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SIGNED STAR (j, k)-DOMATIC NUMBER OF A GRAPH

S. M. SHEIKHOLESLAMI and L. VOLKMANN

Abstract. Let G be a simple graph without isolated vertices with edge set E(G),
and let j and k be two positive integers. A function f : E(G) → {−1, 1} is said to

be a signed star j-dominating function on G if
∑

e∈E(v) f(e) ≥ j for every vertex

v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of distinct

signed star j-dominating functions on G with the property that
∑d

i=1 fi(e) ≤ k for

each e ∈ E(G), is called a signed star (j, k)-dominating family (of functions) on G.

The maximum number of functions in a signed star (j, k)-dominating family on G

is the signed star (j, k)-domatic number of G denoted by d
(j,k)
SS (G).

In this paper we study properties of the signed star (j, k)-domatic number of

a graph G. In particular, we determine bounds on d
(j,k)
SS (G). Some of our results

extend those ones given by Atapour, Sheikholeslami, Ghameslou and Volkmann [1]

for the signed star domatic number, Sheikholeslami and Volkmann [5] for the signed

star (k, k)-domatic number and Sheikholeslami and Volkmann [4] for the signed star
k-domatic number.

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). We use [2] for terminol-
ogy and notation which are not defined here and consider simple graphs without
isolated vertices only. The integers n = |V (G)| and m = |E(G)| are the order and
the size of the graph G, respectively. For every vertex v ∈ V (G), the open neigh-
borhood N(v) of v is the set {u ∈ V (G) |uv ∈ E(G)}, and the closed neighborhood
of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v is d(v) = |N(v)|. The
minimum and maximum degree of a graph G are denoted by δ(G) and ∆(G), re-
spectively. The complement G of a graph G is the graph with vertex set V (G) such
that two vertices are adjacent in G if and only if these vertices are not adjacent in
G.

The open neighborhood NG(e) of an edge e ∈ E(G) is the set of all edges
adjacent to e. Its closed neighborhood is NG[e] = NG(e) ∪ {e}. For a function
f : E(G) −→ {−1, 1} and a subset S of E(G), we define f(S) =

∑
e∈S f(e). The

edge-neighborhood EG(v) = E(v) of a vertex v ∈ V (G) is the set of all edges
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incident with the vertex v. For each vertex v ∈ V (G), we also define f(v) =∑
e∈EG(v) f(e).

Let j be a positive integer. A function f : E(G) −→ {−1, 1} is called a signed
star j-dominating function (SSjDF) on G if f(v) ≥ j for every vertex v of G. The
signed star j-domination number of a graph G is γjSS(G) = min{

∑
e∈E(G) f(e) |

f is a SSjDF on G}. The signed star j-dominating function f on G with
f(E(G)) = γjSS(G) is called a γjSS(G)-function. As the assumption δ(G) ≥ j
is clearly necessary, we will always assume that satisfy δ(G) ≥ j while discussing
γjSS(G) all graphs involved. The signed star j-domination number was introduced
by Xu and Li [10] in 2009 and has been studied by several authors (see for in-
stance, [3, 4, 7]). The signed star 1-domination number is the usual signed star
domination number, introduced in 2005 by Xu [8]. The signed star domination
number was investigated for example, by [3, 6, 9].

Let k be a further positive integer. A set {f1, f2, . . . , fd} of distinct signed star

j-dominating functions on G with
∑d

i=1 fi(e) ≤ k for each e ∈ E(G), is called a
signed star (j, k)-dominating family (SS(j,k)D family) (of functions) on G. The
maximum number of functions in a signed star (j, k)-dominating family on G is

the signed star (j, k)-domatic number of G denoted by d
(j,k)
SS (G). The signed star

(j, k)-domatic number is well-defined and

(1) d
(j,k)
SS (G) ≥ 1

for all graphs G with δ(G) ≥ j, since the set consisting of any signed star j-

dominating function forms a SS(j,k)D family on G. A d
(j,k)
SS -family of a graph G is

a SS(j,k)D family containing exactly d
(j,k)
SS (D) signed star j-dominating functions.

