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RESULTS ON DIMENSION THEORY AND SOME
GENERALIZATIONS OF COMPACT SPACES

H. Z. HDEIB and K. Y. AL-ZOUBI

Abstract. In this paper we introduce Gδ-sequential spaces as a generalization of
sequential spaces, and obtain some product theorems for [n, m]-compact spaces and

for spaces with large inductive dimension ≤ n.

1. Introduction

Dimension theory dates back at least to the work of P. Urysohn [11] and K. Menger
[8]. Since then many mathematicians have contributed to the development of this
theory. There are three notions of dimension of a topological space X, small
inductive dimension (denoted by ind(X)), large inductive dimension (denoted by
Ind(X)) and covering dimension (denoted by dim(X)). If ind(X) = 0, then X
is called a zero-dimensional space. If dim(X) = 0, then X is called a strongly
zero-dimensional space.

In Section 2, we introduce Gδ-sequential spaces as a generalization of sequential
spaces, and obtain some product theorems for [n,m]-compact spaces and for spaces
with large inductive dimension ≤ n. Theorems 2.9, 2.10, 2.11, 2.13 and 2.17
formulate the main results of this paper. In this paper, all spaces are assumed to
be T1 topological spaces. For terminology not defined here, see Engelking [3] and
Willard [12].

2. Product theorems

Franklin [4] introduced sequential spaces as generalization of first countable spaces.
In this section, we define Gδ-sequential spaces as a generalization of sequential
spaces. We also obtain some product theorems for [n,m]-compact spaces and
spaces with large inductive dimension ≤ n.

Definition 2.1 ([4]). A subset A of a space X is called sequentially open if
each sequence in X converging to a point in A is eventually in A. A space X is
called a sequential space if every sequentially open subset of X is open.
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Definition 2.2. A space X is called Gδ-sequential if every sequentially open
subset is a Gδ-set.

Definition 2.3. Let X be an arbitrary space. The Gδ-topology of X is the
topology generated by the Gδ-sets of X.

Definition 2.4 ([7]). A space X is called scattered if every non-empty closed
subset A of X has an isolated point.

Definition 2.5 ([1]). A space X is called [n,m]-compact if every open cover U
of X with |U| ≤ m has a subcover of cardinality < n. If X is [n,m]-compact for
all m > n, then it is called [n,∞]-compact. [ℵ0,m]-compact spaces will be called
simply m-compact.

Definition 2.6 ([2]). A space X is called paracompact if every open cover U
of X has a locally finite open refinement.

Definition 2.7. A mapping f from a space X onto a space Y is called σ-closed
if f maps closed sets onto Fσ-sets.

It is clear that every sequential space is Gδ-sequential. However a Gδ-sequential
space may fail to be sequential (see Arens-Fort example [10, page 54]).

Kramer [6] showed that if X is a sequential space and Y is a countably compact
space, then the projection mapping P : X × Y → X is closed. A similar theorem
concerning σ-closed mappings can be obtained using Gδ-sequential spaces. For
this purpose we need the following lemma which can be obtained by modifying
the proof of Kramer [6, Lemma 5.3].

Lemma 2.8. Let X be a Gδ-sequential space and Y be a countably compact
space. Let F be a closed subset of X × Y and V be an open subset of Y . Let x be
a point of X such that F (x) = {y ∈ Y | (x, y) ∈ F} ⊂ V . Then there is a Gδ-set
U containing x such that z ∈ U implies F (z) ⊂ V .

Theorem 2.9. Let X be a Gδ-sequential space and Y be a countably compact
space. Then the projection mapping P : X × Y → X is σ-closed.

The proof follows from Lemma 2.8 by taking x ∈ X − P (F ) and V = φ.

Theorem 2.10. Let f be a continuous σ-closed mapping from a space X onto a
space Y such that f−1(y) is m-compact for each y ∈ Y . Then X is [n,m]-compact
if the Gδ-topology of Y is so.

Proof. Let U = {Uα | α ∈ Λ}, |Λ| ≤ m be an open cover of X. Let Γ denote
the family of all finite subsets of Λ. Then |Γ| ≤ m. Since f−1(y) is m-compact,
we have that for each y ∈ Y , there exists a finite subset γ of Λ such that f−1(y) ⊂⋃
{Uα | α ∈ γ}. Let Vγ = Y − f(X −

⋃
α∈γUα). Then y ∈ Vγ , Vγ is a Gδ-set and

f−1(Vγ) ⊂ ∪{Uα | α ∈ γ}. Thus {Vγ | γ ∈ Γ} cover of Y , of which each element is
a Gδ-set, and |Γ| ≤ m. Since the Gδ-topology of Y is [n,m]-compact, {Vγ | γ ∈ Γ}
has a subcover of cardinality < n. Therefore X is the union of less than n
members of

{
f−1(Vγ) | γ ∈ Γ

}
. But for each γ ∈ Γ, the set f−1(Vγ) is contained

in the union of finitely many members of U . Hence X is [n,m]-compact. �
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Theorem 2.11. Let X be a scattered, paracompact Hausdorff space. Then the
Gδ-topology of X is paracompact.

