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SOME REMARKS ON IDEAL EQUAL BAIRE CLASSES

S. SENGUPTA

Abstract. In this paper, we consider the notion of I-equal convergence intro-

duced by Das, Dutta, and Pal [9], and two related notions of convergence, namely,

I-discrete, and I-strong uniform equal convergence and primarily investigate some

lattice properties of the corresponding Baire classes obtained from a class of func-

tions Φ.

1. Introduction

The concept of convergence of a sequence of real numbers was extended to statisti-
cal convergence independently by Fast [11], Steinhaus [22], and Schoenberg [21].
A lot of developments was made on this interesting notion of convergence after
the pioneering works of Šalát [20] and Fridy [13]. Kostyrko et al.[14] extended
the concept of statistical convergence to I-convergence using the notion of ideals.
For the last ten years, a lot of works have been done on I-convergence (see, for
example, [6], [7], [16], [17] where many more references can be seen). As a natural
consequence over the years, researchers applied this new notion of convergence to
sequences of functions and some significant investigations were done in [1], [2], [8],
[9], [12], [15],[18].

In [4], Császár and Laczkovich introduced two new types of convergence of se-
quences of real-valued functions under the name of equal convergence and discrete
convergence (see also [3], [5]), and studied the lattice properties of the corre-
sponding Baire classes. In [19], Papanastassiou defined and studied the notions
of uniform equal convergence, uniform discrete convergence, and strong uniform
equal convergence for sequences of real-valued functions (see also [10]).

In the present paper, we consider the notion of I-equal convergence from
[9], and two related notions of convergence, namely, I-discrete convergence and
I-strong uniform equal convergence which is stronger than I-equal convergence
for sequences of real-valued functions. We then investigate some lattice properties
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of the Baire classes arising from a given class of functions mainly following the line
of [8]. However, the methods of proofs are different and the results of this paper
truly extend the classical results.

2. Preliminaries

Throughout the paper, N denotes the set of all positive integers. A family I ⊂ 2Y

of subsets of a non-empty set Y is said to be an ideal on Y if,

(i) A,B ∈ I imply A ∪B ∈ I.
(ii) A ∈ I, B ⊂ A imply B ∈ I, while an admissible ideal I of Y further

satisfies {x} ∈ I for each x ∈ Y .

If I is a non-trivial proper ideal in Y (i.e., Y /∈ I, I 6= {∅}), then the family of
sets F(I) = {M ⊂ Y : there exists A ∈ I such that M = Y r A} is a filter in Y .
It is called the filter associated with the ideal I.

Recall that a sequence {xn}n∈N of real numbers is said to be I-convergent to
x ∈ R if for each ε > 0, the set A(ε) = {n ∈ N : |xn − x| ≥ ε} ∈ I [14]. We
write I-lim xn = x in this case. A sequence {xn}n∈N is said to be I∗-convergent
to x ∈ R if there is a set M ∈ F(I), M = {m1 < m2 < · · · < mk < . . . }
such that limk→∞ xmk

= x [14]. A sequence {xn}n∈N of real numbers is said to be
I-divergent to∞ or−∞ if for any positive real numberG, {n ∈ N : xn ≤ G} ∈ I or
{n ∈ N : xn ≥ −G} ∈ I, respectively, [17] (though in [17] the terms I-convergent
to +∞ and I-convergent to −∞ were used).

We now recall the following types of convergence introduced in [4], which were
generalized using the notion of ideals in [9]. Let X be a non-empty set and let
f, fn, n = 1, 2, 3, . . . be real-valued functions defined on X. f is called the discrete
limit of the sequence {fn}n∈N if for every x ∈ X, there exists n0 = n0(x) such
that f(x) = fn(x) for n ≥ n0. The terminology is motivated by the fact that this
condition means precisely the convergence of the sequence {fn(x)}n∈N to f(x)
with respect to the discrete topology of the real line. A function f is said to be
the equal limit of the sequence {fn}n∈N if there exists a sequence of positive reals
{εn}n∈N tending to zero such that for every x ∈ X, there exists n0 = n0(x) with
|fn(x)− f(x)| < εn for n ≥ n0.

