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THE GENERAL CASE ON THE ORDER OF APPEARANCE

OF PRODUCT OF CONSECUTIVE LUCAS NUMBERS

N. KHAOCHIM and P. PONGSRIIAM

Abstract. Let Fn and Ln be the nth Fibonacci number and Lucas number, re-

spectively. The order of appearance of m in the Fibonacci sequence, denoted by
z(m), is the smallest positive integer k such that m divides Fk. The formula for

z(LnLn+1Ln+2 · · ·Ln+k) has been recently obtained by Marques for 1 ≤ k ≤ 3,
and by Marques and Trojovský for k = 4. In this article, we extend the results to

the cases k = 5 and k = 6. Our method gives a general idea on how to obtain the

formulas of z(LnLn+1 · · ·Ln+k) for every k ≥ 1.

1. Introduction

Throughout this article, we write (a1, a2, . . . , ak) and [a1, a2, . . . , ak] for the great-
est common divisor and the least common multiple of a1, a2, . . . , ak, respectively.

The Fibonacci sequence (Fn)n≥1 is defined by F1 = F2 = 1 and Fn = Fn−1 +

Fn−2 for n ≥ 3, and the Lucas sequence (Ln)n≥1 is defined by the same recursive
pattern with initial values L1 = 1 and L2 = 3. For each positive integer m, the
order (or the rank) of appearance of m in the Fibonacci sequence, denoted by z(m),
is the smallest positive integer k such that m divides Fk. The divisibility property
of Fibonacci and Lucas numbers, and the behavior of the order of appearance
have been a popular area of research, see [1, 4, 6, 7, 11, 13, 14, 15, 21, 22] and
references therein for additional details and history. We also refer the reader to
[12, 16, 17, 18, 19] for some recent results concerning with Fibonacci and Lucas
numbers.

Recently, Marques [9] obtained the formulas for

z(LnLn+1), z(LnLn+1Ln+2), and z(LnLn+1Ln+2Ln+3).

Then Marques and Trojovský [10] extended the above to z(LnLn+1Ln+2Ln+3Ln+4).
In this article, we modify the method used in [5], and obtain z(LnLn+1 · · ·Ln+k)
for k = 5 and k = 6. In fact, our method gives an algorithm to compute
z(LnLn+1 · · ·Ln+k) for any given k ≥ 1.

Received September 28, 2017; revised January 17, 2018.
2010 Mathematics Subject Classification. Primary 11B39; Secondary 11Y55.
Key words and phrases. Fibonacci number, Lucas number, least common multiple, order of

appearance, rank of appearance.
Prapanpong Pongsriiam is the corresponding author.



278 N. KHAOCHIM and P. PONGSRIIAM

2. Auxiliary Results

In this section, we give some lemmas that will be used in the proof of the main
theorems. Recall that for a prime p and a positive integer n, the p-adic order of n,
denoted by vp(n), is the exponent of p in the prime factorization of n. The next
lemma will be used to calculate 2-adic and 3-adic orders of Fibonacci numbers.

Lemma 2.1. ([8, Lengyel]) For each n ≥ 1, we have

v2(Fn) =


0 if n ≡ 1, 2 (mod 3),

1 if n ≡ 3 (mod 6),

v2(n) + 2 if n ≡ 0 (mod 6),

v5(Fn) = v5(n), and if p is a prime, p 6= 2, and p 6= 5, then

vp(Fn) =

{
vp(n) + vp(Fz(p)) if n ≡ 0 (mod z(p)),

0 if n 6≡ 0 (mod z(p)).

In particular,

v3(Fn) =

{
v3(n) + 1 if n ≡ 0 (mod 4),

0 if n 6≡ 0 (mod 4).

In addition, we have

v2(Ln) =


0 if n ≡ 1, 2 (mod 3),

2 if n ≡ 3 (mod 6),

1 if n ≡ 0 (mod 6), and

for all primes p /∈ {2, 5},

vp(Ln) =

{
vp(n) + vp(Fz(p)) if z(p) is even and n ≡ z(p)

2 (mod z(p)),

0 otherwise.

In particular,

v3(Ln) =

{
v3(n) + 1 if n ≡ 2 (mod 4),

0 otherwise.

The next lemma are well-known and will be applied throughout this article.
The proof can be found, for example, in [3, 7, 20].

Lemma 2.2. Let m, n be positive integers and d = (m,n). Then the following
statements hold.

(i) For n ≥ 2, Ln | Fm if and only if 2n | m.
(ii) (Fm, Fn) = Fd.

