THE GENERAL CASE ON THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE LUCAS NUMBERS

N. KHAOCHIM AND P. PONGSRIIAM

ABSTRACT. Let F_n and L_n be the *n*th Fibonacci number and Lucas number, respectively. The order of appearance of *m* in the Fibonacci sequence, denoted by z(m), is the smallest positive integer *k* such that *m* divides F_k . The formula for $z(L_nL_{n+1}L_{n+2}\cdots L_{n+k})$ has been recently obtained by Marques for $1 \le k \le 3$, and by Marques and Trojovský for k = 4. In this article, we extend the results to the cases k = 5 and k = 6. Our method gives a general idea on how to obtain the formulas of $z(L_nL_{n+1}\cdots L_{n+k})$ for every $k \ge 1$.

1. INTRODUCTION

Throughout this article, we write (a_1, a_2, \ldots, a_k) and $[a_1, a_2, \ldots, a_k]$ for the greatest common divisor and the least common multiple of a_1, a_2, \ldots, a_k , respectively.

The Fibonacci sequence $(F_n)_{n\geq 1}$ is defined by $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 3$, and the Lucas sequence $(L_n)_{n\geq 1}$ is defined by the same recursive pattern with initial values $L_1 = 1$ and $L_2 = 3$. For each positive integer m, the order (or the rank) of appearance of m in the Fibonacci sequence, denoted by z(m), is the smallest positive integer k such that m divides F_k . The divisibility property of Fibonacci and Lucas numbers, and the behavior of the order of appearance have been a popular area of research, see [1, 4, 6, 7, 11, 13, 14, 15, 21, 22] and references therein for additional details and history. We also refer the reader to [12, 16, 17, 18, 19] for some recent results concerning with Fibonacci and Lucas numbers.

Recently, Marques [9] obtained the formulas for

$$z(L_nL_{n+1}), z(L_nL_{n+1}L_{n+2}), \text{ and } z(L_nL_{n+1}L_{n+2}L_{n+3}).$$

Then Marques and Trojovský [10] extended the above to $z(L_nL_{n+1}L_{n+2}L_{n+3}L_{n+4})$. In this article, we modify the method used in [5], and obtain $z(L_nL_{n+1}\cdots L_{n+k})$ for k = 5 and k = 6. In fact, our method gives an algorithm to compute $z(L_nL_{n+1}\cdots L_{n+k})$ for any given $k \ge 1$.

Received September 28, 2017; revised January 17, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 11B39; Secondary 11Y55.

Key words and phrases. Fibonacci number, Lucas number, least common multiple, order of appearance, rank of appearance.

Prapanpong Pongsriiam is the corresponding author.

N. KHAOCHIM AND P. PONGSRIIAM

2. Auxiliary Results

In this section, we give some lemmas that will be used in the proof of the main theorems. Recall that for a prime p and a positive integer n, the p-adic order of n, denoted by $v_p(n)$, is the exponent of p in the prime factorization of n. The next lemma will be used to calculate 2-adic and 3-adic orders of Fibonacci numbers.

Lemma 2.1. ([8, Lengyel]) For each $n \ge 1$, we have

$$v_2(F_n) = \begin{cases} 0 & \text{if } n \equiv 1,2 \pmod{3} \\ 1 & \text{if } n \equiv 3 \pmod{6}, \\ v_2(n) + 2 & \text{if } n \equiv 0 \pmod{6}, \end{cases}$$

 $v_5(F_n) = v_5(n)$, and if p is a prime, $p \neq 2$, and $p \neq 5$, then

$$v_p(F_n) = \begin{cases} v_p(n) + v_p(F_{z(p)}) & \text{if } n \equiv 0 \pmod{z(p)}, \\ 0 & \text{if } n \not\equiv 0 \pmod{z(p)}. \end{cases}$$

In particular,

$$v_3(F_n) = \begin{cases} v_3(n) + 1 & \text{if } n \equiv 0 \pmod{4}, \\ 0 & \text{if } n \not\equiv 0 \pmod{4}. \end{cases}$$

In addition, we have

$$v_2(L_n) = \begin{cases} 0 & \text{if } n \equiv 1, 2 \pmod{3}, \\ 2 & \text{if } n \equiv 3 \pmod{6}, \\ 1 & \text{if } n \equiv 0 \pmod{6}, \text{ and} \end{cases}$$

for all primes $p \notin \{2, 5\}$,

$$v_p(L_n) = \begin{cases} v_p(n) + v_p(F_{z(p)}) & \text{if } z(p) \text{ is even and } n \equiv \frac{z(p)}{2} \pmod{z(p)}, \\ 0 & \text{otherwise.} \end{cases}$$

In particular,

$$v_3(L_n) = \begin{cases} v_3(n) + 1 & \text{if } n \equiv 2 \pmod{4}, \\ 0 & \text{otherwise.} \end{cases}$$

The next lemma are well-known and will be applied throughout this article. The proof can be found, for example, in [3, 7, 20].

Lemma 2.2. Let m, n be positive integers and d = (m, n). Then the following statements hold.

 $\begin{array}{ll} \text{(i)} & \textit{For } n \geq 2, \ L_n \mid F_m \ \textit{if and only if } 2n \mid m. \\ \text{(ii)} & (F_m, F_n) = F_d. \\ \text{(iii)} & (L_m, L_n) = \begin{cases} L_d & \textit{if } \frac{m}{d} \ \textit{and } \frac{n}{d} \ \textit{are odd}, \\ 2 & \textit{if } (\frac{m}{d} \ \textit{or } \frac{n}{d} \ \textit{is even}) \ \textit{and } 3 \mid d, \\ 1 & \textit{if } (\frac{m}{d} \ \textit{or } \frac{n}{d} \ \textit{is even}) \ \textit{and } 3 \nmid d. \end{cases}$

(iv)
$$(F_m, L_n) = \begin{cases} L_d & \text{if } \frac{m}{d} \text{ is even and } \frac{n}{d} \text{ is odd,} \\ 2 & \text{if } (\frac{m}{d} \text{ is odd or } \frac{n}{d} \text{ is even) and } 3 \mid d, \\ 1 & \text{if } (\frac{m}{d} \text{ is odd or } \frac{n}{d} \text{ is even) and } 3 \nmid d. \end{cases}$$

In particular, any three consecutive Lucas numbers are pairwise relatively prime. In addition, $(L_n, L_{n+3}) = F_{(n,3)}$, $(L_n, L_{n+4}) = F_{(n-2,4)}$, $(L_n, L_{n+5}) = 1$, and $(L_n, L_{n+6}) = 2^{v_2(L_n)}$.