We also recall the following ideas of convergence of a sequence of functions using
the notion of ideals from [1]. A sequence {fn}n∈N of functions is said to be I-point-
wise convergent to f if for all x ∈ X the sequence {fn(x)}n∈N is I-convergent to

f(x) and in this case we write fn
I−→ f . The sequence {fn}n∈N is said to be

I-uniformly convergent to f if for any ε > 0 there exists A ∈ I such that for all
n ∈ Ac and for all x ∈ X, |fn(x) − f(x)| < ε. A function f is said to be the
I∗-uniform limit of {fn}n∈N if there exists a set M = {m1 < m2 < · · · < mk <
. . . } ∈ F(I) such that f is the uniform limit of the subsequence {fmk

}k∈N.
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3. Main results

Throuhout the paper, we consider I an admissible ideal.
We start by recalling the following definition from the recent work of Das, Dutta,

and Pal [9].

Definition 3.1. A sequence {fn}n∈N is said to be I-equally convergent to f if
there exists a sequence {εn}n∈N of positive reals with I− limn εn = 0 such that for

any x ∈ X, {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I. In this case, we write fn
I−e−−−→ f .

Example 3.1. Let I be an ideal on N and I 6= Fin, the ideal of all finite
subsets of N. Then I must contain an infinite set A. Let {fn}n∈N be a sequence
of functions on X defined by

fn =

{
0 for all n ∈ NrA,

1 for all n ∈ A.

Thus for any x ∈ X, {n ∈ N : |fn(x)| > 1/n} ⊆ A. If we let f ≡ 0, we have

fn
I−e−−−→ f but clearly {fn}n∈N does not equally converge to f .

We first present the following equivalent condition for I-equal convergence.

Theorem 3.2. Let fn, f : X → R, n ∈ N. Then fn
I−e−−−→ f if and only if there

exists a sequence {ρn}n∈N of positive integers I-divergent to ∞ such that

ρn|fn − f |
I−e−−−→ 0.

Proof. First suppose that fn
I−e−−−→ f . Then there exists a sequence {εn}n∈N of

positive reals with I − limn εn = 0 such that for any x ∈ X,

(1) {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I.
Now define a sequence {ρn}n∈N as

ρn =
1
√
εn
, n ∈ N.

Obviously {ρn}n∈N is a sequence of reals which is I-divergent to ∞. Hence, from
(1) for any x ∈ X,

{n ∈ N : ρn|fn(x)− f(x)| ≥
√
εn} ∈ I

which implies ρn|fn − f |
I−e−−−→ 0.

Conversely, assume that ρn|fn − f | I−e−−−→ 0, where {ρn}n∈N is a sequence of
positive integers I-divergent to ∞. Then we can find a sequence {λn}n∈N of
positive reals satisfying I − limn λn = 0 such that for any x ∈ X, {n ∈ N :
ρn|fn(x)− f(x)| ≥ λn} ∈ I. Let us define a sequence {θn}n∈N by

θn =
λn
ρn
, n ∈ N.
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Then I − limn θn = 0 and for any x ∈ X, {n ∈ N : |fn(x)− f(x)| ≥ θn} ∈ I. This
completes the proof of the theorem. �

Theorem 3.3. Let fn : X → R, n ∈ N. If fn
I−e−−−→ 0, then f2n

I−e−−−→ 0.

Proof. There exists a sequence {εn}n∈N of positive reals with I − limn εn = 0
such that for any x ∈ X,

{n ∈ N : |fn(x)| ≥ εn} ∈ I.
Then we have

{n ∈ N : |fn(x)|2 ≥ ε2n} ∈ I for any x ∈ X,
and so

{n ∈ N : |f2n(x)| ≥ ε2n} ∈ I for any x ∈ X.

Therefore, f2n
I−e−−−→ 0. �

Let Φ be an arbitrary class of functions defined on a non-empty set X. We
denote by ΦI−e, the class of all functions defined on X, which are I-equal limits
of sequences of functions belonging to Φ. For any class of functions Φ on X, we
first recall the following definitions from [5].

Definition 3.4.

(a) Φ is called a lattice if Φ contains all constants and f, g ∈ Φ implies max(f, g)
∈ Φ and min(f, g) ∈ Φ.

(b) Φ is called a translation lattice if it is a lattice and f ∈ Φ, c ∈ R implies
f + c ∈ Φ.

