (n,m, x) = (2t, t+ 1, 2t + 1)
with integer t ≥ 1, and (n,m, x) = (1, 0, 2), (5, 4, 7), (9, 4, 23). The proof of
the theorems of this paper is built upon the method worked out in [7]. The
equation 2n−2m +1 = x2 was also considered there. The solutions are (n,m, x) =
(2t, t + 1, 2t − 1) (t ≥ 2), (n,m, x) = (t, t, 1) (t ≥ 1), and (n,m, x) = (5, 3, 5),
(7, 3, 11), (15, 3, 181). Luca [5] extended the problem to arbitrary odd prime base
p and proved that the equation pn + pm + 1 = x2 possesses no integer solutions.
Bennett and Bugeaud [1] showed that if sn + sm + 1 = x2 holds for an odd integer
s with n > m > 0, then min{gcd(s, x− 1), gcd(s, x+ 1)} > x1/6 and the exponent
1/6 can be replaced by an arbitrary real number less then 1/4 if x is large enough.

The question arises naturally: what happens if the square is replaced by any
pure power? The same paper of Bennett and Bugeaud [1] contains the following
result. If sn + sm + 1 = xk holds for the positive integers s, n > m, k ≥ 2
with gcd(k, ϕ(s)) = 1, then (s, n,m, xk) = (2, 5, 4, 72), (2, 9, 4, 232), (3, 7, 2, 133),
or (2, 2t, t + 1, (2t + 1)2) (t ≥ 1). When we omit the condition gcd(k, ϕ(s)) = 1,
but we assume s = 2 or 3, then the equation has the same set of solutions (see [2]
and [1]).
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Another extension of the problem appears when one takes different bases of
powers. In this direction, Hajdu and Pink [3] completely solved the diophantine
equation 1 + 2a + tb = xk assuming odd t ≤ 50. Later Bérczes et al. [4] examined
the more general equation 1 + sa + tb = xk and provided all the solutions with the
conditions k ≥ 4, 1 ≤ s, t ≤ 50, and s 6≡ t (mod 2).

Now we consider a new variation of the equations 2n ± 2m + 1 = x2 as follows.
By multiplying the second 2-power by 3, and replacing the constant 1 term by
9, we obtain the title equations. We will show that in the negative case, and in
the positive case with n ≥ m there is an infinite family of solutions described by
one parameter, respectively, and there exist a few sporadic solutions which do not
belong to the aforementioned family. More precisely, we obtained the following
two theorems.

Theorem 1. If 2n− 3 · 2m + 9 = x2 holds for some non-negative integers n,m
and x, then
• either (n,m, x) = (2t, t+ 1, |2t − 3|), t ∈ N,
• or (n,m, x) = (6, 3, 7).

Theorem 2. If 2n + 3 · 2m + 9 = x2 holds for some non-negative integers
n ≥ m and x, then
• either (n,m, x) = (2t, t+ 1, 2t + 3), 1 ≤ t ∈ N,
• or (n,m, x) = (2, 0, 4), (6, 5, 13), (8, 3, 17).

Based on a computer search, we conjecture that in the case n < m there are only
four solutions to 2n + 3 · 2m + 9 = x2.

Conjecture 1. Assume that 2n+3·2m+9 = x2 is fulfilled for some non-negative
integers n < m and x. Then

(n,m, x) = (0, 1, 4), (4, 5, 11), (6, 8, 29), (6, 13, 157).

Although elementary approach may also be possible, the proofs of the two
theorems use willfully the method of [7] to demonstrate that it works for other
problems. In the next section, we describe the auxiliary lemmata useful in the
proofs.

2. Lemmata

Lemma 1. Let 0 6= D ∈ Z. If |D| < 296 and 2n +D = x2 has a solution (n, x),
then

n < 18 + 2 log2 |D|.

Proof. This is [6, Corollary 2] due to Beukers. �

Lemma 2. If t, x and y are positive integers satisfying

y2 − 9 = 22t
(
x2 − 9

)
, y ≥ 4, x ≥ 4,(1)
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then
• either (x, y) = (3 · 2t−1, 3 · (22t−1 − 1)) with t ≥ 2,

• or (t, x, y) = (1, 7, 13), (2, 4, 11), (2, 17, 67).

