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SUMS OF SEVENTH POWERS IN THE RING
OF POLYNOMIALS OVER THE FINITE FIELD
WITH FOUR ELEMENTS

M. CAR

ABSTRACT. We study representations of polynomials P € F4[T] as sums P = X17 +
X

1. INTRODUCTION

Let F be a finite field of characteristic p with ¢ = p™ elements. Analogues of the
Waring’s problem for the polynomial ring F'[T] were investigated, ( [19], [12], [16],
[6], [17], [8], [5], [13], [14], [10], [9], [2], [3] [4]). Let k > 1 be an integer. Roughly
speaking, Waring’s problem over F[T'] consists in representing a polynomial M €
F[T] as a sum

(1.1) M=M{+...+MF

with My, ..., M, € F[T]. Some obstructions to that may occur ([15]), and lead to
consider Waring’s problem over the subring S(F[T1], k) formed by the polynomials
of F[T] which are sums of k-th powers. Some cancellations may occur in represen-
tations (1.1), so that it is possible to have a representation (1.1) with deg M small
and deg(M}) large. Without degree conditions in (1.1), the problem of represent-
ing M as sum (1.1) is close to the so called easy Waring’s problem for Z. In order
to have a problem close to the non-easy Waring’s problem, the degree conditions

(1.2) kdeg M; < degM + k

are required. Representations (1.1) satisfying degree conditions (1.2) are called
strict representations, see [6, Definition 1.8] in opposition to representations with-
out degree conditions. For the strict Waring’s problem, analogue of the classical
Waring numbers gn(k) and Gn(k) have been defined as follows. Let g(p™, k) de-
note the least integer s (if it exists) such that every polynomial M € S(F[T], k)
may be written as a sum (1.1) satisfying the degree conditions (1.2); otherwise we

put g(p™, k) = cc.
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Similarly, G(p™, k) denotes the least integer fulfilling the above condition for
each polynomial M € S(F[T],k) of sufficiently large degree. This notation is
possible since these numbers depend only on p™ and k. The set S(F[T], k) and
the parameters G(p™, k), g(p™, k) are not sufficient to describle all possible cases,
see [1, Proposition 4.4], so that in [2] and [3] we introduced new parameters defined
as follows.

Let S*(F[T), k) denote the set of polynomials in F[T] which are strict sums of
k-th powers. Let g*(p™, k) denote the least integer s (if it exists) such that every
polynomial M € §*(F[T], k) may be written as a strict sum

M=Mf+...+ M

Similarly, G*(p™, k) denotes the least integer s fulfilling the same condition for
each polynomial M € §*(F[T], k) of sufficiently large degree. Gallardo’s method
for cubes ([8] and [5]) was generalized in [1] and [11] where bounds for g(p™, k)
and G(p™, k) were established when p™ and k satisfy some conditions. A bound
for g(p™, k) was established in [1] in the case when F' = S(F, k) if one of the two
following conditions is satisfied:

i)y p>k

i) p™ > k = hp” — 1 for some integers v > 0 and 0 < h < p.

The smallest exponent k satisfying condition ii) is k = 3. It gave a matter for
many articles, see [8], [5], [9], [10]. In the case of even characteristic, the second
smallest exponent k satisfying condition ii) is k = 7. The case k = 7,q = 2™ with
m > 3 is covered by [1, Theorems 1.2 and 1.3] or by [11, Theorem 1.4]. For almost
all ¢ = 2™, the upper bounds obtained in these articles for the numbers G(2™,7)
are comparable with the bound Gn(7) < 33 known for the corresponding Waring’s
number for the integers ([18]). The case of the numbers ¢(2™,7) is different.
In the case when m ¢ {1,2,3} [1, Theorem 1.3] as well as [11, Theorem 1.4]
gives g(2™,7) < 239£(2™,7) when for the integers, it is known that gn(7) = 143
([7]). In [4] we obtained better bounds for the numbers ¢g(2™,7) in the case
when m ¢ {1,2,3}, the method yielding also to better bounds for some numbers
G(2™,7). The aim of this paper is the study of one of the remaining cases, namely,
the case ¢ = 4. The case ¢ = 8 will be the subject of a separate paper. When a
finite field with 8 elements is not a 7-Waring field, every field with 4" elements is a
7-Waring field, so that, from [15], S(F4[T],7) = F4[T]. We will see further that T
is not a strict sum of seventh powers in the ring Fy[T], see Proposition 3.5 below,
so that S(F4[T],7) # S*(F4[T), 7).

The main results proved in this work are summarized in the following theorems.

Theorem 1.1. We have
S*(F4[T],7) = A1 U A2 U A3 U A,
where

7
(i) A is the set of polynomials A= 3" a,T" € F4[T| such that a1 = aq, a2 =
n=0

a5, a3 = ae;
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14
(ii) As is the set of polynomials A = Y, a,T" € Fy[T] with 7 < deg A < 14
n=0
such that
a1+ a4 + ajp+az3 = 0,
a2+a5+ag+a11 = O7
a3+a6+a9+a12 = 0;

21
(ii1) As is the set of polynomials A = 3 a,T™ € Fy[T| with 14 < deg A < 21
n=0

such that
as + ag + ag + a2 + a5 + aig = 0;
(v) Ao = {A € Fy[T] | deg A > 21}.

See Proposition 6.6 below.

Theorem 1.2. Every polynomial P € Fy[T] with degree > 435 is a strict sum
of 33 seventh powers, so that

G(4,7) = G*(4,7) < 33,
and we have
9(4,7)

=00
g% (4,7) <4

3

)

This theorem is given by Corollaries 3.6, 6.4 and by Theorem 6.7

Proving that polynomials of small degree are sums or strict sums of seventh
powers requires some results on the solvability of systems of algebraic equations
over the finite field F4. This is done in Section 2. A characterization of polynomials
of degree < 21 that are strict sums of seventh powers is given in Section 3. In
Section 4, using the general descent process described in [1], we obtain a first
upper bound for G(4,7). In Section 5 we describe other descent processes. They
are used in Section 6 to get a better upper bound for G(4,7) as well as a bound for
9(4,7). We denote by F the field F4 and by « a root of the equation a? = a+1 .

2. EQUATIONS

Proposition 2.1. For every (a,b) € F?, the system
T + T2 = a,
(A(a7b)) {ulxl + usxs = b,
has solutions (uy,us,x1,x2) € F* satisfying the condition xizouius # 0.