Proof. The statements (i), (ii), (iii), and (iv) are well-known. The rest follows from an application of (iii) and the definition of Fibonacci numbers. We only give the proof to the last equality

(1)
$$(L_n, L_{n+6}) = 2^{v_2(L_n)}$$

Let d = (n, n + 6) = (n, 6). We divide the calculation into four cases. <u>Case 1</u>: 2 | n and 3 | n. Then d = 6, $\frac{n}{6}$ or $\frac{n+6}{6}$ is even, and we obtain by (iii) that $(L_n, L_{n+6}) = 2$. We also know from Lemma 2.1 that $v_2(L_n) = 1$. Therefore, (1) holds. <u>Case 2</u>: 2 \nmid n and 3 | n. Then d = 3, $\frac{n}{3}$ and $\frac{n+6}{3}$ are odd, so we obtain by (iii) that $(L_n, L_{n+6}) = L_d = L_3 = 4$. By Lemma 2.1, $v_2(L_n) = 2$. So (1) is verified. <u>Case 3</u>: 2 | n and 3 \nmid n. Similar to Case 1, we have d = 2, $\frac{n}{2}$ or $\frac{n+6}{2}$ is even, so $(L_n, L_{n+6}) = 1 = 2^0 = 2^{v_2(L_n)}$.

<u>Case 4</u>: $2 \nmid n$ and $3 \nmid n$. Similar to Case 2, we have d = 1, n and n + 6 are odd, and $(L_n, L_{n+6}) = L_d = L_1 = 1 = 2^{v_2(L_n)}$.

We will also need to know the least common multiple of consecutive integers and make a calculation on some expressions involving the greatest common divisor. Therefore we recall basic results in elementary number theory as follows. For positive integers a, b, c, if (a, b) = 1, then (c, ab) = (c, a)(c, b) and (a, bc) = (a, c). In addition, $((a, b), c) = (a, b, c), (a, b) = (b, a), (ca, cb) = c(a, b), \text{ and if } a \equiv b \pmod{c}$, then (a, c) = (b, c). Recall also that $[a_1, a_2, \ldots, a_k] = [[a_1, a_2, \ldots, a_{k-1}], a_k]$ and $[a, b] = \frac{ab}{(a, b)}$. We use these without further reference.

Lemma 2.3. ([5, Lemma 2.3]) For each $n \in \mathbb{N}$, the following holds.

$$\begin{split} [n,n+1] &= n(n+1), \\ [n,n+1,n+2] &= \frac{n(n+1)(n+2)}{(2,n)}, \\ [n,n+1,n+2,n+3] &= \frac{n(n+1)(n+2)(n+3)}{2(3,n)}, \\ [n,n+1,n+2,n+3,n+4] &= \frac{n(n+1)(n+2)(n+3)(n+4)}{2(4,n)(3,n(n+1))}, \\ [n,n+1,n+2,n+3,n+4,n+5] &= \frac{n(n+1)(n+2)(n+3)(n+4)(n+5)}{6(5,n)(4,n(n+1))}. \end{split}$$

N. KHAOCHIM AND P. PONGSRIIAM

$$[n, n+1, n+2, n+3, n+4, n+5, n+6] = \frac{n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)}{12(3, n)(5, n(n+1))\left(4, (n+2)\left(2, \frac{n(n+1)}{2}\right)\right)}.$$

Proof. We give this result in [5, Lemma 2.3] but it has not been published formally, so we give the proof here for completeness. For each $k \geq 0$, define $g_k \colon \mathbb{N} \to \mathbb{N}$ by

$$g_k(n) = \frac{n(n+1)\cdots(n+k)}{[n,n+1,\ldots,n+k]}.$$

Farhi [2] show that $g_0(n) = g_1(n) = 1$ for every $n \in \mathbb{N}$, and g_k satisfies the recursive relation

$$g_k(n) = (k!, (n+k)g_{k-1}(n))$$
 for all $k, n \in \mathbb{N}$.

By the definition of the function $g_k(n)$, we obtain that $[n, n + 1, ..., n + k] = \frac{n(n+1)\cdots(n+k)}{g_k(n)}$. So we only need to find $g_k(n)$ for k = 1, 2, 3, 4, 5, 6. Since each case is similar, we only show the proof in the cases k = 6. We have

$$g_{6}(n) = (6!, (n+6)g_{5}(n))$$

$$= (6!, 6(n+6)(5, n)(4, n(n+1)))$$

$$= 6(8 \cdot 5 \cdot 3, (n+6)(5, n)(4, n(n+1)))$$

$$= 6(8, (n+6)(4, n(n+1)))(5, (n+6)(5, n))(3, n+6)$$

$$= 6(8, (n+6)(4, n(n+1)))(5, (n+1)(5, n))(3, n)$$

$$= 6(8, (n+6)(4, n(n+1)))(5, 5(n+1), n(n+1))(3, n)$$

$$= 12\left(4, (n+6)\left(2, \frac{n(n+1)}{2}\right)\right)(5, n(n+1))(3, n)$$

$$= 12\left(4, (n+2)\left(2, \frac{n(n+1)}{2}\right)\right)(5, n(n+1))(3, n)$$

Next we calculate the least common multiple of consecutive Lucas numbers.