(iii) (Lm, Ln) =


Ld if m

d and n
d are odd,

2 if (md or n
d is even) and 3 | d,

1 if (md or n
d is even) and 3 - d.
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(iv) (Fm, Ln) =


Ld if m

d is even and n
d is odd,

2 if (md is odd or n
d is even) and 3 | d,

1 if (md is odd or n
d is even) and 3 - d.

In particular, any three consecutive Lucas numbers are pairwise relatively prime.
In addition, (Ln, Ln+3) = F(n,3), (Ln, Ln+4) = F(n−2,4), (Ln, Ln+5) = 1, and

(Ln, Ln+6) = 2v2(Ln).

Proof. The statements (i), (ii), (iii), and (iv) are well-known. The rest follows
from an application of (iii) and the definition of Fibonacci numbers. We only give
the proof to the last equality

(1) (Ln, Ln+6) = 2v2(Ln).

Let d = (n, n + 6) = (n, 6). We divide the calculation into four cases.
Case 1: 2 | n and 3 | n. Then d = 6, n

6 or n+6
6 is even, and we obtain by (iii) that

(Ln, Ln+6) = 2. We also know from Lemma 2.1 that v2(Ln) = 1. Therefore, (1)
holds.
Case 2: 2 - n and 3 | n. Then d = 3, n

3 and n+6
3 are odd, so we obtain by (iii) that

(Ln, Ln+6) = Ld = L3 = 4. By Lemma 2.1, v2(Ln) = 2. So (1) is verified.
Case 3: 2 | n and 3 - n. Similar to Case 1, we have d = 2, n

2 or n+6
2 is even, so

(Ln, Ln+6) = 1 = 20 = 2v2(Ln).
Case 4: 2 - n and 3 - n. Similar to Case 2, we have d = 1, n and n + 6 are odd,
and (Ln, Ln+6) = Ld = L1 = 1 = 2v2(Ln). �

We will also need to know the least common multiple of consecutive integers
and make a calculation on some expressions involving the greatest common divisor.
Therefore we recall basic results in elementary number theory as follows. For posi-
tive integers a, b, c, if (a, b) = 1, then (c, ab) = (c, a)(c, b) and (a, bc) = (a, c). In ad-
dition, ((a, b), c) = (a, b, c), (a, b) = (b, a), (ca, cb) = c(a, b), and if a ≡ b (mod c),
then (a, c) = (b, c). Recall also that [a1, a2, . . . , ak] = [[a1, a2, . . . , ak−1], ak] and
[a, b] = ab

(a,b) . We use these without further reference.

Lemma 2.3. ([5, Lemma 2.3]) For each n ∈ N, the following holds.

[n, n + 1] = n(n + 1),

[n, n + 1, n + 2] =
n(n + 1)(n + 2)

(2, n)
,

[n, n + 1, n + 2, n + 3] =
n(n + 1)(n + 2)(n + 3)

2(3, n)
,

[n, n + 1, n + 2, n + 3, n + 4] =
n(n + 1)(n + 2)(n + 3)(n + 4)

2(4, n)(3, n(n + 1))
,

[n, n + 1, n + 2, n + 3, n + 4, n + 5] =
n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

6(5, n)(4, n(n + 1))
,
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[n, n + 1, n + 2, n + 3, n + 4,n + 5, n + 6]

=
n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)

12(3, n)(5, n(n+1))
(

4, (n+2)
(

2, n(n+1)
2

)) .
Proof. We give this result in [5, Lemma 2.3] but it has not been published

formally, so we give the proof here for completeness. For each k ≥ 0, define
gk : N→ N by

gk(n) =
n(n + 1) · · · (n + k)

[n, n + 1, . . . , n + k]
.

Farhi [2] show that g0(n) = g1(n) = 1 for every n ∈ N, and gk satisfies the recursive
relation

gk(n) = (k!, (n + k)gk−1(n)) for all k, n ∈ N.
By the definition of the function gk(n), we obtain that [n, n + 1, . . . , n + k] =
n(n+1)···(n+k)

gk(n)
. So we only need to find gk(n) for k = 1, 2, 3, 4, 5, 6. Since each case

is similar, we only show the proof in the cases k = 6. We have

g6(n) = (6!, (n + 6)g5(n))

= (6!, 6(n + 6)(5, n)(4, n(n + 1)))

= 6(8 · 5 · 3, (n + 6)(5, n)(4, n(n + 1)))

= 6(8, (n + 6)(4, n(n + 1)))(5, (n + 6)(5, n))(3, n + 6)

= 6(8, (n + 6)(4, n(n + 1)))(5, (n + 1)(5, n))(3, n)

= 6(8, (n + 6)(4, n(n + 1)))(5, 5(n + 1), n(n + 1))(3, n)

= 12

(
4, (n + 6)

(
2,

n(n + 1)

2

))
(5, n(n + 1))(3, n)

= 12

(
4, (n + 2)

(
2,

n(n + 1)

2

))
(5, n(n + 1))(3, n). �

Next we calculate the least common multiple of consecutive Lucas numbers.

