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EXISTENCE RESULTS FOR SYSTEMS OF SECOND-ORDER

IMPULSIVE DIFFERENTIAL EQUATIONS

J. R. GRAEF, H. KADARI, A. OUAHAB and A. OUMANSOUR

Abstract. In this paper the authors study the existence of solutions to systems of

nonlinear second order impulsive differential equations. Their results are established

by using vector versions of Perov’s fixed point theorem and the nonlinear alternative
of Leray-Schauder type. Both approaches are combined with a technique based on

vector-valued metrics and matrices that converge to zero. Examples illustrating the

results are included.

1. Introduction

The theory of impulsive differential equations describes processes that experience a
sudden change in their state at certain moments. Processes with such a character
arise naturally and often, especially in phenomena studied in physics, chemical
technology, population dynamics, biotechnology and economics. There has been a
significant development in the theory of IDE; see for example the books [1, 6, 7,
9, 20, 26] and the papers [4, 5, 14, 15, 21, 25, 27, 28, 29].

We are concerned with the existence and uniqueness of solutions of the system
of nonlinear second-order singular and impulsive differential equations with two
boundary conditions

(1.1)



−u′′1(t) = f1(t, u1(t), u2(t)), t ∈ J ′,
−u′′2(t) = f2(t, u1(t), u2(t)), t ∈ J ′,
−∆u′1 |t=tk= I1,ku1(tk), k = 1, 2, . . . ,m,
−∆u′2 |t=tk= I2,ku2(tk), k = 1, 2, . . . ,m,
αu1(0)− βu′1(0) = 0, αu2(0)− βu′2(0) = 0,
γu1(1) + δu′1(1) = 0, γu2(1) + δu′2(1) = 0,

where α, β, γ, δ ≥ 0, ρ = βγ + αγ + αδ > 0, J = [0, 1], 0 < t1 < t2 < · · · <
tm < 1, J ′ = J r {t1, t2, . . . , tm}, fi ∈ C(J × R × R,R), Ii,k ∈ C(R,R), i = 1, 2,
k ∈ {1, 2, · · · ,m}, ∆u′ |t=tk= u1(t+k )− u1(t−k ), and ∆u′2 |t=tk= u2(t+k )− u2(t−k ) in

which u′1(t+k ), u′2(t+k ), u′1(t−k ), and u′2(t−k )) denote the right and left hand limits of
u′1(t) and u′2(t) at t = tk, respectively.
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In recent years, many authors have studied existence of solution for system of
differential equations by using vector versions of fixed point theorems; see, for
example, [3, 10, 11, 12, 13, 23, 24].

In [3], Bolojan and Precup studied implicit first order differential systems with
nonlocal conditions by using a vector version of Krasnosel’skii’s theorem, vector-
valued norms, and matrices having spectral radius less than one.

In [23], the authors studied existence results for systems with nonlinear coupled
nonlocal initial condition by using the Perov, Schauder, and Leray Schauder fixed
point principles combined with a technique based on vector valued matrices that
converge to zero.

Recently Zhang and Wang [30] studied nonlocal Cauchy problems for a class of
implicit impulsive fractional relaxation differential systems by using vector versions
of fixed point theorems, splitting the Lipschitz or linear growth conditions on the
nonlinear terms into two parts, and then applying techniques that use convergent
matrices and vector-valued norms.

We begin with some preliminary results and introduce the notion of matrices
converging to zero. In Section 3, we give sufficient conditions for the existence
and uniqueness of solutions to system (1.1) via an application of the Perov fixed
point theorem. In Section 4 we use a non linear alternative of Leray-Schauder
type to obtain additional existence results. Both of these approaches make use of
convergent matrices and vector norms. Some examples are given in Section 5.

2. Preliminaries

In this section, we recall some concepts and notation to be used in what follows.
We set J0 = [0, t1], Jk = (tk, tk+1], k = 1, . . . ,m, tm+1 = 1, and let yk be the
restriction of the function y to Jk. We consider the space

(2.1)
PC2(J,R) = {y ∈ C([0, 1],R) : yk ∈ C2(Jk,R), k = 0, . . . ,m, such that

y′(t−k ) and y′(t+k ) exist and satisfy y′(tk) = y′(t−k ) for k = 1, . . . , n}.