Lemma 2.4. For each $k \ge 1$, let $P_k = L_n L_{n+1} L_{n+2} \cdots L_{n+k}$. Then the following statements hold for every $n \ge 1$

(i) $[L_n, L_{n+1}] = L_n L_{n+1}.$ (ii) $[L_n, L_{n+1}, L_{n+2}] = L_n L_{n+1} L_{n+2}.$ (iii) $[L_n, L_{n+1}, L_{n+2}, L_{n+3}] = \frac{P_3}{F_{(n,3)}}.$ (iv) $[L_n, L_{n+1}, L_{n+2}, L_{n+3}, L_{n+4}] = \begin{cases} \frac{P_4}{F_{(n-2,4)}} & \text{if } n \equiv 1 \pmod{3}, \\ \frac{P_4}{2F_{(n-2,4)}} & \text{if } n \equiv 0, 2 \pmod{3}. \end{cases}$ (v) $[L_n, L_{n+1}, L_{n+2}, \dots, L_{n+5}] = \begin{cases} \frac{P_5}{6} & \text{if } n \equiv 1, 2 \pmod{4}, \\ \frac{P_5}{2} & \text{if } n \equiv 0, 3 \pmod{4}. \end{cases}$

(vi)
$$[L_n, L_{n+1}, L_{n+2}, \dots, L_{n+6}] = \begin{cases} \frac{P_6}{3 \cdot 2^{v_2(L_n)+1}} & \text{if } n \equiv 0, 1, 2 \pmod{4}, \\ \frac{P_6}{2^{v_2(L_n)+1}} & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Proof. Recall from Lemma 2.2 that three consecutive Lucas numbers are pairwise relatively prime. So (i) and (ii) follow immediately. Then we obtain from (ii) and Lemma 2.2 that

$$\begin{split} [L_n, L_{n+1}, L_{n+2}, L_{n+3}] &= [[L_n, L_{n+1}, L_{n+2}], L_{n+3}] = [L_n L_{n+1} L_{n+2}, L_{n+3}] \\ &= \frac{L_n L_{n+1} L_{n+2} L_{n+3}}{(L_n L_{n+1} L_{n+2}, L_{n+3})} = \frac{P_3}{(L_n, L_{n+3})} \\ &= \frac{P_3}{F_{(n,3)}}, \end{split}$$

which proves (iii).

Similar to the proof of (iii), we obtain

(2)
$$[L_n, L_{n+1}, \dots, L_{n+4}] = \left[\frac{P_3}{F_{(n,3)}}, L_{n+4}\right] = \frac{P_4}{(P_3, F_{(n,3)}L_{n+4})}$$

<u>Case 1:</u> $n \not\equiv 0 \pmod{3}$. By Lemma 2.2, the right hand side of (2) is equal to

$$\frac{P_4}{(P_3, L_{n+4})} = \frac{P_4}{(L_n, L_{n+4})(L_{n+1}, L_{n+4})} = \frac{P_4}{F_{(n-2,4)}F_{(n+1,3)}},$$

which is equal to $\frac{P_4}{F_{(n-2,4)}}$ if $n \equiv 1 \pmod{3}$ and is equal to $\frac{P_4}{2F_{(n-2,4)}}$ if $n \equiv 2 \pmod{3}$.

<u>Case 2</u>: $n \equiv 0 \pmod{3}$. By Lemma 2.2, the right hand side of (2) is equal to

$$\frac{P_4}{2\left(L_nL_{n+1}L_{n+2}\frac{L_{n+3}}{2}, L_{n+4}\right)} = \frac{P_4}{2(L_n, L_{n+4})(L_{n+1}, L_{n+4})} = \frac{P_4}{2F_{(n-2,4)}}$$

Next we prove (v). Since L_{n+3} , L_{n+4} , L_{n+5} are pairwise relatively prime, we see that

(3)
$$(P_4, L_{n+5}) = (L_n, L_{n+5})(L_{n+1}, L_{n+5})(L_{n+2}, L_{n+5}) = F_{(n-1,4)}F_{(n+2,3)}$$

<u>Case 1:</u> $n \equiv 1 \pmod{3}$. Then by (iv) and a similar calculation in the proof of (iv), we obtain

$$[L_n, L_{n+1}, L_{n+2}, \dots, L_{n+5}] = \left[\frac{P_4}{F_{(n-2,4)}}, L_{n+5}\right] = \frac{P_5}{(P_4, F_{(n-2,4)}L_{n+5})}$$

By Lemma 2.2, $(F_{(n-2,4)}, L_{n+5}) = 1$. So we obtain by (3) that

(4)
$$(P_4, F_{(n-2,4)}L_{n+5}) = (P_4, F_{(n-2,4)})F_{(n-1,4)}F_{(n+2,3)}$$
$$= 2(P_4, F_{(n-2,4)})F_{(n-1,4)}.$$

It is easy to check that if $n \equiv 1, 2 \pmod{4}$, then the right hand side of (4) is equal to 6, and if $n \equiv 0, 3 \pmod{4}$, then it is equal to 2.

N. KHAOCHIM AND P. PONGSRIIAM

<u>Case 2</u>: $n \equiv 0, 2 \pmod{3}$. Similar to Case 1, we have

$$[L_n, L_{n+1}, L_{n+2}, \dots, L_{n+5}] = \frac{P_5}{(P_4, 2F_{(n-2,4)}L_{n+5})}.$$

Using Lemma 2.2 or Lemma 2.1 it is easy to check that 2, $F_{(n-2,4)}$, and L_{n+5} are pairwise relatively prime. This and (3) imply that

$$(P_4, 2F_{(n-2,4)}L_{n+5}) = 2(P_4, F_{(n-2,4)})F_{(n-1,4)}F_{(n+2,3)}$$
$$= 2(P_4, F_{(n-2,4)})F_{(n-1,4)},$$

which is the same as (4). This proves (v). Next we prove (vi). <u>Case 1</u>: $n \equiv 1, 2 \pmod{4}$ and $n \equiv 1, 2 \pmod{3}$. Similar to the proof of (v), we have

$$[L_n, L_{n+1}, L_{n+2}, \dots, L_{n+6}] = \frac{P_6}{(P_5, 6L_{n+6})}$$

We obtain by Lemma 2.2 that L_{n+6} is relatively prime to $L_{n+3}L_{n+4}L_{n+5}$ and obtain by Lemma 2.1 that $6 \mid L_{n+4}L_{n+5}$. Therefore,