Proof. Suppose a = b. Choose 1 € F — {0,a}. Then, (1,1,z1,a + z1) is a
solution of (A(a,b)). Suppose a # b. There is us € F — Fy such that aus +b # 0.
Then, (1,uQ7 affutb, a+ affutb) is a solution of (A(a,b)). Moreover, since a # b,
we have 242tb £ ¢ 5o that

14+uo
aus + b aus + b
X X 0
U2 1+ us <a+ 1+UQ)7£
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Proposition 2.2. For (a,b,c) € F3, let (Bs(a, b, c)) denote the system of equa-
tions

1+ ... + x5 = a,
B+ ...+ ys =0,
T1Yy1 + ... + TsYs = C.

(I) For every (a,b,c) € F* X F x F, the system (Ba(a,b,c)) admits solutions
(w1, 22,y1,y2) € F* satisfying the condition x129 # 0.
(II) For every (a,b,c) € F3, the system (Bs(a, b, c)) admits solutions (z1, xa, T3,
Y1,Y2,y3) € FO satisfying the condition x17223y192y3 # 0.
(III) For every (a,b,c) € F* x F x F, the system (Bs(a,b,c)) admits solutions
(21,72, 73,Y1,Y2,y3) € FC satisfying the conditions

{$1$2$3y1y2y3 # 0,
x%yl i x%yg.

Proof. (I) Suppose a # 0. Let 1 € F — {0,a} and let zo = a + x1. Then,
9 # 0 and x5 # x1. The matrix 11
ey

is invertible. Thus, for each (b,c) € F2, there exists (y1,y2) € F? such that

y1 +y2 = b,
T1Yy1 + T2y2 = C.

(I1) Let E(a,b,c) denote the set of (x1,72,3,y1,¥y2,y3) € F° solutions of
(Bs(a, b, c)) satistying z1zex3y1y2ys # 0, and satisfying

T1Z273Y1Y2y3 # 0,
f%yl # m%yz,
respectively. For (x1, 72, 3,y1,%2,y3) € FY, the three following statements are
equivalent:

(i) (w1,22,23,91,Y2,y3) € E(a,b,c),

(ll) (yh Y2,Y3,T1, L2, ]}3) € E(b7 a, C),

(iii) (z1y1, 22y2, T3Y3, (¥1)?%, (¥2)?, (y3)?) € E(c,b%,a). Thus, it suffices to deal
with the cases (a,b,c¢) = (0,0,0), (a,b,¢) = (a,0,0) with a # 0, (a,b,c) =
(a,b,0) with ab # 0, and (a, b, ¢) with abc # 0. Firstly, we observe that if x €
F—Fy, then (1,2, 2+1,1,z,2+1) € E(0,0,0). Now, we consider the systems
with @ # 0. Up to the automorphism = — ax, and the Fs-automorphism
a — a + 1, it suffices to consider the cases (a,b,¢) = (1,0,0), (a,b,c) =
(17 1’ O)’

a,b,c) =(1,1,1), (a,b,c) = (1,1, ). Observe that

(
(1,1,1,1, 0, a + 1) € E(1,0,0),
(a+1,a+1,1,1,a,a) € E(1,1,0),
(La,a,1,1,1) € E(1,1, 1),
(LLa+lL,a+l,a+1,a+1,1) € E(1,1,a).
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Proposition 2.3. For every (a,b,c) € F3, the system

r1+ T2 =a,
(C(a7 ba C)) Y1 +y2 = b7
21y123 + 21y} + woy223 + 233 = ¢

admits solutions (11, T2,Yy1, Y2, 21, 22) € FO satisfying the condition x1x2y1y2 # 0.

Proof. Let x1 € F be such that xy # 0,a, let y; € F be such that y; # 0,b
and let z; € F. Let x5 = a+ x1 and yo = b+ y;. Then, z1z2y1y2 # 0. Let
z9 € F be defined by the relation x%y%zz =2+ x%y%zl + x1y1 + z2y2. Then,
(z1,22,Y1,Y2, 21, 22) is a solution of (C(a,b,c)). O

Lemma 2.4. For every (a,b,c) € F* x F X F, the system of equations

z1+az+ (a+1)z3 =b,
(S1(a,,¢)) { az) + 22 + (a+ 1)azg + 25 + aazz + 23 = c,

admits solutions (21, z2, 23) € F3.

Proof. Let v = v(a,b,c) denote the number of (z1,29,23) € F? solutions of
(S1(a,b,c)). For t € F let
W(t) = (~1)0
where tr: I' — [F5 is the absolute trace map. Then W is a non-trivial character, so
that by orthogonality,

v = Z izlll(t(b—i—zl + azy + (a +1)z3))

(21,22,23)€F3 teF

1
X7 Z U(u(c+az, + 22 + (a+ 1)azg + 25 + aazz + 22)).

Thus,

16v =" W(bt+cu) <Z ((t+ au)z + u22)>

(t,u)eF? z€F
X (Z U((at + a(a+ )u)z + uz2)>
zeF

X (Z U(((a+ 1)t + cau)z + u22)> .

z€F
From [2, Proposition 2.3], for (v, w) € F?, we have

oy [ 4 it w=1%
Z‘I’(“ZJFW)_{ 0 if w# v
zeF
Therefore,
v=4 U (bt + cu),

(t,u)eE
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where E is the subset of F? formed by the pairs (¢, u) satisfying the three conditions
u = (t+ au)?,
u = (at +a(a+ 1)u)?,
u = ((a+ 1)t + aau)?.
Obviously, (0,0) € E. Conversely, let (t,u) € E. Then the first and second
conditions give that ¢ + au = at + a(a + 1)u while the first and last conditions
give that ¢ + au = (a+ 1)t + aau, so that (o + 1)au =t = cau with a # 0. Thus,
t =u=0, so that E = {(0,0)} and v = 4. O

Proposition 2.5. Let b = (a,b,c,d) € F*. Then the system of equations

3
Z Yi = a,
=1

3
Z uy; = b,
(D(b)) 3!
> uity =,
=1

e

@
Il
-

(u2z; +uiz?)y; = d

admits solutions (uy, usz, us, y1,Y2, Y3, 21, 22, 23) € F? such that uyusuzy1y2y3 # 0.
Proof. (I) Suppose that there exists (y1, Y2, y3,u) € F* satisfying the conditions:
Yy1+¥y2+ys = a,
Y1 +y2 tuys = b,

y1y2ysu # 0,
Y1 7& Y2,

and denote (H) this hypothesis. Then the matrix

)

yi v

is invertible. Let z3 € F. There is (21,22) € F? such that
Y121+ Y2ze = c+d + (uPz3 + u23 + uz3)ys,

2 2, _ 2 2
Yiz1 +Ys22 = ¢ + uz3ys.