Let PC2(J,R) × PC2(J,R) be endowed with the vector norm ‖ · ‖ defined by
‖v‖ = (‖u1‖PC2 , ‖u2‖PC2) for v = (u1, u2), where for x ∈ PC2(J,R), we set
‖x‖PC2 = sup

t∈J
|x(t)|+ sup

t∈J
|x′(t)|. It is clear that (PC2(J,R)×PC2(J,R), ‖ · ‖PC2)

is a generalized Banach space.
We also need the space

(2.2)
PCA(J,R) = {y ∈ C([0, 1],R) : y′k ∈ AC1(Jk,R), k = 0, . . . ,m, such that

y′(t−k ) and y′(t+k ) exist and satisfy y′(tk) = y′(t−k ) for k = 1, . . . , n}
with the vector norm ‖ · ‖ defined by ‖v‖ = (‖u1‖PCA, ‖u2‖PCA) for v = (u1, u2),
where for x ∈ PCA(J,R), we set ‖x‖PCA = supt∈J |x(t)|.

Definition 2.1. Let X be a nonempty set. By a vector-valued metric on X we
mean a map d : X ×X → Rn with the following properties:

(i) d(u, v) ≥ 0 for all u, v ∈ X, and if d(u, v) = 0, then u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X;
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(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

Here, if x, y ∈ Rn, x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn), by x ≤ y we mean
xi ≤ yi for i = 1, 2, · · · , n.

We call the pair (X, d) a generalized metric space with

d(x, y) :=

 d1(x, y)
...

dn(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, 2, · · · , n,
are metrics on X. Similarly, we speak about a vector-valued norm on a linear space
X as being a mapping ‖ · ‖ : X → Rn+ with: ‖x‖ = 0 only for x = 0; ‖λx‖ = |λ|‖x‖
for x ∈ X, λ ∈ R; and ‖x + y‖ ≤ ‖x‖ + ‖y‖ for every x, y ∈ X. To any vector-
valued norm ‖ · ‖ we can associate the vector valued metric d(x, y) := ‖x−y‖, and
we say that (X, ‖ · ‖) is a generalized Banach space if X is complete with respect
to d.

Definition 2.2. A square matrix of real numbers is said to be convergent to
zero if and only if its spectral radius ρ(M) is strictly less than 1.

In other words, all the eigenvalues of M are in the open unit disc, i.e., |λ| < 1
for every λ ∈ C with det(M − λI) = 0, where I denote the identity matrix in
Mn×n(R).

Theorem 2.1 ([22]). Let M ∈Mn×n(R+), the following assertions are equiv-
alent:

(a) M is convergent to zero;

(b) Mk → 0 as k →∞;

(c) The matrix (I −M) is nonsingular and

(I −M)−1 = I +M +M2 + · · ·+Mk + · · · ;

(d) The matrix (I−M) is nonsingular and (I−M)−1 has nonnegative elements.

Definition 2.3. Let (X, d) be a generalized metric space. An operator T : X →
X is called contractive associated with the above d on X, if there exists a conver-
gent to zero matrix M such that d(T (x), T (y)) ≤Md(x, y) for all x, y ∈ X.

Definition 2.4. We say fi : [0, 1]×R×R→ R, i = 1, 2, is an L1-Carathéodory
function if

1. fi(·, x, y) is measurable for any (x, y) ∈ R× R,

2. fi(t, ·, ·) is continuous for almost every t ∈ [0, 1],

3. for each r1, r2 > 0, there exists φr1,r2 ∈ L1([0,+∞)) such that

|f(t, x, y)| ≤ Φr1,r2(t)

for all x ∈ R with |x| ≤ r1, y ∈ R with |y| ≤ r2, and almost all t ∈ [0, 1].

Next, we recall the vector version of Perov’s fixed point theorem. For the proof
and additional details we refer to [17] and [19].
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Theorem 2.2 (Perov’s fixed point theorem). Suppose that (X, d) is a complete
generalized metric space and T : X → X is a contractive operator with Lipschitz
matrix M . Then T has a unique fixed point u, and for each u0 ∈ X,

d(T k(u0), u) ≤Mk(I −M)−1d(u0, T (u0)) where k ∈ N.

In Section 4 we make use of the following form of the nonlinear alternative of
Leray-Schauder type.

Theorem 2.3 ([8]). Let E be a Banach space, C a closed, convex subset of E,
and U be an open subset of C with 0 ∈ U . Suppose that N : U → C is a continuous,
compact (that is, N(U) is a relatively compact subset of C) map. Then:

(i) Either N has a fixed point in U , or

(ii) There exists x ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with x = λN(x).

3. Main Results I

In this section of our paper we give sufficient conditions for the existence and
uniqueness of solutions to problem (1.1) using Perov’s fixed point theorem. We
begin with a lemma that will aid in transforming problem (1.1) into a fixed point
problem that will be used in this section as well as later in the paper.

