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A NOTE ON THE EQUIVALENCE OF MOTZKIN’S MAXIMAL

DENSITY AND RUZSA’S MEASURES OF INTERSECTIVITY

R. K. PANDEY

Abstract. In this short note, we see the equivalence of Motzkin’s maximal density

of integral sets whose no two elements are allowed to differ by an element of a given
set M of positive integers and the measures of difference intersectivity defined by

Ruzsa. Further more, the maximal density µ(M) has been determined for some infi-

nite sets M and in a specific case of generalized arithmetic progression of dimension
two a lower bound has been given for µ(M).

1. Introduction and the Equivalence

In an unpublished problem collection Motzkin [12] posed the problem of maximal
density of integral sets defined as follows

Let S be a set of nonnegative integers and let S(x) be the number of elements
n ∈ S such that n ≤ x, x ∈ R. The upper and lower densities of S (denoted by
d̄(S) and d(S), respectively) are defined as follows

d̄(S) := lim sup
x→∞

S(x)

x
, d(S) := lim inf

x→∞

S(x)

x
.

If d̄(S) = d(S), we denote the common value by d(S), and say that S has density
d(S). Let M be a given set of positive integers. S is said to be an M -set if
a ∈ S, b ∈ S ⇒ a− b /∈M. Motzkin asks to determine the maximal density µ(M)
of M -sets, given by

µ(M) := sup
S
d̄(S),

where supremum is taken over all M -sets S. Almost all sets M for which µ(M)
is determined exactly or the bounds of µ(M) have been obtained up to now are
finite. For the complete survey on the problem see ([1], [8], [7], [6], [10], [11], [13],
[14], [15]). Before we obtain µ(M) for some infinite sets M in the next section,
we mention Ruzsa’s “measures of intersectivity” below.

Define S − S := {a − b : a, b ∈ S} and S + a := {x + a : x ∈ S}. A set M of
positive integers is called (difference) intersective if M ∩ (S − S) 6= φ, whenever S
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has positive upper density. Instead of upper density one might equally write the
lower density or just the natural density.

Define

δ1(M) := sup{d(S) : M ∩ (S − S) = φ},
where the supremum is taken over all sets S having the natural density d(S), and

δ2(M) := sup{d(S) : d(S ∩ (S + a)) = 0 for all a ∈M}.

Clearly, we have δ1(M) ≤ µ(M) ≤ δ2(M).
Putting

D(M,n) = max{|T | : T ⊂ [1, n], M ∩ (T − T ) = φ},

and defining

δ(M) := lim
n→∞

D(M,n)

n
= inf

D(M,n)

n
,

we have the following theorem.

Theorem A (Ruzsa, [17]). For each set M , δ1(M) = δ2(M) = δ(M).

Consequently, Motzkin’s maximal density and Ruzsa’s measures of intersectivity
are indeed the same.

Almost all sets M for which µ(M) has been determined exactly or some bounds
have been given up to now are finite sets. The initial work on this problem was
done by Cantor and Gordon [1], where they showed the existence of µ(M) for
each set M of positive integers, and also determined µ(M) when M has one or
two elements. They proved that if |M | = 1, then µ(M) = 1

2 and if M = {a, b} with

gcd(a, b) = 1, then µ(M) =
b a+b

2 c
a+b . By a result of Cantor and Gordon, it is sufficient

to consider the problem only for those sets M whose elements are relatively prime.
Later, Haralambis [8] gave some general estimates and expressions for µ(M) for
most members of the families {1, a, b} and {1, 2, a, b}. Gupta and Tripathi [7]
obtained the value of µ(M), where M is finite and the elements of M are in
arithmetic progression. Liu and Zhu [10] computed the values of µ(M) for M =
{a, 2a, . . . , (m − 1)a, b} and M = {a, b, a + b}, and they gave some bounds of
µ(M) for M = {a, b, b − a, b + a} using graph theoretic techniques. They further
computed µ(M) for M = [1, a] ∪ [b,m + 1], where a < b in [11] using fractional
chromatic number of distance graphs generated by the set M . Some more partial
work on the problem can be found in ([16], [4], [5], [9], [3]) but all in the case
where the given set M is finite. The present author together with Tripathi ([13],
[14],[15]) have discussed the problem for the families M = {a, b, c}, where a < b,
c = nb or na and M = {a, b, n(a+ b)}, and for the sets related to finite arithmetic
progressions. In the next section, we obtain µ(M) for some infinite sets M out
of which some sets are really interesting which were already discussed by Sàrközy
([18], [19], [20]) and Ruzsa [17]. In section 3, we discuss the maximal density
of generalized arithmetic progression of dimension two in some specific cases and
give some problems on this.
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2. Maximal density of some infinite sets