(c) Φ is called a congruence lattice if it is a translation lattice and f ∈ Φ implies
−f ∈ Φ.

(d) Φ is called a weakly affine lattice if it is a congruence lattice and there is
a set C ⊂ (0,∞) such that C is not bounded and f ∈ Φ, c ∈ C implies
cf ∈ Φ.

(e) Φ is called an affine lattice if it is a congruence lattice and f ∈ Φ, c ∈ R
implies cf ∈ Φ.

(f) Φ is called a subtractive lattice if it is a lattice and f, g ∈ Φ implies f−g ∈ Φ.
(g) Φ is called an ordinary class if it is a subtractive lattice, f, g ∈ Φ implies

f.g ∈ Φ and f ∈ Φ , f(x) 6= 0 for all x ∈ X, implies 1/f ∈ Φ.

Theorem 3.5. Let Φ be a class of functions on X. If Φ is a lattice, a trans-
lation lattice, a congruence lattice, a weakly affine lattice, an affine lattice, or a
subtractive lattice, then so is ΦI−e.

Proof. Let Φ be a lattice. Since Φ contains the constant functions, ΦI−e also

contains the constant functions. Let fn
I−e−−−→ f . Then there exists a sequence

{εn}n∈N of positive reals with I − limn εn = 0 such that for any x ∈ X, {n ∈ N :
|fn(x)−f(x)| ≥ εn} ∈ I. Now from the relation

∣∣|fn|(x)−|f |(x)
∣∣ ≤ ∣∣fn(x)−f(x)

∣∣,
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it immediately follows that {n ∈ N :
∣∣|fn|(x) − |f |(x)

∣∣ ≥ εn} ∈ I for any x ∈ X,

i.e., |fn|
I−e−−−→ |f |.

Next we show that if fn
I−e−−−→ f , gn

I−e−−−→ g, and α, β ∈ R, then αfn + βgn
I−e−−−→

αf + βg. There exist sequences {εn}n∈N and {λn}n∈N of positive reals with
I − limn εn = 0, I − limn λn = 0 such that for any x ∈ X,

Ax = {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I
and

Bx = {n ∈ N : |gn(x)− g(x)| ≥ λn} ∈ I.
We can assume that α 6= 0 or β 6= 0. Let θn = |α|εn + |β|λn. Hence we have for
any x ∈ X,

{n ∈ N : |α(fn − f)(x) + β(gn − g)(x)| ≥ θn} ⊆ Ax ∪Bx ∈ I

with I − limn θn = 0. Hence αfn + βgn
I−e−−−→ αf + βg.

Next observe that if f, g ∈ ΦI−e, fn
I−e−−−→ f , and gn

I−e−−−→ g, then in view of the
above

max(fn, gn) =
fn + gn

2
+
|fn − gn|

2

I−e−−−→ f + g

2
+
|f − g|

2
= max(f, g),

which implies that max(f, g) ∈ ΦI−e. Similarly, we can show that min(f, g) ∈
ΦI−e. Thus ΦI−e is a lattice. The proofs of the remaining assertions are straight-
forward. �

Theorem 3.6. Let Φ be an ordinary class of functions on X and f, g ∈ ΦI−e.
If f and g are bounded, then f.g ∈ ΦI−e.

Proof. As f, g ∈ ΦI−e, there exist sequences {fn}n∈N and {gn}n∈N in Φ such

that fn
I−e−−−→ f and gn

I−e−−−→ g. Consequently, we can find two sequences of positive
reals {εn}n∈N and {λn}n∈N with I − limn εn = 0, I − limn λn = 0 such that for
any x ∈ X,

Ax = {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I
and

Bx = {n ∈ N : |gn(x)− g(x)| ≥ λn} ∈ I.
Since f, g are bounded, there exist M > 0 and K > 0 such that |f(x)| ≤ M and
|g(x)| ≤ K for all x ∈ X.