Lemma 3.1. The vector (u1, u2) ∈ PC2(J,R)×PC2(J,R) is a solution of the
differential system (1.1) if and only if

(3.1)


u1(t) =

∫ 1

0

G(t, s)f1(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I1,k(u1(tk)),

u2(t) =

∫ 1

0

G(t, s)f2(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I2,k(u2(tk)),

where

(3.2) G(t, s) =
1

ρ

(γ + δ − γt)(β + αs), 0 ≤ s ≤ t ≤ 1,

(β + αt)(γ + δ − γs), 0 ≤ t ≤ s ≤ 1.

Proof. Let (u1, u2) ∈ PC2(J,R) × PC2(J,R) be a solution of system (1.1). It
is easy to see by an integration of (1.1) that

(3.3) u′i(t) = u′i(0)−
∫ t

0

fi(s, u1(s), u2(s))ds−
∑

0<tk<t

Ii,k(ui(tk)) for i = 1, 2.

Integrating again, we obtain

(3.4)

ui(t) = ui(0) + u′i(0)t−
∫ t

0

(t− s)f1(s, u1(s), u2(s))ds

−
∑

0<tk<t

Ii,k(ui(tk))(t− tk) for i = 1, 2.
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Letting t = 1 in (3.3) and (3.4), we have

(3.5) u′i(1) = u′i(0)−
∫ 1

0

fi(s, u1(s), u2(s))ds−
m∑
k=1

Ii,k(ui(tk)) for i = 1, 2.

(3.6)

ui(1) = ui(0) + u′i(0)−
∫ 1

0

(1− s)fi(s, u1(s), u2(s))ds

−
m∑
k=1

Ii,k(ui(tk))(1− tk) for i = 1, 2.

Therefore,

γui(1) + δu′i(1) = γui(0) + (γ + δ)u′i(0)−
∫ 1

0

(γ + δ − γs)fi(s, u1(s), u2(s))ds

−
m∑
k=1

Ii,k(ui(tk))(γ + δ − γtk) for i = 1, 2.

We then have

αui(0)− βu′i(0) = 0 for i = 1, 2,

and

γui(0)+(γ+δ)u′i(0)=

∫ 1

0

(γ+δ−γs)fi(s, u1(s), u2(s))ds+

m∑
k=1

Ii,k(ui(tk))(γ+δ−γtk)

for i = 1, 2. An application of Cramer’s method yields

ui(0) =
β

ρ

[ ∫ 1

0

(γ + δ − γs)fi(s, u1(s), u2(s))ds+

m∑
k=1

(γ + δ − γtk)Ii,k(ui(tk))
]

and

u′i(0) =
α

ρ

[ ∫ 1

0

(γ + δ − γs)fi(s, u1(s), u2(s))ds+

m∑
k=1

(γ + δ − γtk)Ii,k(ui(tk))
]
.

Thus,

ui(t) =
β

ρ

[ ∫ 1

0

(γ + δ − γs)fi(s, u1(s), u2(s))ds+

m∑
k=1

(γ + δ − γtk)Ii,k(ui(tk))
]

+
αt

ρ

[ ∫ 1

0

(γ + δ − γs)fi(s, u2(s), u2(s))ds+

m∑
k=1

(γ + δ − γtk)Ii,k(ui(tk))
]

−
∫ t

0

(t− s)fi(s, u1(s), u2(s))ds−
∑

0<tk<t

(t− tk)Ii,k(ui(tk)) for i = 1, 2.
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We then have

ui(t) =
1

ρ

(∫ 1

0

(αt+ β)(γ + δ − γs)fi(s, ui(s), ui(s))ds

−
∫ t

0

(t− s)(ρ)fi(s, u1(s), u2(s))ds
)

+
1

ρ

( m∑
k=1

(αt+ β)(γ + δ − γtk)Ii,k(ui(tk))

−
∑

0<tk<t

(t− tk)(ρ)Ii,k(ui(tk))
)

for i = 1, 2. Hence
u1(t) =

∫ 1

0

G(t, s)f1(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I1,k(u1(tk)),

u2(t) =

∫ 1

0

G(t, s)f2(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I2,k(u2(tk)),

where G(t, s) is given in (3.2).
Conversely, if the vector (u1, u2) is a solution of (3.1), then

ui(t) =

∫ 1

0

G(t, s)fi(s, ui(s), ui(s))ds+

m∑
k=1

G(t, tk)Ii,k(ui(tk)) for i = 1, 2.