It is straightforward from the definition that if M1 ⊂ M2, then µ(M1) ≥ µ(M2).
Therefore, we have 0 ≤ µ(M) ≤ 1/2. Now a natural question arrives in whether
that µ(M) can be zero for a finite set M . The answer is NO. Indeed, let the largest
element inM be n, then clearlyM ⊂ [1, n], and hence µ(M) ≥ µ([1, n]) = 1

n+1 > 0.

So, we conclude that if µ(M) = 0, then M is an infinite set. Below, we give some
infinite sets M for which µ(M) = 0. All non trivial examples are given by Sàrközy
in a series of papers ([18], [19], [20]).

Example 1. If M+ = {p+ 1 : p is a prime} and M− = {p− 1 : p is a prime}
then µ(M+) = 0 = µ(M−).

Example 2. If M� = {n2 : n is a positive integer}, then µ(M�) = 0.

Example 3. If M� = {n2 + 1 : n is a positive integer} and M� = {n2 − 1 :
n is a positive integer}. then µ(M�) = 0 = µ(M�).

If µ(M) = 0, we can always find M -sets S which may or may not be finite.
Ruzsa [17] proved that there exists a set M for which µ(M) = 0, but there does
not exist any infinite M -set S. More generally, he proved the following theorem.

Theorem B. Let f be any positive-valued function on natural numbers such

that limn→∞ f(n)=∞, but limn→∞
f(n)
n =0. There is a set M such that D(M,n)�

f(n) and f(n)� D(M,n), but there is no infinite set S for which M∩(S−S) = φ.

As an example take M = [a,∞), where a is any natural number. We have
µ(M) = 0 for this M and there does not exist any infinite set S for which M ∩
(S − S) = φ.

For all above infinite sets M given so far, we have µ(M) = 0. Below, we give
some examples as theorems for which |M | = ∞, but µ(M) 6= 0. We use the
following result for the lower bound of µ(M).

Lemma 1 ([1]). Let M = {m1,m2,m3, . . .} and let c and m be positive integers
such that gcd(c,m) = 1. Then

µ(M) ≥ sup
gcd(c,m)=1

1

m
min
k
|cmk|m,

where |x|m denotes the absolute value of the absolutely least remainder of x(mod )m.

Theorem 1. Let M = {1, 3, 5, . . .}. Then µ(M) = 1
2 .

Proof. Any set S of positive integers which does not contain integers of both
parities will be an M -set. Clearly, for such a set S, d(S) ≤ 1/2. Now if the set
S = {1, 3, 5, . . .}, then equality holds. Therefore, µ(M) = 1/2. �

Theorem 2. Let M = {a, a+d, a+2d, . . .}, where a and d are positive integers
with gcd(a, d) = 1. Then

µ(M) =

{
1
2 if d is even;

d−1
2d if d is odd.
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Proof. If d is even, then a is odd because gcd(a, d) = 1.Hence, M ⊂ {1, 3, 5, . . .}.
Therefore, µ(M) ≥ µ({1, 3, 5, . . .}) = 1

2 . Conversely, we have M ⊃ {1} and hence

µ(M) ≤ µ({1}) = 1
2 . Thus µ(M) = 1

2 . Now suppose that d is odd. It is known by
Gupta and Tripathi [7] that

lim
n→∞

µ({a, a+ d, a+ 2d, . . . , a+ (n− 1)d}) =
d− 1

2d
.

Therefore,

µ(M) ≤ d− 1

2d
.

Next, choose x such that

ax ≡ d− 1

2
(mod d).

This gives

(a+ kd)x ≡ d− 1

2
(mod d)

for each k. Therefore, by the Lemma 1, we have

µ(M) ≥ d− 1

2d
.

This proves the theorem. �

Remark 1. If d = 1 in the above theorem, we get µ([a,∞)) = 0. On the other
hand, if d 6= 1, then µ(M) 6= 0.

Theorem 3. Let M = {1, r, r2, . . .}, r > 1. Then µ(M) =
b r+1

2 c
r + 1

.