(5)

$$(P_5, 6L_{n+6}) = 6 \left(L_n L_{n+1} L_{n+2} L_{n+3} \frac{L_{n+4} L_{n+5}}{6}, L_{n+6} \right)$$

$$= 6 (L_n, L_{n+6}) (L_{n+1}, L_{n+6}) (L_{n+2}, L_{n+6})$$

$$= 6 \cdot 2^{v_2(L_n)} F_{(n,4)} = 3 \cdot 2^{v_2(L_n)+1}.$$

<u>Case 2</u>: $n \equiv 1, 2 \pmod{4}$ and $n \equiv 0 \pmod{3}$. Similar to Case 1, we obtain that $2 \mid L_{n+3}, 3 \mid L_{n+4}L_{n+5}$, and $\frac{L_{n+6}}{2}$ is relatively prime to $\frac{L_{n+3}}{2}$, L_{n+4} , and L_{n+5} . Thus

$$(P_5, 6L_{n+6}) = 12\left(\frac{L_n}{2}L_{n+1}L_{n+2}\frac{L_{n+3}}{2}\frac{L_{n+4}L_{n+5}}{3}, \frac{L_{n+6}}{2}\right) = 3 \cdot 2^{v_2(L_n)+1},$$

which is the same as (5).

So Cases 1 and 2 lead to the same formula for $[L_n, L_{n+1}, \ldots, L_{n+6}]$. Case 3: $n \equiv 0,3 \pmod{4}$ and $n \equiv 1,2 \pmod{3}$. Similar to Case 1,

$$[L_n, L_{n+1}, \dots, L_{n+6}] = \frac{P_6}{(P_5, 2L_{n+6})}$$

and

(6)
$$(P_5, 2L_{n+6}) = 2(L_n, L_{n+6})(L_{n+1}, L_{n+6})(L_{n+2}, L_{n+6}) = 2^{v_2(L_n)+1}F_{(n,4)}.$$

<u>Case 4:</u> $n \equiv 0,3 \pmod{4}$ and $n \equiv 0 \pmod{3}$. Similar to Case 3,

$$[L_n, L_{n+1}, \dots, L_{n+6}] = \frac{P_6}{(P_5, 2L_{n+6})}, \text{ and } (P_5, 2L_{n+6}) = 2^{v_2(L_n)+1}F_{(n,4)},$$

which is the same as (6).

In Cases 3 and 4, if $n \equiv 0 \pmod{4}$, then $F_{(n,4)} = 3$, and if $n \equiv 3 \pmod{4}$, then $F_{(n,4)} = 1$, which imply the desired result. This completes the proof. \Box

3. Main Results

We modify the result of Khaochim and Pongsriiam [5, Theorem 3.1] so that it is applicable to $z(L_nL_{n+1}...L_{n+k})$. In fact, the next theorem describes the general strategy in obtaining the formula for $z(L_nL_{n+1}...L_{n+k})$ for every $k \ge 1$.

Theorem 3.1. Let $n \ge 2, k \ge 1, a = 2[n, n+1, ..., n+k], b = L_n L_{n+1} ... L_{n+k},$ and $f_k(n) = \frac{L_n L_{n+1} L_{n+2} ... L_{n+k}}{[L_n, L_{n+1}, L_{n+2}, ..., L_{n+k}]}$. Then the following hold:

- (i) $b \mid f_k(n) F_{aj}$ for every $j \ge 1$.
- (ii) z(b) = aj, where j is the smallest positive integer such that $b | F_{aj}$. In fact, j is the smallest positive integer such that $v_p(b) \le v_p(F_{aj})$ for every prime p dividing $f_k(n)$.

Proof. Since $2(n+i) \mid a$ for all $0 \leq i \leq k$, we obtain by Lemma 2.2(i) that $L_{n+i} \mid F_a$ for all $0 \leq i \leq k$. So $[L_n, L_{n+1}, \ldots, L_{n+k}] \mid F_a$. Therefore, $b \mid f_k(n)F_a$. Since $F_a \mid F_{aj}$,

$$b \mid f_k(n)F_{aj}$$
 for every $j \ge 1$.

This proves (i). Next let $z(b) = \ell$. Then $b \mid F_{\ell}$. Therefore $L_{n+i} \mid F_{\ell}$ for all $0 \leq i \leq k$. Then we obtain by Lemma 2.2(i) that $2(n+i) \mid \ell$ for all $0 \leq i \leq k$, which implies that $a \mid \ell$. Thus $\ell = aj$ for some $j \in \mathbb{N}$. By the definition of z(b), we see that j is the smallest positive integer such that

$$(7) b \mid F_{aj}.$$

Note that (7) is equivalent to $v_p(b) \leq v_p(F_{aj})$ for every prime p. But by (i), if p is a prime and $p \nmid f_k(n)$, then

$$v_p(b) \le v_p(f_k(n)F_{aj}) = v_p(F_{aj}).$$

Therefore, (7) is equivalent to

(8) $v_p(b) \le v_p(F_{aj})$ for every prime p dividing $f_k(n)$.

Hence $z(b) = \ell = aj$ and j is the smallest positive integer satisfying (8). This proves (ii).

Next, we give another proof of Marques's result to demonstrate an application of Theorem 3.1.