i.e.,

ui(t) =

∫ t

0

1

ρ
(γ + δ − γt)(β + αs)fi(s, u1(s), u2(s))ds

+

∫ 1

t

1

ρ
(β + αt)(γ + δ − γs)fi(s, u1(s), u2(s))ds

+
∑
tk<t

1

ρ
(γ + δ − γt)(β + αtk)Ii,k(ui(tk))

+
∑
tk>t

1

ρ
(β + αt)(γ + δ − γtk)Ii,k(ui(tk)) for i = 1, 2, t 6= tk,

and

u′i(t) =
−γ
ρ

∫ t

0

(β + αs)fi(s, u1(s), u2(s))ds

+
α

ρ

∫ 1

t

(γ + δ − γs)fi(s, u1(s), u2(s))ds

+
−γ
ρ

∑
tk<t

(β + αtk)Ii,k(ui(tk))

+
α

ρ

∑
tk>t

(γ + δ − γtk)Ii,k(ui(tk)) for i = 1, 2, t 6= tk.
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Differentiating again, we see that

u′′i (t) =
1

ρ

(
− γ

∫ t

0

(β + αs)fi(s, u1(s), u2(s))ds

+ α

∫ 1

t

(γ + δ − γs)fi(s, u1(s), u2(s))ds
)′

= − fi(s, u1(s), u2(s)) for i = 1, 2, t 6= tk.

Since

ui(0) =
β

ρ

∫ 1

0

(γ + δ − γs)fi(s, u1(s), u2(s))ds+
β

ρ

m∑
k=1

(γ + δ − γtk)Ii,k(ui(tk)),

u′i(0) =
α

ρ

∫ 1

0

fi(s, u1(s), u2(s))ds+
α

ρ

m∑
k=1

(γ + δ − γtk)Ii,k(ui(tk))

for i = 1, 2, we have that αu′i(0) = βu′i(0) for i = 1, 2. Also, since

ui(1) =
δ

ρ

∫ 1

0

(β + αs)fi(s, u1(s), u2(s))ds+
δ

ρ

m∑
k=1

(β + αtk)Ii,k(u2(tk)),

u′i(1) = −γ
ρ

∫ 1

0

(β + αs)fi(s, u1(s), u2(s))ds+
−γ
ρ

∑
tk<t

(β + αtk)Ii,k(ui(tk))

for i = 1, 2, we have that γui(1) + δu′i(1) = 0 for i = 1, 2. Hence,

ui(t
+
k )− ui(t−k ) =

1

ρ
(−γ(β + αtk)− α(γ + δ − γtk)Ii,k(ui(tk)) = −Ii,k(ui(tk))

for i=1,2, and this completes the proof of the lemma. �

We are now ready to present our main result in this section.

Theorem 3.1. Assume that the following conditions are satisfied:
(H1) There exist four positive real constants P1, P2, P3, and P4 such that|f1(t, u1, u2)− f1(t, ū1, ū2)| ≤ P1|u1 − ū1|+ P2|u2 − ū2|,

|f2(t, u1, u2)− f2(t, ū1, ū2)| ≤ P3|u1 − ū1|+ P4|u2 − ū2|

for each u1, u2, ū1, ū2 ∈ R and each t ∈ J ;

(H2) There exist K1,k and K2,k such that

|I1,k(u1)− I1,k(ū1)| ≤ K1,k|u1 − ū1|, k = 1, 2, . . . ,m,

and

|I2,k(u2)− I2,k(ū2)| ≤ K2,k|u2 − ū2|, k = 1, 2, . . . ,m,

for all u1, u2, ū1, ū2 ∈ R.
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If the matrix

(3.7) M := G∗
(
P1 +mK1 P2

P3 P4 +mK2

)
converges to 0, where G∗ = sup{|G(t, s)| : (t, s) ∈ J × J}, K1 = max{K1,k}, and
K2 = max{K2,k} for k = 1, 2, . . . ,m, then the problem (1.1) has a unique solution.

Proof. Consider the operator

N : C(J,R)× C(J,R) −→ C(J,R)× C(J,R)

defined by
N(u1, u2) = (A1(u1, u2), A2(u1, u2)) ,

where

A1(u1, u2)(t) =

∫ 1

0

G(t, s)f1(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I1,k(u1(tk)),

and

A2(u1, u2)(t) =

∫ 1

0

G(t, s)f2(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I2,k(u2(tk)).