Proof. Observe that if t is fixed, then the equivalent form 9·(22t−1) = (2tx−y)·
(2tx+y) of (1) can be easily solved. Accordingly, (1) has only the solution (x, y) =
(7, 13) if t = 1, further (x, y) = (4, 11), (17, 67), and (6, 21) are deduced from t = 2.
But the last pair is included in the infinite family (x, y) = (3 · 2t−1, 3 · (22t−1− 1)).
Suppose now that t ≥ 3, y ≥ 4, and x ≥ 4 satisfy (1). Then y is necessarily odd
and we have

y − 3

2
· y + 3

2
= 22t−2

(
x2 − 9

)
.(2)

The greatest common divisor of (y−3)/2 and (y+3)/2 is 1 or 3. Hence 22t−2 divides
exactly one of the terms on the left hand side of (2). Consequently, y = 22t−1k±3
with some integer k ≥ 1, moreover, it follows that

y2 − 9

22t
= 22t−2k2 ± 3k = x2 − 9.(3)

By (1), we even conclude

y < 2tx.(4)

Assume first that y = 22t−1k + 3. Then by (4), we obtain 2t−1k + 1 ≤ x and
together with (3), the inequality 3k + 9 ≥ 2tk + 1 follows. Thus

8 ≥ (2t − 3)k,

and we deduce t = 3 and k = 1. Subsequently, y = 35, and then x2 = 28, a
contradiction.

Now we suppose that y = 22t−1k−3. Combining it with (4), it results 2t−1k ≤ x.
Then (3) provides 3 ≥ k. We distinguish three cases according to the value of k.

The case k = 1 leads to 22t−2 + 6 = x2, and the factorization 6 = (x − 2t−1) ·
(x + 2t−1) shows no solution. Similarly, if k = 2, then 22t + 3 = x2, and there is
no solution with t ≥ 3. Finally, k = 3 returns with the infinite family

x = 3 · 2t−1, y = 3 ·
(
22t−1 − 1

)
,

where t ≥ 3, and together with (x, y) = (6, 21), we get the complete family. �

Remark 3. At the application of this lemma only those cases are important
where x is odd, i.e., (t, x, y) = (1, 7, 13), (2, 17, 67).

3. Proof of the theorems

3.1. Proof of Theorem 1.

Proof. Considering the equation

2n − 3 · 2m + 9 = x2(5)

modulo 3, it follows that n is even. Obviously, each element of the set

F = {(n,m) ∈ N2 | n = 2t, m = t+ 1, t ∈ N}
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with suitable x ∈ N satisfies (5). Let S denote the set of all solutions (n,m) to
(5), further let E = {(6, 3)}. We have to show that S = F ∪ E.

The condition n ≤ m+1 immediately leads to 0 ≤ x2 ≤ 2m+1−3·2m+9 = 9−2m.
Thus m ≤ 3, and we easily check the possible range. We obtain the solutions

(n,m, x) = (0, 1, 2), (2, 2, 1), (4, 3, 1),

but these are included in the infinite family F .
In the sequel, we may assume that n ≥ m+2. First verify the casesm ∈ {0, 1, 2}.

Lemma 1 provides the upper bound n < 23.2 if m = 0, and n ≤ 21.2 if m = 1 or 2.
Checking the possible ranges, we find no solution with n ≥ m + 2. We note that
the same outcome can be obtained without the application of Beukers’s lemma if
one recalls that n is even, hence the corresponding integer equals the difference of
two squares.

Suppose now that m ≥ 3. Subsequently, n ≥ 5. Clearly, x is odd, further x ≥ 5.
Observe that if (n,m) ∈ S, n ≥ m + 2 hold, then 2n−m − 3 = (x2 − 9)/2m ∈ N,
further

22n−2m − 3 · 2n−m+1 + 9 =
(x2 − 9

2m

)2

.

Hence a solution (n,m) of (5) provides (2n− 2m,n−m+ 1) ∈ F ⊂ S. Then the
transformation

τ : (n,m) 7→ (2n− 2m,n−m+ 1), n ≥ m+ 2,

induces a map of S r {(0, 1), (2, 2), (4, 3)} into F r {(0, 1), (2, 2)}.
The map τ has a great importance with useful properties. If (n,m) ∈ S, then

let δ(n,m) ∈ Z denote the distance n−m of the exponents n and m.

Property 1. δ(τ(n,m)) = δ(n,m)− 1. In particular, τ(n,m) 6= (n,m), i.e., the
map has no fixed points.

Property 2. If (n,m) ∈ F r {(0, 1), (2, 2), (4, 3)}, more precisely, if (n,m) =
(2t, t + 1), t ≥ 3, then τ(n,m) = (2t − 2, t) ∈ F is the ‘lower neighbor’ solution
of (n,m) in F . Thus the elements of the set F are ordered by τ . Moreover
δ(τ(2t, t+1)) = t−2 shows by t ≥ 3 that all positive integers occur as a difference
of the exponents in the solution of (5).