Then, we have 9 9 9 9
Ziy1 + 23Yy2 +utz3ys = ¢,

(21 + 28)yn + (22 + 23)y2 + (u?23 +u2i)ys = d,
so that (1,1, u, y1, Y2, Y3, 21, 22, 23) is a solution of (D(b)) such that uy;y2ys # 0.

(IT) We prove that if one of the three following conditions:
(i) a=b,
(i) a ¢ {0,b, (a+ 1)b},
(iii) a = (a4 1)b # 0, (so that a # b,)
is satisfied, then hypothesis (H) is satisfied, so that the conclusion of the proposi-
tion holds.
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(i) Suppose a = b. If a = 0, then (1, «, «+1) is a solution of (e1). If a # 0, then
(a,y,y) with y ¢ {0,a} is a solution of (e1). Thus, in the two cases, (e1) admits
solutions (y1,%2,%3) € F? such that y;yoys # 0 and y; # yo. Hypothesis (H) is
satisfied with v = 1.

(ii) Suppose a ¢ {0,b, (a+1)b}. Then a+a(a+b) # 0. Let u = «, y3 = a(a+Dd).
Choose y; € F —{0,a+ a(a+b)} and y2 = y1 + a + a(a + b). Then, y; # y2 and
y1y2ys # 0, so that (H) is satisfied.

(iii) Suppose a = (a+1)b # 0. Let u = (a+1), y3 = b. Choose y; € F —{0, ab}
and y2 = y1 + ab. Then, y1 # Y2, y1y2ys # 0 and y1 +y2 +y3 = (@ + 1)b = q,
Y1 +y2 +uys = ab+ (a+ 1)b = b, so that (H) is satisfied.

(ITT) We examine the remaining case, that is the case a =0, b # 0. Lemma 2.4
gives the existence of (z1, 22, 2z3) € F'3, a solution of (Sy(b, ¢?/b,d/b)) such that
b222 + (a4 1)b%22 + ab?22 = ¢,
b2 + b2 + (o + 1)b%20 + b23 + ab®z3 + b23 = d.
Let
up =b,us = (a+ 1)b,ug = ab,y1 =1, y2 = a,y3 = a+ 1.
Then, (u1, u2, us, Y1, Y2, Y3, 21, 22, 23) is a solution of (D(b)) such that
u1U2u3Y1Y2y3 # 0. O

Lemma 2.6. Let (a,b) € F2. Then the system of equations

up + uUg +usz = a,
(52(a,)) {x1+xz+x3 =b,
admits solutions (u1,us,us, 1, T2, T3) € FS satisfying the conditions
(21) uiU2Us 7& 0,
1 1 1
(2.2) det U Us us3 #0.

ule UQ.'E% ng,l‘g.

Proof. If (uy,us,us, 1,22, 23) € FO is a solution of (S»(0,1)) satisfying condi-
tions (2.1) and (2.2), then for b € F,b # 0, (u1, us, us, bxy, bxs, brs) is a solution
of (82(0,b)) satisfying conditions (2.1) and (2.2). If (uy,us,us, 1,22, 23) € FC is
a solution of (S2(1,0)) satistying conditions (2.1) and (2.2), then for a € F,a # 0,
(auy, aug, aus, r1, T2, x3) is a solution of (Sa(a,0)) satisfying conditions (2.1) and
(2.2). If (uy,us,us,z1,22,73) € FO is solution of (S2(1,1)) satisfying conditions
(2.1) and (2.2), then for a,b € F,ab # 0, (au1, aug, aug, bxy, bxs, brs) is a solution
of (Sa(a,b)) satisfying conditions (2.1) and (2.2). It is sufficient to examine the
cases (a,b) = (0,0), (a,b) = (0,1), (a,b) = (1,0), (a,b) = (1,1). Observe that

(1,a,a2, a, 1, a2) is a solution of (S2(0,0)) satisfying conditions (2.1) and (2.2);

(1,a,a2,0,0,1) is a solution of (Sz(0, 1)) satisfying conditions (2.1) and (2.2);

(1,a,,1,a,a?) is a solution of (Sz(1,0)) satisfying conditions (2.1) and (2.2);

(1,a,,0,0,1) is a solution of (Sz(1, 1)) satisfying conditions (2.1) and (2.2). O



46 M. CAR

Lemma 2.7. Let (u1,uz,uz, 1,72, 23) € FC be such that

(2].) U1U2U3 7é 0,
1 1 1
(2.2) det Uy Us us #0.

ulx% UQSC% U3I§.

Then, for every (c,d) € F?, there exists (y1,y2,y3) € F*® such that

Y1 +y2+ys = ¢

83 c,d {
(S3(c,d)) Wy +wadys + ..+ Y3+ uzrdys = d.

Proof. Let N denote the number of (y1,y2,y3) € F? solutions of (S3(c,d)).
With the notations used in the proof of Lemma 2.4, we have

N= S et + )

(y1,y2,y3)EF3 " tEF

1
X7 D Wuld + ufyf +udyl +udyd)).

uel
Thus,
3
16N = > (et +du) [ [ ©ilt, ),
(t,u)EF? i=1
where

O;(t,u) = Y W(ty + u(ufy® + wazly)).
yeF
From [2, Proposition 2.3, ©;(¢,u) € {0,4} and ©;(¢,u) = 4 if and only if uu? =
(t + uu;z?)?. Thus,
N=4 Y Uct+du),

(t,u)eE
where F is the set of pairs (t,u) € F? such that
2 2

t+uurzr] = v uq,
t+ uugx% = u2u2,

t + uusx? = vlus.
323 3

Observe that (0,0) € E. Moreover, if (¢,0) € E, then t = 0. Suppose that
(t,u) € E with u # 0. Then,
t = u(urz? + uuy) = u(ugri + uug) = u(uzri + uus),
so that
ulz% + uu; = uz:r% + uua,
ulx% +uup = ugxg + uus.
Thus,
{ wz? + usrd = ulug + ug),

wz? + uzrd = u(ug + us),
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so that
(ur2? + ug}) (w1 + uz) + (wrzd + uzad)(ur + ua),
in contradiction with condition (2.2). O

Proposition 2.8. Let b = (by, by, ...,b7) € F7. Then the system of equations

Mo
&
\
S

s
Mol
L
8
S
1
(=)
»