Let (u1, u2), (ū1, ū2) ∈ C(J,R)× C(J,R), then

|A1(u1, u2)(t)−A1(ū1, ū2)(t))|

≤
∫ 1

0

|G(t, s)||f1(s, u1(s), u2(s))− f1(s, ū1(s), ū2(s))|ds

+

m∑
k=1

|G(t, tk)||I1,k(u1(tk))− I1,k(ū1(tk))|

≤ G∗
∫ 1

0

[
P1|u1(s)− ū1(s)|+ P2|u2(s)− ū2(s)|

]
ds+G∗

m∑
k=1

K1,k|u1(tk)− ū1(tk)|

≤ G∗
(
P1 +

m∑
k=1

K1,k

)
‖u1 − ū1‖C +G∗P2‖u2 − ū2‖C

≤ G∗ [(P1 +mK1) ‖u1 − ū1‖C + P2‖u2 − ū2‖C ] ,

so
(3.8)
‖A1(u1, u2)−A1(ū1, ū2)‖C ≤ G∗ [(P1 +mK1) ‖u1 − ū1‖C + P2‖u2 − ū2‖C ] .

Similarly,

|A2(u1, u2)(t)−A2(ū1, ū2)(t)|

≤
∫ 1

0

|G(t, s)||f2(s, u1(s), u2(s))− f2(s, ū1(s), ū2(s))|ds

+

m∑
k=1

|G(t, tk)||I2,k(u2(tk))− I2,k(ū2(tk))|
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≤ G∗
∫ 1

0

[P3|u1(s)− ū1(s)|+ P4|u2(s)− ū2(s)|] ds+G∗
m∑
k=1

K2,k|u2(tk)− ū2(tk)|

≤ G∗P3‖u1 − ū1‖C +G∗
(
P4 +

m∑
k=1

K2,k

)
‖u2 − ū2‖C

≤ G∗ [P3‖u1 − ū1‖C + (P4 +mK2) ‖u2 − ū2‖C ] ,

and so
(3.9)
‖A2(u1, u2)−A2(ū1, ū2)‖PC2 ≤ G∗ [P3||u1 − ū1||C + (P4 +mK2) ||u2 − ū2||C ] .

From (3.8) and (3.9), we obtain[‖A1(u1, u2)−A1(ū1, ū2)‖PC

‖A2(u1, u2)−A2(ū1, ū2)‖PC

]
≤M

[‖u1 − ū1‖PC

‖u2 − ū2‖PC

]
,

where

M = G∗
(
P1 +mK1 P2

P3 P4 +mK2

)
.

Then by (3.7), N is a contraction, so by Perov’s fixed point theorem (Theorem 2.2
above), N has a unique fixed point that in turn is a solution of system (1.1). �

4. Main Results II

In this section we give an existence result based on the non linear alternative of
Leray-Schauder type. We need following conditions to obtain our result:
(C1) The functions f1 and f2 are L1-Carathéodory functions;

(C2) There exist functions p, q, h, g, q̃, and h̄ ∈ L1([0, 1],R+) and constants α1,
α2, α3, and α4 ∈ [0, 1) such that

|f1(t, u1, u2)| ≤ p(t)|u1|α1 + q(t)|u2|α2 + h(t)

for each t ∈ J and u1, u2 ∈ R and

|f2(t, u1, u2)| ≤ p̃(t)|u1|α3 + q̃(t)|u2|α4 + h̄(t)

for each t ∈ J and u1, u2 ∈ R;

(C3) There exist constants ck, bk, c∗k, b∗k ∈ R+ and βk, β∗k ∈ [0, 1) such that

|I1,k(u1)| ≤ ck + bk|u1|βk , k = 1, 2, . . . ,m, u1 ∈ R

and

|I2,k(u2)| ≤ c∗k + b∗k|u2|β
∗
k , k = 1, 2, . . . ,m, u2 ∈ R.

Theorem 4.1. If conditions (C1)–(C3) hold, then the system (1.1) has at least
one solution.
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Proof. Let N be the operator defined in the proof of Theorem 3.1. To show that
N is continuous let (u1,n, u2,n) be a sequence such that (u1,n, u2,n) → (ũ1, ũ2) ∈
C(J,R)× C(J,R) as n→∞. Then,

|A1(u1,n, u2,n)(t)−A1(ũ1, ũ2)(t)|

≤
∫ 1

0

|G(t, s)||f1(s, u1,n(s), u2,n(s))− f1(s, ũ1(s), ũ2(s))|ds

+

m∑
k=1

|G(t, tk)||I1,k(un(tk))− I1,k(ũ1(tk))|

≤ G∗
∫ 1

0

|f1(s, u1,n(s), u2,n(s))− f1(s, ũ1(s), ũ2(s))|ds

+G∗
m∑
k=1

|I1,k(u1,n(tk))− I1,k(ũ1(tk))|.