Property 3. If (n,m) is an exceptional solution, i.e., (n,m) ∈ S r F , then
τ(n,m) ∈ F since τ(n,m) = (2δ(n,m), δ(n,m) + 1). Especially, τ(6, 3) = (6, 4).

Note that τ(4, 3) = (2, 2) and τ(2, 2) = (0, 1) also hold.
By Properties 1–3, we have to prove that there is exactly one case when (n,m) 6=

(n1,m1) and τ(n,m) = τ(n1,m1). In other words, we must show that the system
of the equations

2n − 3 · 2m + 9 = x2

2n+d − 3 · 2m+d + 9 = y2
(6)

in positive integers n, m, d, x, y with 3 ≤ m, m+ 2 ≤ n has exactly one solution
with odd x < y.
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These equalities imply

y2 − 9 = 2d
(
x2 − 9

)
.(7)

Take (6) modulo 3. Thus d must be even since n is even. Put d = 2t and apply
Lemma 2. In the solutions provided by the lemma, the parity of x is even, except
the cases when (d, x, y) = (2, 7, 13), (4, 17, 67). Hence we distinguish two cases.

First suppose x = 17. Then 2n − 3 · 2m + 9 = 172 does not hold. Indeed,
2n−3 ·2m = 172−9 = 23 ·35, so m = 3, and then 2n−m−3 = 35 is a contradiction.

Hence only (d, x, y) = (2, 7, 13) is possible, and it gives n = 6, m = 3 via
2n−3 ·2m +9 = 72 and 2n+2−3 ·2m+2 +9 = 132. Observe that we have found the
exceptional solution (n,m, x) = (6, 3, 7) while the pair (n+d,m+d, y) = (8, 5, 13)
appears in F .

The proof of Theorem 1 is completed. �

3.2. Proof of Theorem 2.

Proof. Recall that along this subsection we always assume n ≥ m. We follow the
method we used during the previous proof. The machinery is the same, therefore,
we are concentrating only on the deviation. We know that n must be even again,
we have the infinite family

F = {(n,m) ∈ N2 | n = 2t, m = t+ 1, t ∈ N+}
of solutions to 2n + 3 · 2m + 9 = x2. We use Beukers’s lemma (Lemma 1) to
handle the cases n = m,, and m = 0, which provide only (n,m, x) = (2, 0, 4) as
exceptional solution (i.e., not in F ). Here an elementary treatment would also
be possible. When n > m ≥ 1 then taking square of both sides of the equality
2n−m + 3 = (x2 − 9)/2m leads to the transformation

τ : (n,m) 7→ (2n− 2m,n−m+ 1).

Map τ has again the same three properties, and now we must study the system

2n + 3 · 2m + 9 = x2

2n+d + 3 · 2m+d + 9 = y2(8)

in positive integers n, m, d, x, y with m+ 1 ≤ n, x ≡ y ≡ 1 (mod 2). The system
above implies again (7)

y2 − 9 = 2d
(
x2 − 9

)
.

A modulo 3 consideration of (8) shows that d is also even.
Lemma 2 admits only (d, x, y) = (2, 7, 13), (4, 17, 67) because x is odd. Both

are possible since

2n + 3 · 2m + 9 = 72 and 2n+2 + 3 · 2m+2 + 9 = 132,

further

2n + 3 · 2m + 9 = 172 and 2n+4 + 3 · 2m+4 + 9 = 672

are solvable by (n,m) = (4, 3), and (n,m) = (8, 3), respectively. Thus we have
found the two exceptional solutions (n,m, x) = (6, 5, 13) and (8, 3, 17).
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The proof of Theorem 2 is completed. �

4. General remarks

The methods we used in the proof of Lemma 2 and in the proofs of the theorems
can be applied for other equations. Assume that α is a fixed odd prime such that
2 is a quadratic non-residual modulo α. Then the equations

2n ± α · 2m + α2 = x2

can be handled by a similar way (n ≥ m is supposed at 2n + α · 2m + α2 = x2).
Indeed, the non-quadratic residual condition guarantees that n is even. Clearly,

it plays a crucial role to reduce to even d in the analogous equation of (6) or (8)
(and then (7)). The transformation τ exists analogously with the same properties.
Finally, the solution of the equation

y2 − α2 = 22t(x2 − α2)

corresponding to Lemma 2 can be treated by the same machinery.
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e-mail : guethk@gmail.com

L. Szalay, Institute of Mathematics, Faculty of Forestry, University of West Hungary, H-9400

Sopron, Hungary and J. Selye University, Komárno, Bratislavská cesta 3322, Slovakia,
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