Now observe that

{n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I =⇒ {n ∈ N :
∣∣|fn(x)| − |f(x)|

∣∣ ≥ εn} ∈ I
=⇒ {n ∈ N : |fn(x)| − |f(x)| ≥ εn} ∈ I
=⇒ {n ∈ N : |fn(x)| ≥ |f(x)|+ εn} ∈ I
=⇒ {n ∈ N : |fn(x)| ≥ |f(x)|+ 1} ∈ I

(as I − lim
n
εn = 0)

=⇒ {n ∈ N : |fn(x)| ≥M + 1} ∈ I.
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Take Px = {n ∈ N : |fn(x)| ≥ M + 1}. To show that fn · gn
I−e−−−→ f.g, again

observe that for x ∈ X,

|fn · gn(x)− f · g(x)| = |fn(x) · gn(x)− f(x) · g(x)|
= |fn(x) · gn(x)− fn(x) · g(x) + fn(x) · g(x)− f(x) · g(x)|
≤ |fn(x)||gn(x)− g(x)|+ |g(x)||fn(x)− f(x)|.

Let γn = (M + 1)λn +Kεn. It is clear that I − lim
n
γn = 0 and for x ∈ X,

{n ∈ N : |fn.gn(x)− f.g(x)| ≥ γn}
⊆ {n ∈ N : |fn(x)||gn(x)− g(x)|+ |g(x)||fn(x)− f(x)| ≥ γn}
⊆ Ax ∪Bx ∪ Px ∈ I,

as for any n ∈ (Ax ∪Bx ∪ Px)c = Ac
x ∩Bc

x ∩ P c
x , we must have

n ∈ Ac
x =⇒ |fn(x)− f(x)| < εn,

n ∈ Bc
x =⇒ |gn(x)− g(x)| < λn,

n ∈ P c
x =⇒ |fn(x)| < M + 1

and so |fn(x)||gn(x)− g(x)|+ |g(x)||fn(x)− f(x)| < (M + 1)λn +Kεn = γn.
This shows that {n ∈ N : |fn ·gn(x)−f.g(x)| ≥ γn} ∈ I, and so f ·g ∈ ΦI−e. �

Theorem 3.7. Let Φ be an ordinary class of functions on X. Let f ∈ ΦI−e

and f(x) 6= 0 for each x ∈ X. If 1
f is bounded on X then, 1

f ∈ ΦI−e.

Proof. As f ∈ ΦI−e, there exists {fn}n∈N in Φ such that fn
I−e−−−→ f , i.e., there

exists a sequence {εn}n∈N of positive reals with I − lim
n
εn = 0 such that for any

x ∈ X,
Ax = {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I.

As 1/f is bounded, there exists λ > 0 with 1/|f(x)| ≤ λ for all x ∈ X.
Let us define gn : X −→ R by gn = max(fn,

√
εn) for all n ∈ N. Then, gn ∈ Φ

and gn(x) ≥ √εn for all n ∈ N and x ∈ X. So for any x ∈ X,

{n ∈ N : |gn(x)− f(x)| ≥ εn}
= {n ∈ N : gn(x) = fn(x) ∧ |gn(x)− f(x)| ≥ εn}
∪ {n ∈ N : gn(x) =

√
εn ∧ |gn(x)− f(x)| ≥ εn}

⊆ Ax ∪ {n ∈ N : gn =
√
εn ∧ gn(x)− f(x) ≥ εn}

∪ {n ∈ N : gn(x) =
√
εn ∧ −gn(x) + f(x) ≥ εn}

⊆ Ax ∪ {n ∈ N : f(x) ≤
√
εn − εn}

∪ {n ∈ N : f(x) ≥ εn + fn(x)} (as gn ≥ fn for all n).

We have {n ∈ N : f(x) ≥ εn + fn(x)} ⊆ Ax and as εn
I−→ 0,

√
εn − εn

I−→ 0, which
implies that

Dx = {n ∈ N : f(x) ≤
√
εn − εn} ∈ I.

Therefore, {n ∈ N : |gn(x)− f(x)| ≥ εn} ⊆ Ax ∪Dx ∪Ax = Ax ∪Dx ∈ I.
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As εn
I−→ 0, λ

√
εn
I−→ 0. Then for any x ∈ X,{

n ∈ N : | 1

gn(x)
− 1

f(x)
| ≥ λ

√
εn

}
=
{
n ∈ N :

|gn(x)− f(x)|
|gn(x)||f(x)|

≥ λ εn√
εn

}
⊆ Ax ∪Dx ∈ I.