Example 3.2. Let n, k, a, b, and $f_k(n)$ be the quantities defined in Theorem 3.1. Then by Lemma 2.4, $f_k(n) = 1$ for $k \in \{1, 2\}$. In this case, we can choose j = 1 and obtain by Theorem 3.1 and Lemma 2.3 that

$$z(L_n L_{n+1}) = 2[n, n+1] = 2n(n+1) \quad \text{and}$$
$$z(L_n L_{n+1} L_{n+2}) = 2[n, n+1, n+2] = \frac{2n(n+1)(n+2)}{(n,2)}$$

Assume that k = 3. Then by Lemma 2.4, we have $f_k(n) = F_{(n,3)}$. If $3 \nmid n$, then we can choose j = 1 and obtain by Theorem 3.1 and Lemma 2.3 that $z(b) = a = 2[n, n+1, n+3, n+3] = \frac{2n(n+1)(n+2)(n+3)}{2(3,n)} = n(n+1)(n+2)(n+3)$. Assume that $3 \mid n$. Then $f_k(n) = 2$ and we need to find the smallest j such that

 $v_2(b) \leq v_2(F_{aj})$. Since $12 \mid aj$, we obtain by Lemma 2.1 that $v_2(F_{aj}) = v_2(aj) + 2 \geq 4 > v_2(L_n) + v_2(L_{n+3}) = v_2(b)$ for every j. So we can choose j = 1 and obtain $z(b) = a = \frac{n(n+1)(n+2)(n+3)}{3}$. In any case,

$$z(L_nL_{n+1}L_{n+2}L_{n+3}) = \frac{n(n+1)(n+2)(n+3)}{(n,3)}$$

This gives all main results of Marques in [9].

Theorem 3.3. Let $n \ge 1$, a = 2[n, n + 1, n + 2, n + 3, n + 4], and $b = L_n L_{n+1} L_{n+2} L_{n+3} L_{n+4}$. Then

$$z(b) = \begin{cases} 3a & if \ n \equiv 2, 14, 18, 30 \pmod{36}, \\ a & otherwise. \end{cases}$$

Proof. It is easy to check that the result holds for n = 1, 2. So assume that $n \ge 3$.

<u>Case 1:</u> $n \equiv 1 \pmod{3}$. Then by Lemma 2.4 and Theorem 3.1, we have $b \mid F_{(n-2,4)}F_{aj}$ for every $j \geq 1$ and we would like to find the smallest j such that $b \mid F_{aj}$. If $n \not\equiv 2 \pmod{4}$, then $F_{(n-2,4)} = 1$, so we can choose j = 1 and obtain z(b) = a. So assume that $n \equiv 2 \pmod{4}$. Then $F_{(n-2,4)} = 3$ and by Theorem 3.1, we only need to consider $v_3(b)$ and $v_3(F_{aj})$. Since $n \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{4}$, we obtain by Lemma 2.1 that $v_3(b) = v_3(L_n) + v_3(L_{n+4}) = v_3(n) + v_3(n+4) + 2 = 2$. Since $4 \mid n+2$ and $n+2 \mid aj$, $4 \mid aj$. Similarly, $3 \mid aj$. So we obtain by Lemma 2.1 that for every $j \geq 1$, $v_3(F_{aj}) = v_3(aj) + 1 \geq 2 = v_3(b)$. Thus we can choose j = 1 and obtain z(b) = a. This shows z(b) = a whenever $n \equiv 1 \pmod{3}$.

The idea used in the following case is still the same as that in Case 1. So our argument will be shorter.

<u>Case 2</u>: $n \equiv 0 \pmod{3}$. Then by Lemma 2.4 and Theorem 3.1, we have $b \mid 2F_{(n-2,4)}F_{aj}$ for every $j \geq 1$ and our problem is reduced to finding the smallest positive integer j such that $v_p(b) \leq v_p(F_{aj})$ for every prime p dividing $2F_{(n-2,4)}$. Let $j \geq 1$. Since $3 \mid n$ and $n \mid a$, we see that $3 \mid aj$. Similarly, $2 \mid aj$. Therefore, $6 \mid aj$. By Lemma 2.1, $v_2(F_{aj}) = v_2(aj) + 2 \geq 3 = v_2(L_n) + v_2(L_{n+3}) = v_2(b)$. So if $n \not\equiv 2 \pmod{4}$, then we can choose j = 1 and obtain z(b) = a. So assume that $n \equiv 2 \pmod{4}$. By Lemmas 2.1 and 2.3, we obtain that

$$\begin{aligned} v_3(b) &= v_3(L_n) + v_3(L_{n+4}) = v_3(n) + v_3(n+4) + 2 = v_3(n) + 2, \text{ and} \\ v_3(F_{aj}) &= v_3(aj) + 1 = v_3 \left(\frac{n(n+1)(n+2)(n+3)(n+4)}{(4,n)(3,n(n+1))} \right) + v_3(j) + 1 \\ &= v_3(n) + v_3(n+3) - 1 + v_3(j) + 1 = v_3(n) + v_3(n+3) + v_3(j). \end{aligned}$$

So we need to find the smallest $j \ge 1$ such that $v_3(n+3) + v_3(j) \ge 2$. Note that $n+3 \equiv 0, 3, 6 \pmod{9}$.

- (i) If $n + 3 \equiv 0 \pmod{9}$, then we can choose j = 1 and obtain z(b) = a.
- (ii) If $n + 3 \equiv 3, 6 \pmod{9}$, then $v_3(j) \ge 1$, so we choose j = 3 and obtain z(b) = 3a.

So in this case, z(b) = 3a when $n \equiv 2 \pmod{4}$ and $n \equiv 0, 3 \pmod{9}$. Otherwise, z(b) = a.

<u>Case 3:</u> $n \equiv 2 \pmod{3}$. Similar to Case 2, $v_2(b) = v_2(L_{n+1}) + v_2(L_{n+4}) = 3 \le v_2(F_{aj})$, and if $n \not\equiv 2 \pmod{4}$, then z(b) = a. So assume that $n \equiv 2 \pmod{4}$. Then similar to Case 2, we obtain by Lemmas 2.1 and 2.3 that

$$v_3(b) = v_3(L_n) + v_3(L_{n+4}) = v_3(n+4) + 2$$
 and
 $v_3(F_{aj}) = v_3(aj) + 1 = v_3(n+1) + v_3(n+4) + v_3(j).$

Therefore, $v_3(F_{aj}) \ge v_3(b) \Leftrightarrow v_3(n+1) + v_3(j) \ge 2$.