.
Il
_

(yi + ufxzz) = bs,

e

s
Il
_

(Zi + UZCU?) = b4,

™
Z
e

-
Il
_

(uy? + wixly:) = bs,

e

s
Il
_

2 2 4 22,2 —
(wixsz + wiz,yf +uixs) = be,

e

s
Il
_

e

(ufzf + uiyf’ + ufmiyz + ule’) = by

-
Il
_

admits solutions (uy, us,us, T1, T2, T3, Y1, Y2, Y3, 21, 22, 23) € F12 with uyusus # 0.
Proof. Lemma 2.6 gives the existence of (uy,us,us3, 1,22, 73) € FS a solu-

tion of Sa(b1,b2) satisfying (2.1) and (2.2). Lemma 2.7 gives the existence of
3

[t R)

(y1,v2,y3) € F3, a solution of Sz(bz + >_ u?x?,bs5). Condition (2.2) insures the
i=1

existence of (21, z2,23) € F such that
3
21+ 20+ 23 = by + Zuz$§7
i=1

3

_ 12 2,.3 2,3 2,2

uy21 +ugze +uzzz = bf + Y (uiny +uiyy + uiriy;,
i=1

3
2 2 2, 2 2,2
u1T21 + ua®s22 +uzrzzs = be + Y (wiwiy; +uizy).
i=1

O
Lemma 2.9. Let (a,b,c) € F* x F? be such that ab+ c # 0. Then the system

u+v=a,
(84(a‘ab7 C)) T+y= b,
Ur + VY = ¢
admits a solution (u,z,v,y) € F* such that uv # 0 and ux + v?y # 0.
Proof. Let uw € ' —{0,a} and v = v + a. Then wv(u + v) # 0, so that with

x = (bu+c+ab)/a and y = (bu + ¢)/a, (u,z,v,y) is a solution of (S4(a,b,c)).
Suppose that u?z + v?y = 0. Then, u?b + uab+ac = 0. If b = 0, then ¢ = 0,
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in contradiction with ab+ ¢ # 0. Thus b # 0, so that u? 4+ au + % =0 and
£ € {0,1}. Thus, ¢ = 0. We have v’z 4+ v?y = 0 and uz + vy = 0. Smceb;«éO,
we have (z,y) # (0,0). If z = 0, then vy = 0, so that y = 0, a contradiction.
Similarly, y = 0 is impossible. Thus, zy # 0. Therefore u = v?z/ux = viy/vy = v
in contradiction with u+wv # 0. Hence, (u, x,v,y) is a solution of (S4(a,b,c)) such
that uv # 0 and u?x + v%y # 0. O

Proposition 2.10. Letb = (by, ba, ..., bg) € F®. Then the system of equations

3
> v = by,

=1

.

Mes
i

Il
S

s
Il
-

(z; + viu?) = ba,

el

s
Il
—

[M]es

(yz + viu ) = by,

B
G
Mwu

(v2a? + viula; + u; + z;) = bs,

s
Il
—

e

(viudy; + viuiz? + v?u?) = bg,

s
Il
—

(viud + v 23 + v2Y? + vulz; + viur;) = by,

e

s
I
-

e

(’U U;Yi + viu zyz + v yz) = bg

s
I
-

admits solutions
(v1,v2,v3, U1, Uz, Us, T1, T2, T3, Y1, Y2, Y3, 21, 22, 23) € F'°
satisfying the condition vivvs # 0.
Proof. Let v1 =1, vg € F —{0,1,b; + 1} and let v3 be defined by
vy + vy + v3 = by.

Then we have
V1V2V3 7é O, (%1 7é V2.
Let up € F — {0, (v1v2)?}, uz = 0 and let uy be defined by

UL + U + uz = ba.
Then we have
(1) viuf # v3u3.

(I) Suppose that viuy +voug = 0. Let y1 € F, yo € F — {usy1/u1} and let y3 be
defined by
3
Y1 +y2 +yz =by + szuf
i=1
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Then we have
v1v2(U1y2 + u2yr) # 0,

so that
1 1 1

det | viu1 wous wv3ug # 0.
U1Y1  V2Y2  U3Y3
(IT) Suppose that viu; + vous # 0. Let y; € F. Since u; # (v1v2)?, we have

14 vyvou; # 0. Let yo € F be such that
3

(14 vivaur)yz + (1 + vivaus)ys # va(viug + vauz)(bs + Z viu?),
i=1

and let y3 be defined by
3

Y1 +y2 +yz =by Jrzvi’u?-
i=1
Then we have
V12 (U1Y2 + u2y1) + v3yz(viur + vauz) # 0,

so that
1 1 1

det | viuir vous wsus # 0.
U1y1  U2Y2  U3Y3
In both cases we get the existence of (y1,v2,y3) € F? satisfying
1 1 1
det | viu? wv3ud viud [ #0
vy viys  viy3

from which we deduce the existence of (r1,22,23) € F? such that
3
T1+ 32+ 23 = bs + Y vPud,
i=1
3
viudry + viudze + viudzs = (by + by + bs)? . viuly;,
i=1

(viufy; + vfuiy:).

e

2,2 2,,2 2,2 12
VIYiT1 + V3Y5 T2 + v3YsT3 = b 4

i=1

From (),

1 1
det( Ul’lj,% ’UQ’LL% > # 0.

Then there exists (21, 23) € F? such that
3

21+ 23 = ba+bs + Y (via? +viulz),

=1

1=

3
viudzy +vaudzz = by + O (viud + v;xd + 2y + viua;).
i=1
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Let 2o = 0. Then, (v1,v2,vs3,u1, U2, u3, T1, T2, T3, Y1, Y2, Y3, 21, 22, 23) is a solution
of (F(b)) satistying vivevs # 0. O

Proposition 2.11. Letb = (by,bs,...,by) € FY. Then the system of equations

oo
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Il
<>
=

o
Il
_

Mo
&

[
S

q
Il
_

gL

(yl+u ):b37

.
Il
_

Mo

(Zz + ux ) — b47

.
Il
_

(uy? + u;x?y;) = bs,

<
£
Moo

.
Il
-

Mo

(wix?z; + wiziy? +uz?) = b,

.
Il
-

Moo

( +uzyz+uxzyz+ux)_b7a

.
Il
-

Mo

(u yzzz+’u.’L' 2 + Uiy z )_b87

.
Il
-

e

(u2xiz; + wimiz? +wiy?z;) = by

.
Il
-

admits solutions (uy, ..., Ug, Ti,..., T8 YL, ---,Ys, 21, ---, 28) € F32 such that
Uy ... us 7é 0.

Proof. Proposition 2.1 insures the existence of a solution (z1, 22, u,us) of
(A(ba, b2)) such that ujusxizs # 0. Thus, we have

Ty + 22 = bo,

ulz%zl + ulxlyf + u%x% + uys%zz + u2x2y§ + u%:z:% = bg.