The signed star (1,1)-domatic number d
(1,1)
SS (G) is the usual signed star domatic

number dSS(G) which was introduced by Atapour, Sheikholeslami, Ghameslou
and Volkmann [1] in 2010.

Our purpose in this paper is to initiate the study of the signed star (j, k)-domatic
number in graphs. We study basic properties and bounds for the signed star

(j, k)-domatic number d
(j,k)
SS (G) of a graph G. In addition, we derive Nordhaus-

Gaddum type results and bounds of the product and the sum of γjSS(G) and

d
(j,k)
SS (G). Many of our results extend those given by Atapour, Sheikholeslami,

Ghameslou and Volkmann [1] for the signed star domatic number, Sheikholeslami
and Volkmann [5] for the signed star (k, k)-domatic number and Sheikholeslami
and Volkmann [4] for the signed star k-domatic number.

Observation 1 ([4]). Let G be a graph of size m with δ(G) ≥ j. Then
γjSS(G) = m if and only if each edge e ∈ E(G) has an endpoint u such that
d(u) = j or d(u) = j + 1.
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2. Properties of the signed star (j, k)-domatic number

Theorem 2. Let j, k ≥ 1 be two integers. If G is a graph of minimum degree
δ(G) ≥ j, then

d
(j,k)
SS (G) ≤ kδ(G)

j
.

Moreover, if d
(j,k)
SS (G) = kδ(G)/j, then for each function of any signed star

(j, k)-dominating family {f1, f2, . . . , fd} with d = d
(j,k)
SS (G) and for all vertices v

of degree δ(G),
∑

e∈EG(v) fi(e) = j and
∑d

i=1 fi(e) = k for every e ∈ EG(v).

Proof. Let {f1, f2, . . . , fd} be a signed star (j, k)-dominating family on G such

that d = d
(j,k)
SS (G). If v ∈ V (G) is a vertex of minimum degree δ(G), then it follows

that

d · j =

d∑
i=1

j ≤
d∑

i=1

∑
e∈EG(v)

fi(e)

=
∑

e∈EG(v)

d∑
i=1

fi(e)

≤
∑

e∈EG(v)

k = k · δ(G),

and this implies the desired upper bound on the signed star (j, k)-domatic number.

If d
(j,k)
SS (G) = kδ(G)/j, then the two inequalities occurring in the proof become

equalities, which leads to the two properties given in the statement. �

The special cases j = k = 1, j = 1 and j = k in Theorem 2 can be found in
[1], [4] and [5], respectively. As an application of Theorem 2, we will prove the
following Nordhaus-Gaddum type result.

Corollary 3. Let j, k ≥ 1 be integers. If G is a graph of order n such that
δ(G) ≥ j and δ(G) ≥ j, then

d
(j,k)
SS (G) + d

(j,k)
SS (G) ≤ k

j
(n− 1).

If d
(j,k)
SS (G) + d

(j,k)
SS (G) = k(n− 1)/j, then G is regular.

Proof. Since δ(G) ≥ j and δ(G) ≥ j, it follows from Theorem 2 that

d
(j,k)
SS (G) + d

(j,k)
SS (G) ≤ kδ(G)

j
+
kδ(G)

j

=
k

j
(δ(G) + (n−∆(G)− 1)) ≤ k

j
(n− 1),

and this is the desired Nordhaus-Gaddum inequality. If G is not regular, then
∆(G) − δ(G) ≥ 1, and the above inequality chain leads to the better bound

d
(j,k)
SS (G) + d

(j,k)
SS (G) ≤ k

j (n− 2). This completes the proof. �
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Theorem 4. Let j, k ≥ 1 be integers. If v is a vertex of a graph G such that
d(v) is odd and j is even or d(v) is even and j is odd, then

d
(j,k)
SS (G) ≤ k

j + 1
· d(v).