Lemma 2.4. For each k ≥ 1, let Pk = LnLn+1Ln+2 · · ·Ln+k. Then the fol-
lowing statements hold for every n ≥ 1

(i) [Ln, Ln+1] = LnLn+1.

(ii) [Ln, Ln+1, Ln+2] = LnLn+1Ln+2.

(iii) [Ln, Ln+1, Ln+2, Ln+3] = P3

F(n,3)
.

(iv) [Ln, Ln+1, Ln+2, Ln+3, Ln+4] =


P4

F(n−2,4)
if n ≡ 1 (mod 3),

P4

2F(n−2,4)
if n ≡ 0, 2 (mod 3).

(v) [Ln, Ln+1, Ln+2, . . . , Ln+5] =


P5

6
if n ≡ 1, 2 (mod 4),

P5

2
if n ≡ 0, 3 (mod 4).
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(vi) [Ln, Ln+1, Ln+2, . . . , Ln+6] =


P6

3 · 2v2(Ln)+1
if n ≡ 0, 1, 2 (mod 4),

P6

2v2(Ln)+1
if n ≡ 3 (mod 4).

Proof. Recall from Lemma 2.2 that three consecutive Lucas numbers are pair-
wise relatively prime. So (i) and (ii) follow immediately. Then we obtain from (ii)
and Lemma 2.2 that

[Ln, Ln+1, Ln+2, Ln+3] = [[Ln, Ln+1, Ln+2], Ln+3] = [LnLn+1Ln+2, Ln+3]

=
LnLn+1Ln+2Ln+3

(LnLn+1Ln+2, Ln+3)
=

P3

(Ln, Ln+3)

=
P3

F(n,3)
,

which proves (iii).
Similar to the proof of (iii), we obtain

(2) [Ln, Ln+1, . . . , Ln+4] =

[
P3

F(n,3)
, Ln+4

]
=

P4

(P3, F(n,3)Ln+4)
.

Case 1: n 6≡ 0 (mod 3). By Lemma 2.2, the right hand side of (2) is equal to

P4

(P3, Ln+4)
=

P4

(Ln, Ln+4)(Ln+1, Ln+4)
=

P4

F(n−2,4)F(n+1,3)
,

which is equal to P4

F(n−2,4)
if n ≡ 1 (mod 3) and is equal to P4

2F(n−2,4)
if n ≡ 2

(mod 3).
Case 2: n ≡ 0 (mod 3). By Lemma 2.2, the right hand side of (2) is equal to

P4

2
(
LnLn+1Ln+2

Ln+3

2 , Ln+4

) =
P4

2(Ln, Ln+4)(Ln+1, Ln+4)
=

P4

2F(n−2,4)
.

Next we prove (v). Since Ln+3, Ln+4, Ln+5 are pairwise relatively prime, we
see that

(3) (P4, Ln+5) = (Ln, Ln+5)(Ln+1, Ln+5)(Ln+2, Ln+5) = F(n−1,4)F(n+2,3).

Case 1: n ≡ 1 (mod 3). Then by (iv) and a similar calculation in the proof of (iv),
we obtain

[Ln, Ln+1, Ln+2, . . . , Ln+5] =

[
P4

F(n−2,4)
, Ln+5

]
=

P5

(P4, F(n−2,4)Ln+5)
.

By Lemma 2.2,
(
F(n−2,4), Ln+5

)
= 1. So we obtain by (3) that

(4)
(P4, F(n−2,4)Ln+5) = (P4, F(n−2,4))F(n−1,4)F(n+2,3)

= 2(P4, F(n−2,4))F(n−1,4).

It is easy to check that if n ≡ 1, 2 (mod 4), then the right hand side of (4) is equal
to 6, and if n ≡ 0, 3 (mod 4), then it is equal to 2.
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Case 2: n ≡ 0, 2 (mod 3). Similar to Case 1, we have

[Ln, Ln+1, Ln+2, . . . , Ln+5] =
P5

(P4, 2F(n−2,4)Ln+5)
.