- (i) If $n + 1 \equiv 0 \pmod{9}$, then we can choose j = 1 and obtain z(b) = a.
- (ii) If $n + 1 \equiv 3, 6 \pmod{9}$, then $v_3(j) \ge 1$ so we choose j = 3 and obtain z(b) = 3a.

So in this case, z(b) = 3a when $n \equiv 2 \pmod{4}$ and $n \equiv 2, 5 \pmod{9}$. Otherwise z(b) = a. This completes the proof.

Now the result of Marques and Trojovský [10] follows immediately from Theorem 3.3 and Lemma 2.3.

Corollary 3.4 ([10]). Let $n \ge 1$ and $b = L_n L_{n+1} L_{n+2} L_{n+3} L_{n+4}$. Then

$$z(b) = \begin{cases} n(n+1)(n+2)(n+3)(n+4) & \text{if } n \equiv 1 \pmod{6}, \\ \frac{n(n+1)(n+2)(n+3)(n+4)}{2} & \text{if } n \equiv 2, 10, 14, 18, 22, 30, 34 \pmod{36}, \\ \frac{n(n+1)(n+2)(n+3)(n+4)}{3} & \text{if } n \equiv 3, 5 \pmod{6}, \\ \frac{n(n+1)(n+2)(n+3)(n+4)}{4} & \text{if } n \equiv 4 \pmod{12}, \\ \frac{n(n+1)(n+2)(n+3)(n+4)}{6} & \text{if } n \equiv 6, 26 \pmod{36}, \\ \frac{n(n+1)(n+2)(n+3)(n+4)}{12} & \text{if } n \equiv 0, 8 \pmod{12}. \end{cases}$$

Next we extend the formula of $z(L_nL_{n+1}L_{n+2}...L_{n+k})$ to the case k = 5, 6.

Theorem 3.5. Let $n \ge 1$, a = 2[n, n+1, ..., n+5], and $b = L_n L_{n+1} ... L_{n+5}$. Then

$$z(b) = \begin{cases} 3a & \text{if } n \equiv 1, 2, 13, 14, 17, 18, 29, 30 \pmod{36}, \\ a & \text{otherwise.} \end{cases}$$

Proof. It is easy to check that the result holds for n = 1, 2. So assume that $n \ge 3$. By Lemma 2.4 and Theorem 3.1, we obtain that $b \mid \ell F_{aj}$ for every $j \ge 1$, where $\ell = 2, 6$. So we need to consider only v_2 and v_3 of b and F_{aj} . Remark that $4 \mid aj$ and $3 \mid aj$. So by Lemma 2.1, we obtain $v_2(F_{aj}) = v_2(aj) + 2 \ge 4$. For $n \equiv 0 \pmod{3}$, we obtain by Lemma 2.1 that $v_2(b) = v_2(L_n) + v_2(L_{n+3}) = 3$. Similarly,

if $n \equiv 1 \pmod{3}$, then $v_2(b) = v_2(L_{n+2}) + v_2(L_{n+5}) = 3$, and if $n \equiv 2 \pmod{3}$, then $v_2(b) = v_2(L_{n+1}) + v_2(L_{n+4}) = 3$. So in any case,

(9)
$$v_2(b) = 3 < v_2(F_{aj})$$
 for every $j \ge 1$.

In addition,

- (a) if $n \equiv 0 \pmod{4}$, then $v_3(b) = v_3(L_{n+2}) = v_3(n+2) + 1$,
- (b) if $n \equiv 1 \pmod{4}$, then $v_3(b) = v_3(L_{n+1}) + v_3(L_{n+5}) = v_3(n+1) + v_3(n+5) + 2$,
- (c) if $n \equiv 2 \pmod{4}$, then $v_3(b) = v_3(L_n) + v_3(L_{n+4}) = v_3(n) + v_3(n+4) + 2$,
- (d) if $n \equiv 3 \pmod{4}$, then $v_3(b) = v_3(L_{n+3}) = v_3(n+3) + 1$.

By Lemmas 2.1 and 2.3, we obtain the following:

- (i) If $n \equiv 0 \pmod{3}$, then $v_3(F_{aj}) = v_3(aj) + 1 = v_3(a) + v_3(j) + 1$ = $v_3(n) + v_3(n+3) - 1 + v_3(j) + 1 = v_3(n) + v_3(n+3) + v_3(j)$.
- (ii) If $n \equiv 1 \pmod{3}$, then $v_3(F_{aj}) = v_3(n+2) + v_3(n+5) + v_3(j)$.
- (iii) If $n \equiv 2 \pmod{3}$, then $v_3(F_{aj}) = v_3(n+1) + v_3(n+4) + v_3(j)$.

<u>Case 1:</u> $n \equiv 0,3 \pmod{4}$. Then by Theorem 3.1, Lemma 2.4, and (9), we can choose j = 1 and obtain z(b) = a.

<u>Case 2:</u> $n \equiv 1,2 \pmod{4}$. Then by Theorem 3.1, Lemma 2.4, and (9), we only need to check v_3 of b and F_{aj} .

<u>Case 2.1</u>: $n \equiv 1 \pmod{4}$ and $n \equiv 0 \pmod{3}$. Then by (b) and (i), we obtain

$$v_3(b) = v_3(n+1) + v_3(n+5) + 2 = 2 \le v_3(n) + v_3(n+3) + v_3(j) = v_3(F_{aj})$$

for every j. So we choose j = 1 and obtain z(b) = a.