Proof. Let {f1, f2, . . . , fd} be a signed star (j, k)-dominating family on G such

that d = d
(j,k)
SS (G). Assume first that d(v) is odd and j is even. The definition

yields to
∑

e∈EG(v) fi(e) ≥ j for each i ∈ {1, 2, . . . , d}. On the left-hand side of

this inequality a sum of an odd number of odd summands occurs. Therefore it
is an odd number, and as j is even, we obtain

∑
e∈EG(v) fi(e) ≥ j + 1 for each

i ∈ {1, 2, . . . , d}. It follows that

k · d(v) =
∑

e∈EG(v)

k ≥
∑

e∈EG(v)

d∑
i=1

fi(e)

=

d∑
i=1

∑
e∈EG(v)

fi(e) ≥
d∑

i=1

(j + 1) = d(j + 1),

and this leads to the desired bound. Assume next that d(v) is even and j is odd.
Note that

∑
e∈EG(v) fi(e) ≥ j for each i ∈ {1, 2, . . . , d}. On the left-hand side

of this inequality a sum of an even number of odd summands occurs. Therefore
it is an even number, and as j is odd, we obtain

∑
e∈EG(v) fi(e) ≥ j + 1 for

each i ∈ {1, 2, . . . , d}. Now the desired bound follows as above, and the proof is
complete. �

The next result is an immediate consequence of Theorem 4.

Corollary 5. Let j, k ≥ 1 be integers. If G is a graph such that δ(G) is odd
and j is even or δ(G) is even and j is odd, then

d
(j,k)
SS (G) ≤ k

j + 1
· δ(G).

As an application of Corollary 5, we will improve the Nordhaus-Gaddum bound
in Corollary 3 for many cases.

Theorem 6. Let j, k ≥ 1 be two integers and let G be a graph of order n such
that δ(G) ≥ j and δ(G) ≥ j. If ∆(G)− δ(G) ≥ 1 or j is odd or j is even and δ(G)
is odd or j, δ(G) and n are even, then

d
(j,k)
SS (G) + d

(j,k)
SS (G) <

k

j
(n− 1).

Proof. If ∆(G) − δ(G) ≥ 1, then Corollary 3 implies the desired bound. Thus
assume now that G is δ(G)-regular.
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Case 1. Assume that j is odd. If δ(G) is even, then from Theorem 2 and Corollary 5
it follows that

d
(j,k)
SS (G) + d

(j,k)
SS (G) ≤ k

j + 1
δ(G) +

k

j
δ(G)

<
k

j
(δ(G) + (n− δ(G)− 1))

=
k

j
(n− 1).

If δ(G) is odd, then n is even and thus δ(G) = n − δ(G) − 1 is even. Combining
Theorem 2 and Corollary 5, we find that

d
(j,k)
SS (G) + d

(j,k)
SS (G) ≤ k

j
δ(G) +

k

j + 1
δ(G)

<
k

j
(δ(G) + (n− δ(G)− 1)

=
k

j
(n− 1),

and this completes the proof of Case 1.

Case 2. Assume that j is even. If δ(G) is odd, then from Theorem 2 and Corollary 5
it follows that

d
(j,k)
SS (G) + d

(j,k)
SS (G) ≤ k

j + 1
δ(G) +

k

j
(n− δ(G)− 1) <

k

j
(n− 1).

If δ(G) is even and n is even, then δ(G) = n− δ(G)− 1 is odd, and we obtain the
desired bound as above. �

Theorem 7. Let j, k ≥ 1 be integers. If G is a graph such that k is odd and

d
(j,k)
SS (G) is even or k is even and d

(j,k)
SS (G) is odd, then

d
(j,k)
SS (G) ≤ k − 1

j
· δ(G).