Proof. Clearly, µ(M) ≤ µ({1, r}) =
b r+1

2 c
r+1 . If r is odd, then all integers in M

are odd, and hence by the same argument as in the Theorem 2 we get µ(M) =
1
2 =

b r+1
2 c

r+1 . If r is even, then
b r+1

2 c
r+1 = r

2(r+1) . Choose x such that

x ≡ r

2
(mod r + 1).

Then

rkx ≡ (−1)k
r

2
(mod r + 1)

for each k ≥ 0. Therefore, by Lemma 1, we have µ(M) ≥ r
2(r+1) and hence the

theorem follows. �

Corollary 1. Let M = {a, ar, ar2, . . .}, a ≥ 1, and r > 1. Then µ(M) =
b r+1

2 c
r+1 .

Proof. By a theorem of Cantor and Gordon [1], we have µ({a, ar, ar2, . . .}) =

µ({1, r, r2, . . .}) =
b r+1

2 c
r+1 . �



EQUIVALENCE OF DENSITY AND MEASURES OF INTERSECTIVITY 161

3. Maximal density of some specific sets of generalized arithmetic
progression of dimension two

Theorem 4. Let M = {a + x1d1 + x2d2 : 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2}, where a
is an odd integer and d1 is an even integer. Then µ(M) = 1/2 if d2 is even, and

µ(M) ≥ d(M) ≥ 2a+ t1d1 + t2d2 − t2(a+ t1d1)

2(2a+ t1d1 + t2d2)

if d2 is an odd integer.

Proof. If d2 is even, then all elements of M are odd. Hence, the proof is the same
as that one of the Theorem 1. So, assume that d2 is odd. Let m = 2a+t1d1+t2d2.
Clearly, m and t2 have the same parity. Set x = m−t2

2 . Observe that for 0 ≤ k ≤ t1
and 0 ≤ l ≤ t2, we have

(a+ kd1 + ld2)x ≡ −
(
a+ (t1 − k)d1 + (t2 − l)d2

)
x (mod m).

So, in order to use Lemma 1, we only need to consider the first congruences for
which 0 ≤ k ≤ t1 and 0 ≤ l ≤ b t22 c.
Case I: (l is even). Clearly, a+ kd1 + ld2 is an odd integer. Hence, we have

(a+ kd1 + ld2)x ≡ m− t2(a+ kd1 + ld2)

2
(mod m)

=
m− t2(a+ kd1)− lt2d2

2

=
m− t2(a+ kd1)− l(m− 2a− t1d1)

2

≡ m− t2(a+ kd1) + l(2a+ t1d1)

2
(mod m).

Case II: (l is odd). Clearly, a+ kd1 + ld2 is an even integer. Hence, we have

(a+ kd1 + ld2)x ≡ − t2(a+ kd1 + ld2)

2
(mod m)

= − t2(a+ kd1)− lt2d2
2

= − t2(a+ kd1)− l(m− 2a− t1d1)

2

≡ m− t2(a+ kd1) + l(2a+ t1d1)

2
(mod m).

Therefore, using Lemma 1, we have

µ(M) ≥ d(M) ≥ m− t2(a+ t1d1)

2m
=

2a+ t1d1 + t2d2 − t2(a+ t1d1)

2(2a+ t1d1 + t2d2)
.

This completes the proof of the theorem. �

Based on the numerous examples taken using computer programming, we have
the following conjecture for this particular case of two-dimensional arithmetic pro-
gression.
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Conjecture 1. Let M = {a + x1d1 + x2d2 : 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2}, where
a and d2 are odd integers and d1 is an even integer. Then, there exists a positive
integer d0 such that for d2 ≥ d0,

d(M) =
2a+ t1d1 + t2d2 − t2(a+ t1d1)

2(2a+ t1d1 + t2d2)
.

In both Theorem 4 and Conjecture 1, we can interchange the roles of the positive
integers d1 and d2. We know from the definition of d(M) that the denominator of
d(M) divides the sum of some two elements of M . In particular, we believe the
following for generalized arithmetic progression of dimension two.

Conjecture 2. Let M = {a+ x1d1 + x2d2 : 0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2}. Then,
the denominator of d(M) divides 2a+ t1d1 + t2d2.

Acknowledgment. I am highly thankful to the anonymous referee for his/her
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