Since f1 is an L1-Carathéodory function and I1,k, k = 1, 2, . . . ,m, are continuous,
by the Lebesgue dominated convergence theorem,

‖A1(u1,n, u2,n)−A1(ũ1, ũ2)‖C → 0 as n→∞.
Similarly,

‖A2(u1,n, u2,n)−A2(ũ1, ũ2)‖C → 0 as n→∞.
Thus, N is continuous.

In order to show that N maps bounded sets into bounded sets in C(J,R) ×
C(J,R), it suffices to show that for any q > 0 there exists a positive constant
vector l = (l1, l2) such that for each (u1, u2) ∈ Bq = {(u1, u2) ∈ C(J,R)×C(J,R)
‖u1‖C ≤ q, ‖u2‖C ≤ q}, we have

‖N(u1, u2)‖C ≤ ‖l‖.
For each t ∈ J , we have

|A1(u1, u2)(t)|

≤
∫ 1

0

|G(t, s)||f1(s, u1(s), u2(s))|+
m∑
k=1

|G(t, tk)||I1,k(u1(tk))|

≤ G∗
∫ 1

0

(p(s)|u1(s)|α1 + q(s)|u2(s)|α2 + h(s)) ds+G∗
m∑
k=1

(
ck + bk|u1(tk)|βk

)
≤ G∗‖u1‖α1

C

∫ 1

0

p(s)ds+G∗‖u2‖α2

C

∫ 1

0

q(s)ds+G∗
∫ 1

0

h(s)ds+G∗
m∑
k=1

(
ck+bk‖u1‖βkC

)
≤ G∗qα1‖p‖L1 +G∗qα2‖q‖L1 +G∗‖h‖L1 +G∗

m∑
k=1

(
ck + bkq

βk
)
.

Hence

‖A1(u1, u2)‖PC ≤ G∗qα̃
(
‖p‖L1 + ‖q‖L1 +

m∑
k=1

bk

)
+G∗

(
‖h‖L1 +

m∑
k=1

ck

)
:= l1
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where

α̃ = max{α1, α2, βk : k = 1, 2, · · · ,m}.

Similarly, we have

‖A2(u1, u2)‖C ≤ G∗qᾱ
(
‖p̃‖L1 + ‖q̃‖L1 +

m∑
k=1

b∗k

)
+G∗

(
‖h̄‖L1 +

m∑
k=1

c∗k

)
:= l2,

where

ᾱ = max{α3, α4, β
∗
k : k = 1, 2, · · · ,m},

which is what we needed to show.
Next we show thatN maps bounded sets into equicontinuous sets of C([0, 1],R)×

C(J,R). Let Bq be the bounded set obtained above. Let r1, r2 ∈ J with r1 < r2

and u ∈ Bq, then we have

|A1(u1, u2)(r2)−A1(u1, u2)(r1)|

≤
∫ 1

0

|G(r2, s)−G(r1, s)||f1(s, u1(s), u2(s))|ds

+

m∑
k=1

|G(r2, tk)− (G(r1, tk)||I1,k(u1(tk))|

≤
∫ 1

0

|G(r2, s)−G(r1, s)|[(p(s)|u1(s)|α1 + q(s)|u2(s)|α2 + h(s))]ds

+

m∑
k=1

|G(r2, tk)−G(r1, tk)|
(
ck + bk|u1(s)|βk

)
≤ qα1

∫ 1

0

|G(r2, s)−G(r1, s)|p(s)ds+ qα2

∫ 1

0

|G(r2, s)−G(r1, s)|q(s)ds

+

∫ 1

0

|G(r2, s)−G(r1, s)|h(s)ds+

m∑
k=1

|G(r2, tk)−G(r1, tk)|
(
ck + bkq

βk
)
.

Similarly, we have

|A2(u1, u2)(r2)−A2(u1, u2)(r1)|

≤ qα3

∫ 1

0

|G(r2, s)−G(r1, s)|p̃(s)ds+ qα4

∫ 1

0

|G(r2, s)−G(r1, s)|q̃(s)ds

+

∫ 1

0

|G(r2, s)−G(r1, s)|h̄(s)ds+

m∑
k=1

|G(r2, tk)−G(r1, tk)|
(
c∗k + b∗kq

βk
)
.

Notice that the terms on the right-hand side in the above two expressions tend to
zero as |r2 − r1| → 0. We can now apply the Arzelà-Ascoli theorem to conclude
that N : BM → C(J,R)× C(J̄ ,R) is completely continuous.