Using Lemma 2.2 or Lemma 2.1 it is easy to check that 2, F(n−2,4), and Ln+5 are
pairwise relatively prime. This and (3) imply that

(P4, 2F(n−2,4)Ln+5) = 2(P4, F(n−2,4))F(n−1,4)F(n+2,3)

= 2(P4, F(n−2,4))F(n−1,4),

which is the same as (4). This proves (v). Next we prove (vi).
Case 1: n ≡ 1, 2 (mod 4) and n ≡ 1, 2 (mod 3). Similar to the proof of (v), we
have

[Ln, Ln+1, Ln+2, . . . , Ln+6] =
P6

(P5, 6Ln+6)
.

We obtain by Lemma 2.2 that Ln+6 is relatively prime to Ln+3Ln+4Ln+5 and
obtain by Lemma 2.1 that 6 | Ln+4Ln+5. Therefore,

(5)

(P5, 6Ln+6) = 6

(
LnLn+1Ln+2Ln+3

Ln+4Ln+5

6
, Ln+6

)
= 6(Ln, Ln+6)(Ln+1, Ln+6)(Ln+2, Ln+6)

= 6 · 2v2(Ln)F(n,4) = 3 · 2v2(Ln)+1.

Case 2: n ≡ 1, 2 (mod 4) and n ≡ 0 (mod 3). Similar to Case 1, we obtain that

2 | Ln+3, 3 | Ln+4Ln+5, and Ln+6

2 is relatively prime to Ln+3

2 , Ln+4, and Ln+5.
Thus

(P5, 6Ln+6) = 12

(
Ln

2
Ln+1Ln+2

Ln+3

2

Ln+4Ln+5

3
,
Ln+6

2

)
= 3 · 2v2(Ln)+1,

which is the same as (5).
So Cases 1 and 2 lead to the same formula for [Ln, Ln+1, . . . , Ln+6].

Case 3: n ≡ 0, 3 (mod 4) and n ≡ 1, 2 (mod 3). Similar to Case 1,

[Ln, Ln+1, . . . , Ln+6] =
P6

(P5, 2Ln+6)

and

(6) (P5, 2Ln+6) = 2(Ln, Ln+6)(Ln+1, Ln+6)(Ln+2, Ln+6) = 2v2(Ln)+1F(n,4).

Case 4: n ≡ 0, 3 (mod 4) and n ≡ 0 (mod 3). Similar to Case 3,

[Ln, Ln+1, . . . , Ln+6] =
P6

(P5, 2Ln+6)
, and (P5, 2Ln+6) = 2v2(Ln)+1F(n,4),

which is the same as (6).
In Cases 3 and 4, if n ≡ 0 (mod 4), then F(n,4) = 3, and if n ≡ 3 (mod 4), then

F(n,4) = 1, which imply the desired result. This completes the proof. �
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3. Main Results

We modify the result of Khaochim and Pongsriiam [5, Theorem 3.1] so that it is
applicable to z(LnLn+1 . . . Ln+k). In fact, the next theorem describes the general
strategy in obtaining the formula for z(LnLn+1 . . . Ln+k) for every k ≥ 1.

Theorem 3.1. Let n ≥ 2, k ≥ 1, a = 2[n, n+1, . . . , n+k], b = LnLn+1 . . . Ln+k,

and fk(n) = LnLn+1Ln+2...Ln+k

[Ln,Ln+1,Ln+2,...,Ln+k]
. Then the following hold:

(i) b | fk(n)Faj for every j ≥ 1.

(ii) z(b) = aj, where j is the smallest positive integer such that b | Faj. In fact,
j is the smallest positive integer such that vp(b) ≤ vp(Faj) for every prime
p dividing fk(n).

Proof. Since 2(n + i) | a for all 0 ≤ i ≤ k, we obtain by Lemma 2.2(i) that
Ln+i | Fa for all 0 ≤ i ≤ k. So [Ln, Ln+1, . . . , Ln+k] | Fa. Therefore, b | fk(n)Fa.
Since Fa | Faj ,

b | fk(n)Faj for every j ≥ 1.

This proves (i). Next let z(b) = `. Then b | F`. Therefore Ln+i | F` for all
0 ≤ i ≤ k. Then we obtain by Lemma 2.2(i) that 2(n + i) | ` for all 0 ≤ i ≤ k,
which implies that a | `. Thus ` = aj for some j ∈ N. By the definition of z(b),
we see that j is the smallest positive integer such that

(7) b | Faj .

Note that (7) is equivalent to vp(b) ≤ vp(Faj) for every prime p. But by (i), if p is
a prime and p - fk(n), then

vp(b) ≤ vp(fk(n)Faj) = vp(Faj).