It now follows from above that 1
gn

I−e−−−→ 1
f , and so 1

f ∈ ΦI−e. �

We now introduce the following generalization of the notion of discrete conver-
gence [4].

Definition 3.8. A sequence {fn}n∈N is said to be I-discretely convergent to f

if for any x ∈ X, {n ∈ N : fn(x) 6= f(x)} ∈ I. In this case, we write fn
I−d−−−→ f .

We denote by ΦI−d, the class of all functions defined on X, which are I-discrete
limits of sequences of functions belonging to Φ. Below we study some properties
of the class ΦI−d.

Theorem 3.9. Let Φ be a class of functions on X. If Φ is a lattice, a trans-
lation lattice, a congruence lattice, a weakly affine lattice, an affine lattice, or a
subtractive lattice, then so is ΦI−d.

Theorem 3.10. Let Φ be an ordinary class of functions on X. Then f, g ∈
ΦI−d implies f.g ∈ ΦI−d. Also if f ∈ ΦI−d is such that f(x) > 0 for each x ∈ X,
then 1

f ∈ ΦI−d.

Proof. Let f, g ∈ ΦI−d. Then there exist sequences {fn}n∈N and {gn}n∈N in Φ

such that fn
I−d−−−→ f and gn

I−d−−−→ g.
So, for any x ∈ X,

Ax = {n ∈ N : fn(x) 6= f(x)} ∈ I
and

Bx = {n ∈ N : gn(x) 6= g(x)} ∈ I.
Then for any x ∈ X,

{n ∈ N : fn(x) · gn(x) 6= f(x) · g(x)} ⊆ Ax ∪Bx ∈ I

which shows that fn · gn
I−d−−−→ f · g and consequently, f · g ∈ ΦI−d.

Let f ∈ ΦI−d be such that f(x) > 0 for each x ∈ X. Let {fn}n∈N be a sequence

in Φ such that fn
I−d−−−→ f . Let gn = max{fn, 1/n} for all n ∈ N. Then gn ∈ Φ and

gn ≥ 1/n > 0 for all n ∈ N. Since fn
I−d−−−→ f , then for any x ∈ X,

Ax = {n ∈ N : fn(x) 6= f(x)} ∈ I.
We show that

{n ∈ N : gn(x) 6= max{f(x), 1/n}} ⊆ Ax ∈ I.
If k ∈ {n ∈ N : gn(x) 6= max{f(x), 1/n}}, then gk(x) 6= max{f(x), 1/k}, which
implies that gk(x) 6= f(x), otherwise if gk(x) = f(x), then it follows that 1/k >
gk(x), a contradiction to the definition of gn. Thus k ∈ Ax.
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Now write Bx = {n ∈ N : 1
gn(x)

6= 1
max{f(x),1/n}}. Then Bx ∈ I. The cardinality

of Dx = {n ∈ N : 1/n ≥ f(x)} is finite which implies Dx ∈ I. Therefore, for any
x ∈ X,{
n ∈ N :

1

gn(x)
6= 1

f(x)

}
⊆ {n ∈ N : gn(x) 6= f(x) ∧ f(x) > 1/n} ∪ {n ∈ N : gn(x) 6= f(x) ∧ f(x) ≤ 1/n}
⊆ Bx ∪Dx ∈ I.

Hence 1
f ∈ ΦI−d. �

Finally, we introduce the following notion of convergence for a sequence of real-
valued functions which is stronger than the notion of I-equal convergence in line
of [19].

Definition 3.11. A sequence {fn}n∈N is said to be I-strongly equally conver-
gent to f if there exists a sequence {εn}n∈N of positive reals and a set M ∈ F(I)

with
∞∑
n=1
n∈M

εn <∞ such that for any x ∈ X, {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I. In

this case, we write fn
I−se−−−→ f .

We denote by ΦI−se, the class of all I-strong equal limits of a class of functions
Φ defined on X.

Example 3.2. Let {Ai}i∈ N∪{0} be a partition of N defined by A0 ={1, 3, 5, . . . },
A1 = {2}, A2 = {4}, A3 = {6}, . . . , An = {2n}, . . . , and let B = {Ai}i∈N∪{0}.

Let I = {D : D can be covered by finite number of members from B}. Let
{fn}n∈N be a sequence of real-valued functions on a set X defined by

fn =
1

n+ 1
for all n ∈ N.