Let y1 = y2 = 21 = z2 = 0. Proposition 2.5 insures the existence of a so-
lution (u3,uq,us, Y3, Y4, Ys, 23, 24, 25) € F? of (D((bs + bs,b2,b3,bg))) such that
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UzUgusY3yYsys 7 0. Let x3 = x4 = x5 = 0. Then, we have

Men
&

|
S

o
Il
—

Mm

(yl+u &y )_b37

s
Il
—

Mm

(u yz +Ux y’L)_bEH

s
Il
_

MU(

(wix?21 + wimy? + uiz?) = bg,

s
Il
—

Mm

(u yz%"‘U.’E 2 + Uiy z )_b87

s
Il
_

Mm

(uxiz; + wizi2? +wiy?z;) = by.

s
Il
_

Let

5
f1=b1+ Zuu
i=1
5
Ba=bs+ Y (2 +wz),
=1

5
B7 = br + Z:(ufzz2 + uiyf + uf:czyZ + uzxf)

From Proposition 2.2, (B3(81, 84, 32)) admits a solution (ug, ur, us, 26, 27, 28) € F°
such that uguyugzezrzs # 0. Let g = ©7 = x5 = yg = y7 = ys = 0. Then,
(U1, U8, T1y e T8 YTy~ Ys, 21, --,28) 18 a solution of (G(b)) such that

1...U8 75 0. [l

3. STRICT SUMS OF DEGREE LESS THAN 21 IN F[T]

The aim of this section is the proof of the three following theorems.

Theorem 3.1. Let A € F[T] with degree < 7, say

7
A= Z aiTi.
=0

Then, A is a strict sum of seventh powers if and only if its coefficients a; satisfy
the conditions

ayp = G4,
(31) as = as,
as = ag.

Moreover, if A is a strict sum of seventh powers, then A is a strict sum of 5
seventh powers.



52 M. CAR

Theorem 3.2. Let A € F[T] with degree < 14, say

14
i=0

Then, A is a strict sum of seventh powers if and only if its coefficients a; satisfy
the conditions

a; +as + ayp + a1z = 0,
(32) az + as +ag + a1 = 0,

as + ag + ag + a2 = 0.

Moreover, if A is a strict sum of seventh powers, then A is a sum of 11 seventh
powers.

Theorem 3.3. Let A € F[T] be such that 15 < deg A < 21, say

21
i=0

Then, A is a strict sum of seventh powers if and only if its coefficients aq, ..., a2
satisfy the condition
(3.3) az +ag + ag + a2 + a5 +aig = 0.

Moreover, if A satisfies condition (3.3), then A is a strict sum of 19 seventh
POWETS.

Theorem 3.1 is a consequence of the two following propositions.
Proposition 3.4. For (a,b,c) € F3,
I" + (aT? + 0T + ) (T* +T) +a

(3.4) = ((a+b+e)(T+1) + ((Pa+ab+c)(T +a))
+ ((ca 4+ b+ ¢)(T + ?))".
Proof. A verification. O

Proposition 3.5.

(i) Let A € F[T) be such that deg A < 6. If A is a strict sum of seventh powers,
then its coefficients satisfy (3.1).

(ii) Let
7
A= Z aiTi
=0

in the polynomial ring F[T] be such that conditions (3.1) are satisfied. Then,
A is a strict sum of 5 seventh powers.

Proof. Let A =ag+a;T + ...+ agT® € F[T]. Suppose that A is a strict sum
of s seventh powers. Then,

A= Z (T +y:)"

i=1
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with x;,y; € F for i =1,...,s. Thus,
a; = a4,a2 = a5,d3 = ag.
Now let (a,b,c) € F3 and let A = a7;T7 + (T*+T)(aT? +bT +¢) + ag. From (3.4),
A+ (ar+ )T +ag+a= X7+ XI+ XTI,
where X1, Xo, X3 € F[T] have degree < 1, so that
A= (a7 +)T)" + (ap +a)" + X7 + X7 + XJ.

O

Corollary 3.6. We have S*(F,7) # S(F,7), so that g(4,7) = co.
Proof. Conditions (3.1) are not satisfied by T, so that S*(F[T],7) # F[T].
On the other hand, from Paley’s theorem, [15], [6, Theorem 1.7], S(F[T],7) =
F[T). O

Theorem 3.2 is a consequence of the following proposition.

Proposition 3.7. Let A € F[T]| with degree < 14, say A = ap + a1T +
ot a14T14,
(i) If A is a sum
A= ()
i=1

with X; € F[T] of degree < 2, then the cofficients aq,...,a13 satisfy (3.2).

(ii) If (a1, ...,a13) € F* satisfies (3.2), then A is a sum
A=X]+...+X{,
of 11 seventh powers of polynomials X; with deg X; < 2.

Proof. (i) Suppose that A is a sum
A= Z (z:T° + yT + zi)7
i=1
with x;,y;,2; € F fori=1,...,s. Then,

ap +aq + aip +aiz = Z yi(z)® + Z ((2)*(20)” + @alya)*2i + vi(2:)%)

i=1 i=1
) (@) (20)7 + miwi) 2 + (@) () + > (@) s = 0.
i=1 =1
The proof of the other identities is similar.

(ii) Conversely, suppose that (ag,...,a13) € F13 satisfies (3.2). Proposition 2.3
insures the existence of (21, %2, Y1, Y2, 21, 22) € F° solution of (C(ay1,a13,a9)) such
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that z1x2y1y2 # 0. For such a solution, we have

2 2

ais = Z = Z yZv
i=1 =1
2 2

ann = ) Z iy,
i=1 =1
2

ag = ('rz Y; +x7y723)
i=1

Let

2
a = as+ 3 (v:7] + 2yizi + 2iy),
i=1
2
b= aw+ Y (xz +27y?),
i=1
2
c=aly+ Y (wizi + xlyi2? + xdy?).
i=1

Proposition 2.2 gives the existence of a solution (x3,x4,s,23,24,25) € FO of
(Bs(a,b,c)) such that xszswsz32425 # 0. For such a solution, we have

5 5
_ _ 3

a= > T,=> Tz,
i=3 i=3
5 5.,

b= > zi=> ziz,
i=3 i=3
5

02 = lezz
i=3

Let
£C6=a14+§ X, Ys =ys =Ys = Ye = 26 = 0.