Therefore, (7) is equivalent to

(8) vp(b) ≤ vp(Faj) for every prime p dividing fk(n).

Hence z(b) = ` = aj and j is the smallest positive integer satisfying (8). This
proves (ii). �

Next, we give another proof of Marques’s result to demonstrate an application
of Theorem 3.1.

Example 3.2. Let n, k, a, b, and fk(n) be the quantities defined in Theo-
rem 3.1. Then by Lemma 2.4, fk(n) = 1 for k ∈ {1, 2}. In this case, we can choose
j = 1 and obtain by Theorem 3.1 and Lemma 2.3 that

z(LnLn+1) = 2[n, n + 1] = 2n(n + 1) and

z(LnLn+1Ln+2) = 2[n, n + 1, n + 2] =
2n(n + 1)(n + 2)

(n, 2)
.

Assume that k = 3. Then by Lemma 2.4, we have fk(n) = F(n,3). If 3 - n,
then we can choose j = 1 and obtain by Theorem 3.1 and Lemma 2.3 that

z(b) = a = 2[n, n + 1, n + 3, n + 3] = 2n(n+1)(n+2)(n+3)
2(3,n) = n(n + 1)(n + 2)(n + 3).

Assume that 3 | n. Then fk(n) = 2 and we need to find the smallest j such that
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v2(b) ≤ v2(Faj). Since 12 | aj, we obtain by Lemma 2.1 that v2(Faj) = v2(aj)+2 ≥
4 > v2(Ln) + v2(Ln+3) = v2(b) for every j. So we can choose j = 1 and obtain

z(b) = a = n(n+1)(n+2)(n+3)
3 . In any case,

z(LnLn+1Ln+2Ln+3) =
n(n + 1)(n + 2)(n + 3)

(n, 3)
.

This gives all main results of Marques in [9].

Theorem 3.3. Let n ≥ 1, a = 2[n, n + 1, n + 2, n + 3, n + 4], and b =
LnLn+1Ln+2Ln+3Ln+4. Then

z(b) =

{
3a if n ≡ 2, 14, 18, 30 (mod 36),

a otherwise.

Proof. It is easy to check that the result holds for n = 1, 2. So assume that
n ≥ 3.

Case 1: n ≡ 1 (mod 3). Then by Lemma 2.4 and Theorem 3.1, we have
b | F(n−2,4)Faj for every j ≥ 1 and we would like to find the smallest j such
that b | Faj . If n 6≡ 2 (mod 4), then F(n−2,4) = 1, so we can choose j = 1 and
obtain z(b) = a. So assume that n ≡ 2 (mod 4). Then F(n−2,4) = 3 and by
Theorem 3.1, we only need to consider v3(b) and v3(Faj). Since n ≡ 1 (mod 3)
and n ≡ 2 (mod 4), we obtain by Lemma 2.1 that v3(b) = v3(Ln) + v3(Ln+4) =
v3(n)+v3(n+4)+2 = 2. Since 4 | n+2 and n+2 | aj, 4 | aj. Similarly, 3 | aj. So
we obtain by Lemma 2.1 that for every j ≥ 1, v3(Faj) = v3(aj) + 1 ≥ 2 = v3(b).
Thus we can choose j = 1 and obtain z(b) = a. This shows z(b) = a whenever
n ≡ 1 (mod 3).

The idea used in the following case is still the same as that in Case 1. So our
argument will be shorter.

Case 2: n ≡ 0 (mod 3). Then by Lemma 2.4 and Theorem 3.1, we have
b | 2F(n−2,4)Faj for every j ≥ 1 and our problem is reduced to finding the smallest
positive integer j such that vp(b) ≤ vp(Faj) for every prime p dividing 2F(n−2,4).
Let j ≥ 1. Since 3 | n and n | a, we see that 3 | aj. Similarly, 2 | aj. Therefore,
6 | aj. By Lemma 2.1, v2(Faj) = v2(aj) + 2 ≥ 3 = v2(Ln) + v2(Ln+3) = v2(b). So
if n 6≡ 2 (mod 4), then we can choose j = 1 and obtain z(b) = a. So assume that
n ≡ 2 (mod 4). By Lemmas 2.1 and 2.3, we obtain that

v3(b) = v3(Ln) + v3(Ln+4) = v3(n) + v3(n + 4) + 2 = v3(n) + 2, and

v3(Faj) = v3(aj) + 1 = v3

(
n(n + 1)(n + 2)(n + 3)(n + 4)

(4, n)(3, n(n + 1))

)
+ v3(j) + 1

= v3(n) + v3(n + 3)− 1 + v3(j) + 1 = v3(n) + v3(n + 3) + v3(j).