If we take f ≡ 0, then obviously fn I-equally converges to f but as for any
M ∈ F(I) and {εn}n∈N, a sequence of positive reals such that {n ∈ N : |fn(x) −
f(x)| ≥ εn} ∈ I for any x ∈ X, we have

∞∑
n=1
n∈M

εn = ∞, so fn does not I-strongly

equally converge to f .

From Definition 3.11 and the above example, it follows that I-strong equal
convergence is stronger than I-equal convergence. As in the case of I-equal con-
vergence we can now easily prove the following results.

Theorem 3.12. Let fn : X → R, n ∈ N. If fn
I−se−−−→ 0, then f2n

I−se−−−→ 0.

Theorem 3.13. Let f and g be bounded on X. If fn
I−se−−−→ f and gn

I−se−−−→ g,

then fn · gn
I−se−−−→ f · g.

Proof. As f and g are bounded, let |f(x)|<N and |g(x)|<K for some N,K∈N
for all x ∈ X. Since fn

I−se−−−→ f and gn
I−se−−−→ g, there exist sequences {εn}n∈N and
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{λn}n∈N of positive reals and sets P,Q ∈ F(I) with
∞∑
n=1
n∈P

εn < ∞,
∞∑
n=1
n∈Q

λn < ∞

such that for any x ∈ X,

Ax = {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I
and

Bx = {n ∈ N : |gn(x)− g(x)| ≥ λn} ∈ I.

Let γn = (N + 1)λn +Kεn. Then we have
∞∑
n=1

n∈P∩Q

γn < ∞. The rest of the proof

is exactly the same as in the proof of Theorem 3.6. �

Theorem 3.14. Let Φ be a class of functions on X. If Φ is a lattice, a trans-
lation lattice, a congruence lattice, a weakly affine lattice, an affine lattice, or a
subtractive lattice, then so is ΦI−se.

Proof. Let Φ be a lattice. Since Φ contains the constant functions, ΦI−se

contains the constant functions. Let fn
I−se−−−→ f . Then there exists a sequence

{εn}n∈N of positive reals and a set M ∈ F(I) with
∞∑
n=1
n∈M

εn <∞ such that for any

x ∈ X, {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I. Now
∣∣|fn|(x)− |f |(x)

∣∣ ≤ ∣∣fn(x)− f(x)
∣∣

for all x ∈ X. Therefore, {n ∈ N :
∣∣|fn|(x)− |f |(x)

∣∣ ≥ εn} ∈ I for any x ∈ X, i.e.,

|fn|
I−se−−−→ |f |.

Next we show that if fn
I−se−−−→ f , gn

I−se−−−→ g, and α, β ∈ R, then αfn+βgn
I−se−−−→

αf+βg. Indeed, there exist sequences {εn}n∈N and {λn}n∈N of positive reals, and

sets M1,M2 ∈ F(I) with
∞∑
n=1

n∈M1

εn <∞,
∞∑
n=1

n∈M2

λn <∞ such that for any x ∈ X,

Ax = {n ∈ N : |fn(x)− f(x)| ≥ εn} ∈ I
and

Bx = {n ∈ N : |gn(x)− g(x)| ≥ λn} ∈ I.

We can assume that α 6= 0 or β 6= 0. Let θn = |α|εn + |β|λn for every n ∈ N.
Hence we have for any x ∈ X,

{n ∈ N : |α(fn − f)(x) + β(gn − g)(x)| ≥ θn} ⊆ Ax ∪Bx ∈ I

with
∞∑
n=1

n∈M1∩M2

θn <∞. Hence αfn + βgn
I−se−−−→ αf + βg.

Next observe that if f, g ∈ ΦI−se, fn
I−se−−−→ f , and gn

I−se−−−→ g, then in view of
the above,

max(fn, gn) =
fn + gn

2
+
|fn − gn|

2

I−se−−−→ f + g

2
+
|f − g|

2
= max(f, g)

which implies that max(f, g) ∈ ΦI−se. Similarly we can show that min(f, g) ∈
ΦI−se. Thus ΦI−se is a lattice. The proofs of the remaining assertions are straight-
forward. �
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dapest Eötvös Sect. Math. 17 (1974), 139–156.
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