<u>Case 2.2:</u> $n \equiv 2 \pmod{4}$ and $n \equiv 0 \pmod{3}$. Then by (c) and (i), $v_3(b) = v_3(n) + 2$ and $v_3(F_{aj}) = v_3(n) + v_3(n+3) + v_3(j)$. So $v_3(F_{aj}) \ge v_3(b)$ if and only if $v_3(n+3) + v_3(j) \ge 2$. Therefore,

(i) if $n + 3 \equiv 0 \pmod{9}$, then we choose j = 1 and obtain z(b) = a,

(ii) if $n + 3 \equiv 3, 6 \pmod{9}$, then we choose j = 3 and obtain z(b) = 3a. <u>Case 2.3</u>: $n \equiv 2 \pmod{4}$ and $n \equiv 1 \pmod{3}$. Similar to Case 2.1, we obtain z(b) = a.

<u>Case 2.4</u>: $n \equiv 1 \pmod{4}$ and $n \equiv 1 \pmod{3}$. This case is similar to Case 2.2 and we obtain that $v_3(F_{aj}) \ge v_3(b)$ if and only if $v_3(n+2) + v_3(j) \ge 2$. Therefore

- (i) if $n + 2 \equiv 0 \pmod{9}$, then z(b) = a,
- (ii) if $n + 2 \equiv 3, 6 \pmod{9}$, then z(b) = 3a.

<u>Case 2.5:</u> $n \equiv 1 \pmod{4}$ and $n \equiv 2 \pmod{3}$. This case is similar to Cases 2.2 and 2.4, and we obtain that $v_3(F_{aj}) \ge v_3(b)$ if and only if $v_3(n+4) + v_3(j) \ge 2$. So

(i) if $n + 4 \equiv 0 \pmod{9}$, then z(b) = a,

(ii) if $n + 4 \equiv 3, 6 \pmod{9}$, then z(b) = 3a.

<u>Case 2.6</u>: $n \equiv 2 \pmod{4}$ and $n \equiv 2 \pmod{3}$. This case is similar to Cases 2.2, 2.4, and 2.5, and we obtain that $v_3(F_{aj}) \ge v_3(b)$ if and only if $v_3(n+1) + v_3(j) \ge 2$. So

(i) if $n + 1 \equiv 0 \pmod{9}$, then z(b) = a,

(ii) if $n + 1 \equiv 3, 6 \pmod{9}$, then z(b) = 3a.

Combining the result in each case, we obtain the desired formula.

Theorem 3.6. Let $n \ge 1$, a = 2[n, n+1, ..., n+6], and $b = L_n L_{n+1} ... L_{n+6}$. Then

$$z(b) = \begin{cases} 3a & if \ n \equiv 1, 2, 12, 13, 14, 16, 17, 18, 28, 29 \pmod{36}, \\ a & otherwise. \end{cases}$$

Proof. The proof of this theorem follows the same idea used previously. So we only give a short proof. Similar to the proof of Theorem 3.5, we only need to evaluate v_2 and v_3 of b and F_{aj} . By Lemma 2.3, we obtain the following:

(i) If $n \equiv 1 \pmod{4}$, then $v_2(a) = v_2(n+3) + 1 \ge 3$.

- (ii) If $n \equiv 3 \pmod{4}$, then $v_2(a) = v_2(n+1) + v_2(n+5) 1 \ge 3$.
- (iii) If $n \equiv 0 \pmod{4}$, then $v_2(a) = v_2(n) + v_2(n+4) 1 \ge 3$.

(iv) If
$$n \equiv 2 \pmod{4}$$
, then $v_2(a) = v_2(n+2) + v_2(n+6) - 1 \ge 3$.

From (i)-(iv) and Lemma 2.1, we see that

(10)
$$v_2(F_{aj}) = v_2(aj) + 2 \ge 5 \quad \text{for every } j.$$

Next by Lemma 2.1, we obtain the following:

- (a) If $n \equiv 1, 2 \pmod{3}$, then $v_2(b) = 3$.
- (b) If $n \equiv 3 \pmod{6}$, then $v_2(b) = 5$.
- (c) If $n \equiv 0 \pmod{6}$, then $v_2(b) = 4$.

From (a)-(c) and (10), we see that

(11)
$$v_2(b) \le v_2(F_{aj})$$
 for every j .

<u>Case 1:</u> $n \equiv 3 \pmod{4}$. Then by Theorem 3.1, Lemma 2.4, and (11), we can choose j = 1 and obtain z(b) = a.

<u>Case 2</u>: $n \equiv 0, 1, 2 \pmod{4}$. Then we need to evaluate $v_3(b)$ and $v_3(F_{aj})$. By Lemma 2.1, we obtain the following:

- (i) If $n \equiv 0 \pmod{4}$, then $v_3(b) = v_3(n+2) + v_3(n+6) + 2$.
- (ii) If $n \equiv 1 \pmod{4}$, then $v_3(b) = v_3(n+1) + v_3(n+5) + 2$.
- (iii) If $n \equiv 2 \pmod{4}$, then $v_3(b) = v_3(n) + v_3(n+4) + 2$.

By Lemmas 2.1 and 2.3, we obtain the following:

(a) If $n \equiv 0 \pmod{3}$, then $v_3(F_{aj}) = v_3(n) + v_3(n+3) + v_3(n+6) + v_3(j) - 1$.

(b) If $n \equiv 1 \pmod{3}$, then $v_3(F_{aj}) = v_3(n+2) + v_3(n+5) + v_3(j)$.

(c) If $n \equiv 2 \pmod{3}$, then $v_3(F_{aj}) = v_3(n+1) + v_3(n+4) + v_3(j)$.

Comparing (i)–(iii) and (a)–(c), we see that $v_3(b) \leq v_3(F_{aj})$ for every j in the following cases:

 \square

(x) $n \equiv 0 \pmod{4}$ and $n \equiv 2 \pmod{3}$,

- (y) $n \equiv 1 \pmod{4}$ and $n \equiv 0 \pmod{3}$, and
- (z) $n \equiv 2 \pmod{4}$ and $n \equiv 1 \pmod{3}$.

Hence in the cases (x), (y), and (z), we have z(b) = a.

In the other cases, we obtain the following.