So we need to find the smallest j ≥ 1 such that v3(n + 3) + v3(j) ≥ 2. Note that
n + 3 ≡ 0, 3, 6 (mod 9).

(i) If n + 3 ≡ 0 (mod 9), then we can choose j = 1 and obtain z(b) = a.

(ii) If n + 3 ≡ 3, 6 (mod 9), then v3(j) ≥ 1, so we choose j = 3 and obtain
z(b) = 3a.
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So in this case, z(b) = 3a when n ≡ 2 (mod 4) and n ≡ 0, 3 (mod 9). Otherwise,
z(b) = a.

Case 3: n ≡ 2 (mod 3). Similar to Case 2, v2(b) = v2(Ln+1) + v2(Ln+4) = 3 ≤
v2(Faj), and if n 6≡ 2 (mod 4), then z(b) = a. So assume that n ≡ 2 (mod 4).
Then similar to Case 2, we obtain by Lemmas 2.1 and 2.3 that

v3(b) = v3(Ln) + v3(Ln+4) = v3(n + 4) + 2 and

v3(Faj) = v3(aj) + 1 = v3(n + 1) + v3(n + 4) + v3(j).

Therefore, v3(Faj) ≥ v3(b)⇔ v3(n + 1) + v3(j) ≥ 2.

(i) If n + 1 ≡ 0 (mod 9), then we can choose j = 1 and obtain z(b) = a.

(ii) If n + 1 ≡ 3, 6 (mod 9), then v3(j) ≥ 1 so we choose j = 3 and obtain
z(b) = 3a.

So in this case, z(b) = 3a when n ≡ 2 (mod 4) and n ≡ 2, 5 (mod 9). Otherwise
z(b) = a. This completes the proof. �

Now the result of Marques and Trojovský [10] follows immediately from Theo-
rem 3.3 and Lemma 2.3.

Corollary 3.4 ([10]). Let n ≥ 1 and b = LnLn+1Ln+2Ln+3Ln+4. Then

z(b) =



n(n + 1)(n + 2)(n + 3)(n + 4) if n ≡ 1 (mod 6),

n(n + 1)(n + 2)(n + 3)(n + 4)

2
if n ≡ 2, 10, 14, 18, 22, 30, 34 (mod36),

n(n + 1)(n + 2)(n + 3)(n + 4)

3
if n ≡ 3, 5 (mod 6),

n(n + 1)(n + 2)(n + 3)(n + 4)

4
if n ≡ 4 (mod 12),

n(n + 1)(n + 2)(n + 3)(n + 4)

6
if n ≡ 6, 26 (mod 36),

n(n + 1)(n + 2)(n + 3)(n + 4)

12
if n ≡ 0, 8 (mod 12).

Next we extend the formula of z(LnLn+1Ln+2 . . . Ln+k) to the case k = 5, 6.

Theorem 3.5. Let n ≥ 1, a = 2[n, n+ 1, . . . , n+ 5], and b = LnLn+1 . . . Ln+5.
Then

z(b) =

{
3a if n ≡ 1, 2, 13, 14, 17, 18, 29, 30 (mod 36),

a otherwise.

Proof. It is easy to check that the result holds for n = 1, 2. So assume that
n ≥ 3. By Lemma 2.4 and Theorem 3.1, we obtain that b | `Faj for every j ≥ 1,
where ` = 2, 6. So we need to consider only v2 and v3 of b and Faj . Remark that
4 | aj and 3 | aj. So by Lemma 2.1, we obtain v2(Faj) = v2(aj)+2 ≥ 4. For n ≡ 0
(mod 3), we obtain by Lemma 2.1 that v2(b) = v2(Ln) + v2(Ln+3) = 3. Similarly,
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if n ≡ 1 (mod 3), then v2(b) = v2(Ln+2) + v2(Ln+5) = 3, and if n ≡ 2 (mod 3),
then v2(b) = v2(Ln+1) + v2(Ln+4) = 3. So in any case,

(9) v2(b) = 3 < v2(Faj) for every j ≥ 1.

In addition,

(a) if n ≡ 0 (mod 4), then v3(b) = v3(Ln+2) = v3(n + 2) + 1,

(b) if n ≡ 1 (mod 4), then v3(b) = v3(Ln+1) + v3(Ln+5) = v3(n + 1)
+ v3(n + 5) + 2,

(c) if n ≡ 2 (mod 4), then v3(b) = v3(Ln) + v3(Ln+4) = v3(n) + v3(n + 4) + 2,

(d) if n ≡ 3 (mod 4), then v3(b) = v3(Ln+3) = v3(n + 3) + 1.