Proof. Let U be a cover of X by Gδ-sets. Let

F = {x ∈ X |x ∈ U and U is open implies U cannot be covered by a

σ-locally finite open refinement of U}.

Obviously F is closed. Suppose F 6= φ. Since X is scattered, F has an iso-
lated point x. Thus there exists an open set V ⊆ X such that V ∩ F = {x}.
Choose U∗ ∈ U such that x ∈ U∗. Without loss of generality we can assume that
U∗ =

⋂
{Vn | n = 1, 2, . . .} where Vn is open for each n = 1, 2, . . ., and Vn+1 ⊆

Vn+1 ⊆ Vn ⊆ V . For each n = 1, 2, . . ., (Vn − Vn+1) ⊆ X − F . Therefore each
y ∈ (Vn−Vn+1) has a neighborhood My which can be covered by a σ-locally finite
open refinement of U .

Now M =
{
My | y ∈ (Vn − Vn+1)

}
is an open cover of Vn − Vn+1. Since

Vn − Vn+1 is closed and X is paracompact, M has a locally finite (in X) open (in
X) refinement, say Hn = {Hα | α ∈ Λn}. For each α ∈ Λn, Hα is covered by a
σ-locally finite open refinement of U , say

⋃∞
i=1Aαi . Let Bαi = {Hα ∩A | A ∈ Aαi }

and Kni = {B | B ∈ Bαi , α ∈ Λn}. Then Kni is a locally finite open refinement of
U , because if x ∈ X, there exists an open set Nx such that Nx ∩ Hα = φ for
all except finitely many indices, say α1, α2, . . . , αn. Each one of the collections
Bα1
i , Bα2

i , . . . ,Bαn
i is locally finite. Hence for each j = 1, 2, . . . , n, there exists

an open set W j
i and each W j

i intersects at most finitely many members of Bαj

i .
Hence W 1

i ∩ . . .∩Wn
i ∩Nx is an open neighborhood of x which intersects finitely

many members of Kni .
Now

⋃∞
i=1Kni is an open σ-locally finite open refinement of U which covers

Vn−Vn+1. Consequently, (
⋃∞
n=1

⋃∞
i=1Kni )∪{U∗} is an open σ-locally finite open

refinement of U which covers V . This contradicts the fact that x ∈ V . Thus F = φ.
Therefore, for each x ∈ V , there is an open neighborhood Gx of x such that Gx can
be covered by a σ-locally finite open refinement of U . Since X is paracompact,
{Gx | x ∈ X} has a locally finite open refinement {Dβ | β ∈ Γ} where for each
β ∈ Γ, Dβ is covered by a σ-locally finite open refinement of U , say

⋃∞
i=1 C

β
i .

Let Gi =
{
C | C ∈ Cβi , β ∈ Γ

}
. Then it is easy to see that Gi is locally finite.

Therefore
⋃∞
i=1 Gi is a σ-locally finite open refinement of U which covers X. Hence

the Gδ-topology of X is paracompact. �

Theorem 2.12 ([5]). Let X be an [n,∞]-compact scattered space. Then the
Gδ-topology of X is [n,∞]-compact.

The proof follows by a similar method used in Theorem 2.11.

Theorem 2.13. Let Y be an m-compact space and X be a Gδ-sequential scat-
tered space. Then X × Y is [n,m]-compact if X is [n,∞]-compact.

Proof. By Theorem 2.9, the projection mapping P : X × Y → X is closed. By
Theorem 2.10, X × Y is [n,m]-compact. �
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Definition 2.14. An open (closed) rectangle in X × Y is a set of the form
U × V where U is an open (closed) subset of X and V is an open (closed) subset
of Y .

The following definition was introduced by Nagata [9] to study the dimension
of the products.

Definition 2.15. Let X and Y be two spaces. Then the product space
X × Y is called an F -product if whenever H and K are disjoint closed sets in
X ×Y , then there is an open cover U = {Uα | α ∈ Λ} of X ×Y and a closed cover
F = {Fα | α ∈ Λ} of X × Y such that:

(i) F consists of closed rectangles and U consists of open rectangles.
(ii) U is σ-locally finite.
(iii) Fα ⊂ Uα for all α ∈ Λ.
(iv) U refines {(X × Y )−H, (X × Y )−K}.

Kramer [6] proved that if X is sequential, paracompact and Hausdorff while Y
is countably compact and normal, then X × Y is an F -product.

In case X is a Gδ-sequential space, we have the following theorems

Theorem 2.16. Let X be a Gδ-sequential, paracompact, scattered and Haus-
dorff space. Let Y be a countably compact normal space. Then X × Y is an
F -product.

The proof follows from Theorem 2.11 and a similar technique used in the proof
of the above Theorem of Kramer.

Nagata [9] showed that if X and Y are non-empty with Ind(X) ≤ n while
Ind(Y ) ≤ m and X ×Y is a totally normal F -product, then Ind(X ×Y ) ≤ n+m.
Using this result together with Theorem 2.16, we get the following theorem.

Theorem 2.17. Suppose X and Y are given as in Theorem 2.16. If Ind(X)≤n,
Ind(Y ) ≤ m and X × Y is a totally normal, then Ind(X × Y ) ≤ n+m.
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