Thus, we have

(232 + 23y?),

|
Me

a12 =

s
I
—

(2727 + iy} zi + yi),

|
_Mm

s
I
—

aip =

Me

ag = Y (22} + 2dyizi + ziyl),

s
I
—

as well as

I
e
K
=0

<

a13

Il
Me
8
<
S

a1

<.
—

o ll

ag = (23y? + xyi27).

s
I
—
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Let
6

1) B=A+> (&:T% +yT +2z)".
i=1

Then deg B < 7. If

7
B= Z b, T,
1=0
then,

6
bs+by =a4+a1 + Z(z%zf + zzyle),

=1
6
bs + by = as + as + Z(!L‘ZZ? + x?yizi),
=1
6
b6 + b3 = Qg + az = Z(Ile + l‘zypzf)
=1

Condition (3.2) insures that

6
by +b1 = a13 + a0 + Z(%QZE + iyl z) = 0,

i=1
6
bs +by = a1y +as + »_ (132} + 27yiz;) = 0,
i=1
6
b6 + b3 = a2 + ag = Z(.’E?Zz + SUZyZZ?) = O,
i=1

so that (3.1) is satisfied by (b1...,bg). Proposition 3.5 gives the existence of
polynomials X7, ..., X5 € F[T] of degree < 1 such that

5
B=> X].
=0
We conclude with (). O

Theorem 3.3 is a consequence of the following proposition.

Proposition 3.8. Let

21
A= Z aiTi
i=0

be a polynomial in F[T]| with deg A < 21. Then, A may be written as a sum

A= i(xiﬁ
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with X; € F[T) of degree < 3 if and only if its coefficients satisfy the condition
(3.3) as + ag + ag + a2 + a15 + a1 = 0.
Moreover, if A satisfies condition (3.3), then A is a sum of 19 seventh powers of

polynomials X; € F[T) of degree < 3.

21 ,
Proof. (I) Let A= " a;T" € F[T]. Suppose that A is a sum
i=0
S

A= Z(uiT3 + 2 T% + 4T+ 2)"

i=1
with u;, z;,y;,2; € F for i =1,...,s. Then we have
az +ag + ag + a2 + a5 + a1 = 0.

(IT) Let (ag, a1, ..., a0, a2 ) € F?? satisfying (3.3). We construct a representa-
tion of A as a sum of seventh powers of polynomials of degree < 3 in two steps.
(i) First step — From Proposition 2.11, there exists

(ul,...,ug,xl,...,xg,yl,...,yg,zl,...,zs) S F32
solution of (G(b)) with

b = (a21, a20, @19, a18, @17 + a20, @16, A15, @1 + a4 + @10 + a13 + a16 + a19,

ag + as + ag + a1 + a17 + az0),

Uy ...ug # 0. Therefore, we have

a21,

Mo
g
||

©
Il
-

u3

i i = A20,

'MwEMm

©
I
-

(ufy + uia}) = aro,

Mo

(udz; + ux?) = ass,

.
I
—

Mo

(U’ y'L +U Z; yZ) - a’17+a207

.
I
—

2,.2
(wizdz; + wwiy? + uiz?) = ase,

s
I
b

Moo

2.2 3 2 3\ _
(ujzi +uy; + uiTiy; + uixy) = ass,

.
I
—

e

(uyiz; + uir?z; + wy;2?) = a1 + a4 + a9 + a1z + ai6 + aro,

.
I
—

Mo

(ulw;z; + wiwiz? + uy?z;) = as + as + ag + a1 + ar7 + a,

o
I
—
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so that
8
ayy = Z(Uf’xz +ufyd il y).
i=1
(ii) Second step — Let
8
i=1

Then deg B < 14. If

14
B=> bT"
1=0

then
8
big + bio + ba + b1 = a13 + a10 + as + a1 + Z(Uz%y? +uiyizi + wiyiz + uiy),
i=1
8
big + by + b + by = a1z + ag + ag + as + Y _(ulwiy; + ulz +uiz + wiyl),
i=1
8
b1y +bg + b5 + by = a1 +ag+as+az+ Z(U?%Zz + uzwzzf + Uzﬁyz + uzyfzm
i=1
2,2
+ uiy;)
We have
8
a9 + a16 +aiz +ap +aq +a; = Z(Ufyzzz + i}z 4 uiyiz),
i=1
and
8
aig +aie = Z(U?yz ez + uiiy?),
i=1
so that
8
a1z +aip +aqg +a1 = Z(UZZ%Z@ F iz wisy; + uly).
i=1
Thus,

b13+b10+b4+b1 =0.
Similarly, we prove that

bia +bg +bg + b3 = bi1 +bg + b5+ by = 0.
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Proposition 3.7 gives the existence of polynomials X7, ..., X;; € F[T] such that
11
B= ZXZ, deg X; < 2.
i=1

We conclude with (x). O

Remarks. Proposition 3.7 proves that T is not a sum of seventh powers of
polynomials of degree < 2. From Proposition 3.8 we deduce that every P € F[T]
of degree < 2 may be written as a sum of 19 seventh powers of polynomials of
degree < 3, so that T" is a sum of 19 seventh powers. This gives another proof of
the equality S(F[T], k) = F[T]. The following proposition gives a representation
of T as a sum of 12 seventh powers of polynomials of degree < 3.

Proposition 3.9. We have
T=(T*+T*+1)"+(T*+T*+ D)+ (T? + T? + (a + 1)T)"
+ (@4 aT?> +aT+a+ 1)+ ((a+1)T3 + (a +1)T?
+@+ )T +a) +(T*+T+1)"+ (T*+T7)" + (T? +a)°
+ (T +a+ )"+ (T+Q)" +(T+a+1)" +(T+1)".

Proof. An easy verification. O
4. THE FIRST DESCENT

The process described in [1] or in [11] works when a representation of T as sum
of k-th powers is known. In the case when k = 7 and ¢ = 4, this process leads to
the following.

Theorem 4.1.

(i) Every polynomial P € F|T]| with degree divisible by 7 and > 18599 is a
strict sum of 32 seventh powers.

(ii) Every polynomial P € F[T] with degree > 18593 is a strict sum of 33
seventh powers.