Proof. Let {f1, f2, . . . , fd} be a signed star (j, k)-dominating family on G such

that d = d
(j,k)
SS (G). Assume first that k is odd and d is even. If e ∈ E(G) is an

arbitrary edge, then
∑d

i=1 fi(e) ≤ k. On the left-hand side of this inequality a
sum of an even number of odd summands occurs. Therefore, it is an even number,

and as k is odd, we obtain
∑d

i=1 fi(e) ≤ k − 1 for each e ∈ E(G). If v is a vertex
of minimum degree, then it follows that

d · j =

d∑
i=1

j ≤
d∑

i=1

∑
e∈EG(v)

fi(e)

=
∑

e∈EG(v)

d∑
i=1

fi(e) ≤
∑

e∈EG(v)

(k − 1) = δ(G)(k − 1),
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and this yields to the desired bound. Assume second that k is even and d is odd.

If e ∈ E(G) is an arbitrary edge, then
∑d

i=1 fi(e) ≤ k. On the left-hand side of
this inequality a sum of an odd number of odd summands occurs. Therefore, it is

an odd number and as k is even, we obtain
∑d

i=1 fi(e) ≤ k− 1 for each e ∈ E(G).
Now the desired bound follows as above, and the proof is complete. �

The special cases j = k = 1, j = 1 and j = k of Theorem 4, Corollary
5 and Theorem 7 can be found in [1], [4] and [5], respectively. According to

(1), d
(j,k)
SS (G) is a positive integer. If we suppose in the case j = k = 1 that

dSS(G) = d
(1,1)
SS (G) is an even integer, then Theorem 7 leads to the contradiction

dSS(G) ≤ 0. Consequently, we obtain the next known result.

Corollary 8 ([1]). The signed star domatic number dSS(G) is an odd integer.

Proposition 9. Let j, k be two integers such that j ≥ 1 and k ≥ 2, and let G

be a graph with minimum degree δ(G) ≥ j. Then d
(j,k)
SS (G) = 1 if and only if each

edge e ∈ E(G) has an endpoint u such that d(u) = j or d(u) = j + 1.

Proof. Assume that each edge e ∈ E(G) has an endpoint u such that d(u) = j
or d(u) = j + 1. It follows from Observation 1 that γjSS(G) = m and thus

d
(j,k)
SS (G) = 1.

Conversely, assume that d
(j,k)
SS (G) = 1. If G contains an edge e = uv such

that d(u) ≥ j + 2 and d(v) ≥ j + 2, then the functions fi : E(G) → {−1, 1}
such that f1(x) = 1 for each x ∈ E(G) and f2(e) = −1 and f2(x) = 1 for
each edge x ∈ E(G) r {e} are signed star j-dominating functions on G such that
f1(x) + f2(x) ≤ 2 ≤ k for each edge x ∈ E(G). Thus {f1, f2} is a signed star

(j, k)-dominating family on G, a contradiction to d
(j,k)
SS (G) = 1. �

The next result is an immediate consequence of Observation 1 and Proposition 9.

Corollary 10. Let j, k be two integers such that j ≥ 1 and k ≥ 2, and let

G be a graph with minimum degree δ(G) ≥ j. Then d
(j,k)
SS (G) = 1 if and only if

γjSS(G) = m.

Next we present a lower bound on the signed star (j, k)-domatic number.

Proposition 11. Let j, k be two integers such that k ≥ j ≥ 1, and let G be a
graph with minimum degree δ(G) ≥ j. If G contains a vertex v ∈ V (G) such that

all vertices of N [N [v]] have degree at least j + 2, then d
(j,k)
SS (G) ≥ j.