Next, let (u1, u2) ∈ C(J,R) × C(J,R) with (u1, u2) = λN(u1, u2) for some
0 < λ < 1. Then u1 = λA1(u1, u2) and u2 = λA2(u1, u2). Thus, for t ∈ [0, 1], we
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have

|u1(t)| ≤
∫ 1

0

|G(t, s)||f1(s, u1(s), u2(s))|+
m∑
k=1

|G(t, tk)||I1,k(u1(tk))|

≤ G∗
∫ 1

0

[(p(s)|u1(s)|α1 +q(s)|u2(s)|α2 + h(s)] ds+G∗
m∑
k=1

(
ck + bk|u1(tk)|βk

)
≤ G∗‖u1‖α1

C

∫ 1

0

p(s)ds+G∗‖u2‖α2

C

∫ 1

0

q(s)ds+G∗
∫ 1

0

h(s)ds

+G∗
m∑
k=1

(
ck + bk‖u1‖βkC

)
.

Hence,

‖u1‖C ≤ G∗‖u1‖α1

C ‖p‖L1 +G∗‖u2‖α2

C ‖q‖L1 +G∗‖h‖L1 +G∗
m∑
k=1

(
ck + bk‖u1‖βkC

)
.

Similarly, we obtain

‖u2‖C ≤ G∗‖u1‖α3

C ‖p̃‖L1 +G∗‖u2‖
α4

C ‖q̃‖L1 +G∗‖h̄‖L1 +G∗
m∑
k=1

(
c∗k + b∗k‖u2‖

β∗
k

C

)
.

Notice that if ε ≤ δ and ‖u‖ > 1, then ‖u‖ε ≤ ‖u‖δ. Thus, ‖u‖ε ≤ 1 + ‖u‖δ for
all u.

We then have

‖u1‖C + ‖u2‖C
≤ G∗ (‖q‖L1 + ‖p̃‖L1) (‖u1‖α3

C + ‖u2‖α2

C ) +G∗ (‖p‖L1 + ‖q̃‖L1) (‖u1‖α1

C + ‖u2‖α4

C )

+G∗
m∑
k=1

(bk + b∗k)
(
‖u1‖βkC + ‖u2‖

β∗
k

C

)
+G∗

( m∑
k=1

(ck + c∗k) + ‖h‖L1 + ‖h̄‖L1

)
≤ G∗

(
‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̄‖L1 +

m∑
k=1

(bk + b∗k)
)(

1 + ‖u‖α
∗

C + ‖v‖α
∗

C

)
+G∗

( m∑
k=1

(ck + c∗k) + ‖h‖L1 + ‖h̃‖L1

)
≤ 2G∗

(
‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̄‖L1 +

m∑
k=1

(bk + b∗k)
)(
‖u‖C + ‖v‖C

)α∗

+G∗
(
‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̄‖L1 +

m∑
k=1

(bk + b∗k)
)

+G∗
( m∑
k=1

(ck + c∗k) + ‖h‖L1 + ‖h̃‖L1

)
where

α∗ = max{α1, α2, α3, α4, βk, β
∗
k : k = 1, 2, · · · ,m}.
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If ‖u1‖C + ‖u2‖C > 1, then

‖u1‖C + ‖u2‖C(
‖u1‖C + ‖u2‖C

)α∗

≤ 2G∗
(
‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̃‖L1 +

m∑
k=1

(bk + b∗k)
)

+G∗

(
‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̄‖L1 +

∑m
k=1(bk + b∗k)

)
(
‖u1‖C + ‖u2‖C

)α∗

+G∗

m∑
k=1

(ck + c∗k) + ‖h‖L1 + ‖h̄‖L1(
‖u‖C + ‖v‖C

)α∗

or(
‖u1‖C + ‖u2‖C

)1−α∗

≤ 2G∗
(
‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̃‖L1 +

m∑
k=1

(bk + b∗k)
)

+G∗
(
‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̄‖L1 +

m∑
k=1

(bk + b∗k)
)

+G∗
( m∑
k=1

(ck + c∗k) + ‖h‖L1 + ‖h̄‖L1

)
.

This implies that

‖u1‖C + ‖u2‖C ≤
[
3G∗

(
C1 +

m∑
k=1

(bk + b∗k)
)

+G∗
( m∑
k=1

(ck + c∗k) +C2

)] 1
1−α∗

:= M2,

where

C1 = ‖q‖L1 + ‖p̃‖L1 + ‖p‖L1 + ‖q̃‖L1 and C2 = ‖h‖L1 + ‖h̄‖L1 .

Consequently

‖u1‖C ≤M2 and ‖u2‖C ≤M2.