<u>Case 2.1:</u> $n \equiv 0 \pmod{4}$ and $n \equiv 1 \pmod{3}$. Then $v_3(F_{aj}) \ge v_3(b) \Leftrightarrow v_3(n+5) + v_3(j) \ge 2$. So

(i) if $n + 5 \equiv 0 \pmod{9}$, then z(b) = a,

(ii) if $n + 5 \equiv 3, 6 \pmod{9}$, then z(b) = 3a.

<u>Case 2.2</u>: $n \equiv 0 \pmod{4}$ and $n \equiv 0 \pmod{3}$. Then $v_3(F_{aj}) \ge v_3(b) \Leftrightarrow v_3(n) + v_3(n+3) + v_3(j) \ge 3$. So

(i) if $n \equiv 0, 6 \pmod{9}$, then z(b) = a,

(ii) if $n \equiv 3 \pmod{9}$, then z(b) = 3a.

<u>Case 2.3</u>: $n \equiv 1 \pmod{4}$ and $n \equiv 1 \pmod{3}$. Then $v_3(F_{aj}) \ge v_3(b) \Leftrightarrow v_3(n+2) + v_3(j) \ge 2$. So

(i) if $n + 2 \equiv 0 \pmod{9}$, then z(b) = a,

(ii) if $n + 2 \equiv 3, 6 \pmod{9}$, then z(b) = 3a.

<u>Case 2.4</u>: $n \equiv 1 \pmod{4}$ and $n \equiv 2 \pmod{3}$. Then $v_3(F_{aj}) \ge v_3(b) \Leftrightarrow v_3(n+4) + v_3(j) \ge 2$. So

(i) if $n + 4 \equiv 0 \pmod{9}$, then z(b) = a,

(ii) if $n + 4 \equiv 3, 6 \pmod{9}$, then z(b) = 3a.

<u>Case 2.5:</u> $n \equiv 2 \pmod{4}$ and $n \equiv 0 \pmod{3}$. Then $v_3(F_{aj}) \ge v_3(b) \Leftrightarrow v_3(n+3) + v_3(n+6) + v_3(j) \ge 3$. So

(i) if $n \equiv 3, 6 \pmod{9}$, then z(b) = a,

(ii) if $n \equiv 0 \pmod{9}$, then z(b) = 3a.

<u>Case 2.6</u>: $n \equiv 2 \pmod{4}$ and $n \equiv 2 \pmod{3}$. Then $v_3(F_{aj}) \ge v_3(b) \Leftrightarrow v_3(n+1) + v_3(j) \ge 2$. So

(i) if $n + 1 \equiv 0 \pmod{9}$, then z(b) = a,

(ii) if $n + 1 \equiv 3, 6 \pmod{9}$, then z(b) = 3a.

This completes the proof.

Acknowledgment. Narissara Khaochim receives a scholarship from DPST of IPST. Prapanpong Pongsriiam receives financial support from Faculty of Science, Silpakorn University, grant number SRF-JRG-2560-02.

References

- Benjamin A. and Quinn J., The Fibonacci numbers-exposed more discretely, Math. Mag. 76 (2003), 182–192.
- Farhi B. and Kane D., New results on the least common multiple of consecutive integers, Proc. Amer. Math. Soc. 137 (2009), 1933–1939.

- Graham R. L., Knuth D. E. and Patashnik O., Concrete Mathematics, Second edition, Addison-Wesley, 1994.
- Halton J. H., On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4 (1996), 217–240.
- 5. Khaochim N. and Pongsriiam P., On the order of appearance of product of Fibonacci numbers, Contrib. Discrete Math., accepted.
- <u>_____</u>, The period modulo product of consecutive Fibonacci numbers, Int. J. Pure Appl. Math. 90 (2014), 335–344.
- 7. Koshy T., Fibonacci and Lucas Numbers with Applications, Wiley, 2001.
- Lengyel T., The order of Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), 234– 239.
- Marques D., The order of appearance of the product of consecutive Lucas numbers, Fibonacci Quart. 51 (2013), 38–43.
- Marques D. and Trojovský P., The order of appearance of the product of five consecutive Lucas numbers, Tatra Mt. Math. Publ. 59 (2014), 65–77.
- Onphaeng K. and Pongsriiam P., Subsequences and divisibility by powers of the Fibonacci numbers, Fibonacci Quart. 52 (2014), 163–171.
- Onphaeng K. and Pongsriiam P., Jacobsthal and Jacobsthal-Lucas numbers and sums introduced by Jacobsthal and Tverberg, J. Integer Seq. 20 (2017), Article 17.3.6.
- Pongsriiam P., Exact divisibility by powers of the Fibonacci and Lucas numbers, J. Integer Seq. 17 (2014), Article 14.11.2.
- 14. _____, A complete formula for the order of appearance of powers of Lucas numbers, Commun. Korean Math. Soc. 31 (2016), 447–450.
- Factorization of Fibonacci numbers into products of Lucas numbers and related results, JP J. Algebra Number Theory Appl. 38 (2016), 363–372.
- _____, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc. 32 (2017), 511–522.
- 17. _____, Integral values of the generating functions of Fibonacci and Lucas numbers, College Math. J. 48 (2017), 97–101.
- Fibonacci and Lucas Numbers which are one away from their products, Fibonacci Quart. 55 (2017), 29–40.
- **19.** _____, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation II, Math. Rep. accepted
- 20. Vajda S., Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications, Dover Publications, 2007.
- Vinson J., The relation of the period modulo m to the rank of apparition of m in the Fibonacci sequence, Fibonacci Quart. 1 (1963), 37–45.
- 22. Wall D. D., Fibonacci series modulo m, Amer. Math. Monthly. 67 (1960), 525–532.

N. Khaochim, Department of Mathematics, Texas A&M University, College Station, TX 77843, USA, *e-mail*: narissara.khaochim@gmail.com

P. Pongsriiam, Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand, *e-mail*: pongsriiam_p@silpakorn.edu, prapanpong@gmail.com