Proof. Let {u1, u2, . . . , uj} ⊂ N(v). The hypothesis that all vertices of N [N [v]]
have degree at least j + 2 implies that the functions fi : E(G) → {−1, 1} such
that fi(vui) = −1 and fi(x) = 1 for each edge x ∈ E(G) r {vui} are signed star
j-dominating functions on G for i ∈ {1, 2, . . . , j}. Since f1(x)+f2(x)+. . .+fj(x) ≤
j ≤ k for each edge x ∈ E(G), we observe that {f1, f2, . . . , fj} is a signed star
(j, k)-dominating family on G, and Proposition 11 is proved. �

Corollary 12. Let j, k be two integers such that k ≥ j ≥ 1. If G is a graph of

minimum degree δ(G) ≥ j + 2, then d
(j,k)
SS (G) ≥ j.
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Corollary 13. Let j, k ≥ 1 be integers, and let G be an r-regular graph with
r ≥ j.

(1) If j ≤ r ≤ j + 1, then d
(j,k)
SS (G) = 1.

(2) If r = j+ 2p+1 with an integer p ≥ 1 and k ≥ j, then j ≤ d(j,k)SS (G) ≤ kr
j+1 .

(3) If r = j + 2p with an integer p ≥ 1 and k ≥ j, then j ≤ d(j,k)SS (G) ≤ kr
j .

Proof. (1) Assume that j ≤ r ≤ j+1. According to Observation 1, γjSS(G) = m

and thus d
(j,k)
SS (G) = 1.

(2) Assume that r = j+2p+1 with p ≥ 1. The condition k ≥ j and Corollary 12

imply that j ≤ d
(j,k)
SS (G). If j is even, then r = j + 2p+ 1 is odd, and if j is odd,

then r = j + 2p + 1 is even, Therefore, Corollary 5 leads to the desired upper

bound of d
(j,k)
S,S (G).

(3) Assume that r = j + 2p with p ≥ 1. The condition k ≥ j and Corollary 12

imply that j ≤ d
(j,k)
SS (G). In addition, Theorem 2 yields the desired upper bound

of d
(j,k)
S,S (G). �

3. Bounds on the product and the sum of γjSS(G) and d
(j,k)
SS (G)

Note that γjSS(G) = m implies immediately d
(j,k)
SS (G) = 1, and so γjSS(G) ·

d
(j,k)
SS (G) = m and γjSS(G)+d

(j,k)
SS (G) = m+1. In this section, we present general

bounds of the product and the sum of γjSS(G) and d
(j,k)
SS (G).

Theorem 14. Let j, k ≥ 1 be integers. If G is a graph of size m and minimum
degree δ(G) ≥ j, then

γjSS(G) · d(j,k)SS (G) ≤ mk.

Moreover, if γjSS(G) · d(j,k)SS (G) = mk, then for each d
(j,k)
SS -family {f1, f2, · · · , fd}

of G, each function fi is a γjSS(G)-function and
∑d

i=1 fi(e) = k for all e ∈ E(G).

Proof. If {f1, f2, . . . , fd} is a signed star (j, k)-dominating family on G such

that d = d
(j,k)
SS (G), then the definitions imply

d · γjSS(G) =

d∑
i=1

γjSS(G) ≤
d∑

i=1

∑
e∈E(G)

fi(e)

=
∑

e∈E(G)

d∑
i=1

fi(e) ≤
∑

e∈E(G)

k = mk

as desired.
If γjSS(G) · d(j,k)SS (G) = mk, then the two inequalities occurring in the proof

become equalities. Hence for the d
(j,k)
SS -family {f1, f2, . . . , fd} of G and for each i,∑

e∈E(G) fi(e) = γjSS(G), thus each function fi is a γjSS(G)-function and∑d
i=1 fi(e) = k for all e ∈ E(G). �
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Theorem 15. Let j, k ≥ 1 be integers. If G is a graph of size m and minimum
degree δ(G) ≥ j, then

d
(j,k)
SS (G) + γjSS(G) ≤ mk + 1.

Proof. According to Theorem 14, we have

d
(j,k)
SS (G) + γjSS(G) ≤ d(j,k)SS (G) +

km

d
(j,k)
SS (G)

.