Set

U = {(u1, u2) ∈ C(J,R)× C(J,R) : ‖u1‖C < M2 + 1 and ‖u2‖C < M2 + 1}.

From the choice of U , there is no (u1, u2) ∈ ∂U such that (u1, u2) = λN(u1, u2) for
some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-Schauder
type (Theorem 2.3), the operator N has a fixed point that is a solution of system
(1.1). This completes the proof of the theorem. �
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5. Examples

In this section, we give two examples to illustrate our results above.

Example 5.1. Consider the impulsive differential system of second order given
by

(5.1)



−u′′1(t) =
1

6

u2
2(t)

1 + u2
2(t)

sin(2u1(t)) := f1(t, u1(t), u2(t)), t ∈ J r
{

1
4

}
,

−u′′2(t) =
1

8

u2
2(t)

1 + u2
2(t)

cos(2u1(t)) := f2(t, u1(t), u2(t)), t ∈ J r
{

1
4

}
,

−∆u′1
(

1
4

)
= 1

4 cos
(
u1

(
1
4

))
, t1 = 1

4 ,

−∆u′2
(

1
4

)
= 1

3 sin
(
u2

(
1
4

))
,

u1(0) = u′1(0) = 0, u2(0) = u′2(0) = 0.

We see that α = δ = 1 and β = γ = 0. Moreover, since

sup
u1,u2∈R

∣∣∣∣∂f1(t, u1, u2)

∂u1

∣∣∣∣ ≤ 1

3
, sup

u1,u2∈R

∣∣∣∣∂f1(t, u1, u2)

∂u2

∣∣∣∣ ≤ 1

3
,

sup
u1,u2∈R

∣∣∣∣∂f2(t, u1, u2)

∂u1

∣∣∣∣ ≤ 1

4
, sup

u1,u2∈R

∣∣∣∣∂f2(t, u1, u2)

∂u2

∣∣∣∣ ≤ 1

4
,

we have

|f1(t, u1, u2)− f1(t, ū1, ū2)| ≤ 1

3
|u1 − ū1|+

1

3
|u2 − ū2|

and

|f2(t, u1, u2)− f2(t, ū1, ū2)| ≤ 1

4
|u1 − ū1|+

1

4
|u2 − ū2|.

Hence, condition (H1) holds with P1 = 1
3 , P2 = 1

3 , P3 = 1
4 , and P4 = 1

4 . Also,

|I1,1(u1)− I1,1(ū1)| ≤ 1

4
|u1 − ū1| for each u, ū ∈ R and each t ∈ [0, 1],

|I1,2(u2)− I1,2(ū2)| ≤ 1

3
|u2 − ū2| for each u2, ū2 ∈ R and each t ∈ [0, 1].

Thus, (H3) holds. From (3.2), the Green’s function for the homogeneous problem
is given by

G(t, s) =

{
s, 0 ≤ s ≤ t ≤ 1,

t, 0 ≤ t ≤ s ≤ 1,

and we can easily see that

G∗ = sup
(t,s)∈J×J

|G(t, s)| = 1.

For this example M =

(
7
12

1
3

1
4

7
12

)
, which has the two eigenvalues λ1 ' 0.872

and λ2 ' 0.294. Therefore, M converges to zero. All the conditions in Theorem
3.1 are satisfied, so system (5.1) has a unique solution.
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Example 5.2. Consider the impulsive differential system

(5.2)



−u′′1(t) = t3 + 2(t− 1)2|u1(t)|0.8 + et|u2(t)|0.3 + 3
:= f1(t, u1(t), u2(t)), t ∈ J r { 1

2},

−u′′2(t) = t2 + 4t|u1(t)|0.4 +
(
t− 1

3

)2 |u2(t)|0.6 + 8
:= f2(t, u1(t), u2(t)), t ∈ J r { 1

2},

−∆u′1
(

1
2

)
= 1

6

√
u1

(
1
2

)
, t1 = 1

2 ,

−∆u′2
(

1
2

)
= 2

3 |u2

(
1
2

)
| 25 + 4,

u1(0) = u′1(0) = 0, u2(0) = u′2(0) = 0.

We clearly have |f1(t, u1(t), u2(t))| ≤ 2|u1|0.8 + e|u2|0.3 + 4,

|f2(t, u1(t), u2(t))| ≤ 4|u1|0.4 + 4
9 |u2|0.6 + 9,

and |I1,1(u1)| ≤ 1
6 |u1|

1
2 ,

|I1,2(u2)| ≤ 2
3 |u2|

2
5 + 4

for t ∈ J . Now all the hypotheses of Theorem 4.1 are satisfied, so system (5.2) has
at least one solution.
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