By Lemmas 2.1 and 2.3, we obtain the following:

(i) If n ≡ 0 (mod 3), then v3(Faj) = v3(aj) + 1 = v3(a) + v3(j) + 1
= v3(n) + v3(n + 3)− 1 + v3(j) + 1 = v3(n) + v3(n + 3) + v3(j).

(ii) If n ≡ 1 (mod 3), then v3(Faj) = v3(n + 2) + v3(n + 5) + v3(j).

(iii) If n ≡ 2 (mod 3), then v3(Faj) = v3(n + 1) + v3(n + 4) + v3(j).

Case 1: n ≡ 0, 3 (mod 4). Then by Theorem 3.1, Lemma 2.4, and (9), we can
choose j = 1 and obtain z(b) = a.

Case 2: n ≡ 1, 2 (mod 4). Then by Theorem 3.1, Lemma 2.4, and (9), we only
need to check v3 of b and Faj .

Case 2.1: n ≡ 1 (mod 4) and n ≡ 0 (mod 3). Then by (b) and (i), we obtain

v3(b) = v3(n + 1) + v3(n + 5) + 2 = 2 ≤ v3(n) + v3(n + 3) + v3(j) = v3(Faj)

for every j. So we choose j = 1 and obtain z(b) = a.

Case 2.2: n ≡ 2 (mod 4) and n ≡ 0 (mod 3). Then by (c) and (i), v3(b) =
v3(n) + 2 and v3(Faj) = v3(n) + v3(n + 3) + v3(j). So v3(Faj) ≥ v3(b) if and only
if v3(n + 3) + v3(j) ≥ 2. Therefore,

(i) if n + 3 ≡ 0 (mod 9), then we choose j = 1 and obtain z(b) = a,

(ii) if n + 3 ≡ 3, 6 (mod 9), then we choose j = 3 and obtain z(b) = 3a.

Case 2.3: n ≡ 2 (mod 4) and n ≡ 1 (mod 3). Similar to Case 2.1, we obtain
z(b) = a.

Case 2.4: n ≡ 1 (mod 4) and n ≡ 1 (mod 3). This case is similar to Case 2.2 and
we obtain that v3(Faj) ≥ v3(b) if and only if v3(n + 2) + v3(j) ≥ 2. Therefore

(i) if n + 2 ≡ 0 (mod 9), then z(b) = a,

(ii) if n + 2 ≡ 3, 6 (mod 9), then z(b) = 3a.

Case 2.5: n ≡ 1 (mod 4) and n ≡ 2 (mod 3). This case is similar to Cases 2.2 and
2.4, and we obtain that v3(Faj) ≥ v3(b) if and only if v3(n + 4) + v3(j) ≥ 2. So

(i) if n + 4 ≡ 0 (mod 9), then z(b) = a,

(ii) if n + 4 ≡ 3, 6 (mod 9), then z(b) = 3a.

Case 2.6: n ≡ 2 (mod 4) and n ≡ 2 (mod 3). This case is similar to Cases 2.2, 2.4,
and 2.5, and we obtain that v3(Faj) ≥ v3(b) if and only if v3(n+1)+v3(j) ≥ 2. So
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(i) if n + 1 ≡ 0 (mod 9), then z(b) = a,

(ii) if n + 1 ≡ 3, 6 (mod 9), then z(b) = 3a.

Combining the result in each case, we obtain the desired formula. �

Theorem 3.6. Let n ≥ 1, a = 2[n, n+ 1, . . . , n+ 6], and b = LnLn+1 . . . Ln+6.
Then

z(b) =

{
3a if n ≡ 1, 2, 12, 13, 14, 16, 17, 18, 28, 29 (mod 36),

a otherwise.

Proof. The proof of this theorem follows the same idea used previously. So we
only give a short proof. Similar to the proof of Theorem 3.5, we only need to
evaluate v2 and v3 of b and Faj . By Lemma 2.3, we obtain the following:

(i) If n ≡ 1 (mod 4), then v2(a) = v2(n + 3) + 1 ≥ 3.

(ii) If n ≡ 3 (mod 4), then v2(a) = v2(n + 1) + v2(n + 5)− 1 ≥ 3.

(iii) If n ≡ 0 (mod 4), then v2(a) = v2(n) + v2(n + 4)− 1 ≥ 3.