Proof. Let P € F[T] with 7(n — 1) < deg P < 7n. Let
0 ifdegP =Tn,
e(P) =
1 ifdegP < Tn

and let

H=¢e(P)T™ 4 P.
Then, deg H = 7n. From [1, Lemma 5.2], there is a sequence Hy, Hy,..., H;, ...,
of polynomials of F[T] of degree 7ng, 7nq,...,7Tn;, and a sequence Xo, X1,...,X;
of polynomials of degree ng,n1,...,n;, such that H = Hy and such that for each
index 1,

(4.1) H; = X + Hiy,
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(4.2) 6n; < 77’Li+1 < 6bn; +17.
Moreover, for each index 7, there is a polynomial Y; € F[T] of degree n; such that
(4.3) deg(H; +Y;") < 6n;.
We use (4.1) or (4.3) as long as the sequence (n;) is decreasing. Let r, if it exists,
be the least index such that 3(6n, — 1) < n. We use identity (1) r times, then we
use identity (4.3) once. We get
H=X{+ +X _+Y +R,
with 3deg R < n. From Proposition 3.9, there exist Ry,... Ria € F[T] of degree
< 3deg R such that
R=R]+...+ R,

so that
(4.4) H=X,+ - +X_,+Y +R]+...+R],
with deg X; = n; < ng = n,deg¥, = n, < ng =n,degR; < 3deg R < n. Thus,
(4.4) is a strict sum of r 4+ 13 seventh powers. From (4.2) we get that for i > 1,

i—1

7ini < 6'n + Z Ti6i—a,
j=0

Therefore, for any integer » > 1, we have

6\" 6\"
6n, —1<6( 35-36(=) .

For r > 19, we have (g)T Tls‘ Suppose r = 19. If n > 2657, then

<
6 19 6 19 n
s - -] <=
() () <2

g
5. OTHERS DESCENTS
The second descent process is based on very simple identities.
Proposition 5.1. The following identity holds in the ring F[X,Y],
G XY+ XY = X"+ (X+Y) + (X +aY) + (X + (a+1)Y)".
Proof. A simple verification. O

Proposition 5.2. For a non-negative integer i and X € F[T], let
(5.2) Li(X) = XT3 4 XT.
Then, the map L; is Fo-linear and we have

(5.3) Li(X)=X"+(X+TH +(X +aT)" + (X + (a+1)TH".

(5.4) TLi(X) = Li1(TX).
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Proof. Tmmediate. O

Corollary 5.3. Let n be a non-negative integer and let a € F'. Then, we have

(5.5) aT*" = Lo(aT™) + aT™,

(5.6) aT*™ 3 = Ly (aT™) + aT™ 5.
If n >0, then

(5.7) aT*™" 2 = Ly(aT™ 1Y) + aT™ 11,
If n > 1, then

(5.8) aT*" ' = L3(aT" %) + aT™ 0.

Proof. (5.5) and (5.6) are immediate. We get (5.7) and (5.8) noting that
aT4" 2 = T4 =146 and that a7t = T4 =2)+9, O

Roughly speaking, the second descent process uses the following idea. Let
X =anTN +2ny TV + ...+ 2T + 70 be a polynomial of F[T]. Making use
of (5.5)-(5.8), we replace a monomial ;7% by the sum of an appropriate L;(T7)
and a monomial of lower degree. We begin with 2xT" and we follow decreasing
degrees as long as the process gives monomials of lower degree. For more details
see [4, Proposition 5.4]. Mixing this process with the first descent process leads
to the following proposition.

Proposition 5.4. Let H € F[T] with degree Tn > 112. Then, there exist
Xo,Xl,XQ,X37Y0,Y1,}/2,}/3,Z S F[T} with deng S n, dng; S n and degZ S
21 such that

(5.9 H=X§+X]+ X3+ XJ+Lo(Yo) + Li(Y1) + La(Ya) + L3(Y3) + Z.
Proof. See [4, Proposition 5.5]. O
We continue with other descent processes.

Proposition 5.5. Let n > 3 be an integer and let A € F[T] of degree < Tn.
Then there exist X1,...,X4 € F[T] of degree < n such that

3
deg <A+ZXZ> <7(n-1),
i=1
so that there exist X1,...,Xs € F[T] of degree < n such that
4
deg <A+ ZXZ) =T7(n-1).
i=1

Proof. Let

21
A= Z (ll'Ti
=0
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be a polynomial of degree < 21. Proposition 2.8 gives the existence of
(u17 U2,U3,T1,x2,x3,Y1,Y2,Y3, 21, 22, 23) S Flﬁa

a solution of (£(az1, aso, arg, ais, a17 + aso, a1, a1s)) such that uyugus # 0. There-
fore, we have

'Mw
&

!

2

&
Il
-

e
<
<o
&8
|
S
)
<

’L’zl
> (uly; + uizd) = aqo,
=1
3
Z(u Zl+u’b )_a’lga
=1
3
Z(u xl +U yz +U/»L.CL' yl) - a’l7a
=1
3
S (uir?z; + uiwiy? + u?a?) = age,
=1
3
=1
Let
3
B = (A + Z(U1T3 + LL'Z'T2 +y;T + 22)7> ,
i=1
so that

deg B < 14.

This gives the first part of the proposition in the case when n = 3. We get the
second part of the proposition in the case n = 3 taking

x, .o if degB =14,
YT T? if degB <14

Let n > 3 be an integer and let A € F[T] of degree < Tn. By euclidean division,
there is a pair (Q, R) € F[T] such that, respectively,

A=T"""3Q + R, deg@Q <21,  degR < 7(n—3).
There exist Xi,...,X3 € F[T] and X,..., X, € F[T], of degree < 3 such that
3
deg (Q—FZXZ) < 14,
i=1

and

4
deg (Q—FZXZ) = 14,
i=1
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respectively. Therefore,

3
deg <T7("—3>(Q +)° XZ)) <7(n—1),
i=1
and
4
deg <T7<"—3><Q +y X7 >> =T7(n—1),
=1

respectively, so that,

3
deg <R+ T =3 + ZXZ) <7(n—1),

i=1
and
4
deg (R + 17730 4 Z Xj) =17(n—1),
i=1
respectively. O

6. END OF THE PROOF

Proposition 6.1. Let

28
A= Z CLz'Ti
=0

be a polynomial in F[T]| with deg A < 28. Then A is a sum

3 19
(6.1) A=Y "XT+>Y],
=1 =1

where X1,...,X3,Y1,..., Y19 are polynomials of F[T] such that deg X; < 4 and
degY; < 3.