Using the fact that the function g(x) = x+(km)/x is decreasing for 1 ≤ x ≤
√
km

and increasing for
√
km ≤ x ≤ km, we obtain

d
(j,k)
SS (G) + γjSS(G) ≤ max

{
1 +mk,mk +

km

km

}
= mk + 1.

�

Next we improve Theorem 15 considerably.

Theorem 16. Let j, k ≥ 1 be two integers. If G is a graph of size m and
minimum degree δ(G) ≥ j, then

γjSS(G) + d
(j,k)
SS (G) ≤

{
m+ 1 if k = 1,

mk
2 + 2 if k ≥ 2.

Proof. If k = 1, then Theorem 15 leads to the desired bound. Therefore we as-

sume next that k ≥ 2. If the order n = 2, then γjSS(G) = m = 1 and d
(j,k)
SS (G) = 1

and hence the desired bound is valid. Now we assume that n ≥ 3. Let f be a
SSjDF on G. Since

∑
e∈EG(v) f(e) ≥ j for every vertex v of G, it follows that

2
∑

e∈E(G)

f(e) =
∑

v∈V (G)

∑
e∈EG(v)

f(e) ≥
∑

v∈V (G)

j = nj.

This implies γjSS(G) ≥ nj/2. As n ≥ 3 and j ≥ 1, we obtain γjSS(G) ≥ 2.
Theorem 14 implies that

γjSS(G) + d
(j,k)
SS (G) ≤ γjSS(G) +

mk

γjSS(G)
.

If we define x = γjSS(G) and g(x) = x + (mk)/x for x > 0, then because 2 ≤
γjSS(G) ≤ m, we have to determine the maximum of the function g in the interval
I : 2 ≤ x ≤ m. Using the condition k ≥ 2 and the fact that m ≥ 2, it is easy to
see that

max
x∈I
{g(x)} = max{g(2), g(m)}

= max

{
2 +

mk

2
,m+

mk

m

}
=
mk

2
+ 2,

and the proof is complete. �
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Theorem 17. Let j, k ≥ 1 be two integers. If G is a graph of size m, minimum
degree δ(G) ≥ j and order n ≥ 2p+ 1 for an integer p ≥ 1, then

γjSS(G) + d
(j,k)
SS (G) ≤

m+ k if 1 ≤ k ≤ p,
mk
p+1 + p+ 1 if k ≥ p+ 1.

Proof. We proceed by induction on p. Theorem 16 shows that the statement is
valid for p = 1. Now let p ≥ 2 and assume that the statement is true for all integers

1 ≤ i ≤ p− 1. Then the induction hypothesis implies that γjSS(G) + d
(j,k)
SS (G) ≤

m+k for 1 ≤ k ≤ p−1. Thus assume next that k ≥ p. The hypothesis n ≥ 2p+ 1
leads as in the proof of Theorem 16 to

γjSS(G) ≥ nj

2
≥ (2p+ 1)j

2
≥ 2p+ 1

2

and thus p+ 1 ≤ γjSS(G) ≤ m. Therefore, it follows from Theorem 14 that

γjSS(G) + d
(j,k)
SS (G) ≤ γjSS(G) +

mk

γjSS(G)

≤ max

{
p+ 1 +

mk

p+ 1
,m+ k

}
.

(2)

Note that the hypothesis n ≥ 2p+ 1 yields to m ≥ p+ 1.
If k = p, then we deduce from the inequality m ≥ p+ 1 that

max

{
p+ 1 +

mk

p+ 1
,m+ k

}
= max

{
p+ 1 +

mp

p+ 1
,m+ p

}
= m+ p.

If k ≥ p+ 1, then

p+ 1 +
mk

p+ 1
≥ m+ k

is equivalent with m(k − p − 1) ≥ (p + 1)(k − p − 1), and this inequality is valid
since k ≥ p+ 1 and m ≥ p+ 1. Hence the desired result follows from (2), and the
proof is complete. �
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