(iv) If n ≡ 2 (mod 4), then v2(a) = v2(n + 2) + v2(n + 6)− 1 ≥ 3.

From (i)-(iv) and Lemma 2.1, we see that

(10) v2(Faj) = v2(aj) + 2 ≥ 5 for every j.

Next by Lemma 2.1, we obtain the following:

(a) If n ≡ 1, 2 (mod 3), then v2(b) = 3.

(b) If n ≡ 3 (mod 6), then v2(b) = 5.

(c) If n ≡ 0 (mod 6), then v2(b) = 4.

From (a)–(c) and (10), we see that

(11) v2(b) ≤ v2(Faj) for every j.

Case 1: n ≡ 3 (mod 4). Then by Theorem 3.1, Lemma 2.4, and (11), we can
choose j = 1 and obtain z(b) = a.

Case 2: n ≡ 0, 1, 2 (mod 4). Then we need to evaluate v3(b) and v3(Faj). By
Lemma 2.1, we obtain the following:

(i) If n ≡ 0 (mod 4), then v3(b) = v3(n + 2) + v3(n + 6) + 2.

(ii) If n ≡ 1 (mod 4), then v3(b) = v3(n + 1) + v3(n + 5) + 2.

(iii) If n ≡ 2 (mod 4), then v3(b) = v3(n) + v3(n + 4) + 2.

By Lemmas 2.1 and 2.3, we obtain the following:

(a) If n ≡ 0 (mod 3), then v3(Faj) = v3(n) + v3(n+ 3) + v3(n+ 6) + v3(j)− 1.

(b) If n ≡ 1 (mod 3), then v3(Faj) = v3(n + 2) + v3(n + 5) + v3(j).

(c) If n ≡ 2 (mod 3), then v3(Faj) = v3(n + 1) + v3(n + 4) + v3(j).

Comparing (i)–(iii) and (a)–(c), we see that v3(b) ≤ v3(Faj) for every j in the
following cases:
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(x) n ≡ 0 (mod 4) and n ≡ 2 (mod 3),

(y) n ≡ 1 (mod 4) and n ≡ 0 (mod 3), and

(z) n ≡ 2 (mod 4) and n ≡ 1 (mod 3).

Hence in the cases (x), (y), and (z), we have z(b) = a.
In the other cases, we obtain the following.

Case 2.1: n ≡ 0 (mod 4) and n ≡ 1 (mod 3). Then v3(Faj) ≥ v3(b)⇔ v3(n+5)+
v3(j) ≥ 2. So

(i) if n + 5 ≡ 0 (mod 9), then z(b) = a,

(ii) if n + 5 ≡ 3, 6 (mod 9), then z(b) = 3a.

Case 2.2: n ≡ 0 (mod 4) and n ≡ 0 (mod 3). Then v3(Faj) ≥ v3(b) ⇔ v3(n) +
v3(n + 3) + v3(j) ≥ 3. So

(i) if n ≡ 0, 6 (mod 9), then z(b) = a,

(ii) if n ≡ 3 (mod 9), then z(b) = 3a.

Case 2.3: n ≡ 1 (mod 4) and n ≡ 1 (mod 3). Then v3(Faj) ≥ v3(b)⇔ v3(n+2)+
v3(j) ≥ 2. So

(i) if n + 2 ≡ 0 (mod 9), then z(b) = a,

(ii) if n + 2 ≡ 3, 6 (mod 9), then z(b) = 3a.

Case 2.4: n ≡ 1 (mod 4) and n ≡ 2 (mod 3). Then v3(Faj) ≥ v3(b)⇔ v3(n+4)+
v3(j) ≥ 2. So

(i) if n + 4 ≡ 0 (mod 9), then z(b) = a,

(ii) if n + 4 ≡ 3, 6 (mod 9), then z(b) = 3a.

Case 2.5: n ≡ 2 (mod 4) and n ≡ 0 (mod 3). Then v3(Faj) ≥ v3(b)⇔ v3(n+3)+
v3(n + 6) + v3(j) ≥ 3. So

(i) if n ≡ 3, 6 (mod 9), then z(b) = a,

(ii) if n ≡ 0 (mod 9), then z(b) = 3a.

Case 2.6: n ≡ 2 (mod 4) and n ≡ 2 (mod 3). Then v3(Faj) ≥ v3(b)⇔ v3(n+1)+
v3(j) ≥ 2. So

(i) if n + 1 ≡ 0 (mod 9), then z(b) = a,

(ii) if n + 1 ≡ 3, 6 (mod 9), then z(b) = 3a.

This completes the proof. �
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