Proof. Set
(6.2) 0 = Q27 + @24 + a18 + a15 + a12 + ag + ag + as.
Proposition 2.10 gives the existence of

15
(1}1,...,1}3,’[1,1,...,U3,$1,...,l‘g,yl,...,yg,Zl,...,Zg,) cF s
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a solution of (F(ass, azr, aze, a2s, 24, a23, aaz,0) such that vy ...v4 # 0. For such
a solution, we have

3
ass = Y v,
i§1 3
ag7 = Z Uy = Zviguza
i=1 i=1
ase = Y (x; +vjui) = Y (viwi + viud),
i=1 i=1
3 3
azs = > (Yi +vuf) = Z(U?yi + viu?),
(63) ’L§1 i=1
ass = > (Vi +vuizi 4+ u; + 2;)
i=1
3
= > (Va2 + viudx; + vdu; +v3z;),
i=1
3
ags = Y (viufy; + viuiri + viud),
i=1
3
aze = Y (viud + viwd + vyl + vtz + viua),
i=1
and
3
(6.4) g = ('Uzzuzyz + Uluzyf + ’szﬂzzyz)

i=1

Fori=1,2,3, let
X, = UiT4 + uiT?’ + l‘iTz + vy T + z;

and let
3

B=A+> X].
i=1
Identities (6.3) show that deg B < 21. Set

21
B= Z b, T".
i=1
From (6.2), (6.3) and (6.4),

big + bis + big + by + b + b3 = 0,
so that from Theorem 3.3, there exist polynomials Y7, ..., Y19 € F[T] with degree

< 3 such that
19
B=>)_Y/ .
i=1

O

Corollary 6.2. Let A € F[T) be such that 21 < deg A < 28. Then A is a strict
sum of 22 seventh powers.
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Theorem 6.3.

(i) Fvery polynomial P € F[T] whose degree > 441 is divisible by 7 is a strict

sum of 32 seventh powers.

(ii) Every polynomial P € F[T| with degree > 435 is a strict sum of 33 seventh
powers.

(iii) Every polynomial P € F[T) such that deg P > 112 and deg P is divisible by
7 is a strict sum of 42 seventh powers.

(iv) Every polynomial P € F[T] with degree > 106 is a strict sum of 43 seventh
powers.

Proof. As for the proof of Theorem 4.1, it is sufficient to prove (i) and (iii).
Let H € F[T] of degree Tn with n > 16. From (5.9) and (5.3), we get that there
exists Z € F[T] with deg Z < 21 such that H 4+ Z is sum of 20 seventh powers
of polynomials of degree < n. From Proposition 3.9, there exist Zy, ..., Z15 with
deg Z; < 63 such that

12
zZ=Y 7.
i=1
If n > 63, then H is a strict sum of 32 seventh powers. This proves (i).
From Proposition 6.1, there exist Vi,...,Vas € F[T] with degV; < 4 < n such

that
22
zZ=3 Vi
i=1
so that H is a strict sum of 42 seventh powers. This proves (iii). O

Corollary 6.4. We have
G(4,7) =G> (4,7) < 33.

We end the study of the set S*(F,T) dealing with polynomials P such that
29 < deg P < 105.

Proposition 6.5. Let A € F[T].

(i) If 29 < deg A < 35, then A is a strict sum of 25 seventh powers.
(i1) If deg A = 42, then A is a strict sum of 26 seventh powers.
(iti) If 35 < deg A < 42, then A is a strict sum of 27 seventh powers.
(i) If deg A = Tn with 7 < n < 14, then A is a strict sum of n + 20 seventh
powers.
(v) If Tn — 7 < deg A < Tn with 7 < n < 14, then A is a strict sum of n + 21
seventh powers.
(vi) If deg A = Tn with 14 < n < 21, then A is a strict sum of n + 19 seventh
powers.
(vit) If Tn — 7 < deg A < Tn with 14 <n < 21, then A is a strict sum of n + 20
seventh powers.
(viii) If deg A = Tn with 21 < n < 28, then A is a strict sum of n + 18 seventh
powers.



7-TH POWERS OF POLYNOMIALS 65

(iz) If Tn — 7 < deg A < Tn with 21 < n < 28, then A is a strict sum of n+ 19
seventh powers.

Proof. As observed before, it suffices to prove (i), (ii), (iv), (vi) and (viii).

1. Suppose that 29 < deg A < 35. From Proposition 5.5, there exist X7, Xo, X3€

3
F[T)] of degree < 5 such that deg(A + Y X7) < 28. From Proposition 6.1, there
i=1
exist Y1, ..., Yas € F[T] of degree < 4 such that

3 22
A+ XT=>"y]
i=1 j=1

2. Suppose that deg A = 42. From [1, Lemma 5.2-(i)], there is a polynomial
X € FI[T] of degree 6 such that deg(A + X7) < 35. From above, there exist
Y1,..., Y € F[T] of degree < 5 such that

25
7T _ 7
A+XT=3"y]
Jj=1

3. We prove (iv), (vi) and (viii) by induction. Suppose that for n > 7, every
polynomial of degree 7k with k < n is a strict sum of s(k) seventh powers. Let
A € F[T] of degree 7n. From [1, Lemma 5.2-(ii)], there is a polynomial X € F[T]
of degree n such that deg(A + X7) = 7m(n) with m(n) defined by the condition
6n < 7m(n) < 6n + 7. We have

n—1 if 7<n<13,
m(n) = n—2 if 14<n<20
n—3 if 21 <n<27T.

The induction hypothesis gives that A + X7 is a strict sum of s(m(n)) seventh
powers, so that A is a strict sum of s(m(n))+1 seventh powers. We have s(6) = 26.
Thus,

n + 20 if 7<n<13,
s(n)=4¢ n+19 if 14 <n <20,
n—+ 18 if 21 <n<27.

Proposition 6.6. We have
S*(FIT],T) = A UAUA3U A,
where

7
(i) A is the set of polynomials A = > a,T™ € F[T] such that a1 = a4, a2 =
n=0

as, a3 = ae,
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14
(ii) Az is the set of polynomials A = 3 a,T" € F[T] with 7 < deg A < 14
n=0
such that
ay + as + ayp + a13 = 0,
az +as +ag + a;; =0,
as + ag + ag + a2 = 0,

21
(iii) As is the set of polynomials A = 3 a,T" € F|T) with 14 < deg A < 21
n=0
such that
asz + ag + ag + a1z + a5 + a1 = 0,

(iv) A ={A € F[T] | deg A > 21}.
Proof. With Theorems 3.1, 3.2, 3.3, Corollary 6.2 and Theorem 6.3. O

Theorem 6.7. We have
g*(4,7) < 43.

Proof. From Theorems 3.1, 3.2, 3.3, every polynomial A € S*(F[T],7) of degree
< 21 is a strict sum of 19 seventh powers. From Corollary 6.2 and Proposition 6.5,
every polynomial A € S*(F[T],7) such that 21 < deg A < 175 is a strict sum of
43 seventh powers. From Theorem 6.3, every polynomial A € S*(F[T],7) such
that deg A > 106 is a strict sum of 43 seventh powers. O
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