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ASSOCIATED PRIMES OF TOP LOCAL HOMOLOGY
MODULES WITH RESPECT TO AN IDEAL

SH. REZAEI

Abstract. Let (R, m) be a local ring, a be an ideal of R and M be a non-zero

Artinian R-module with NdimR M = n. In this paper we determine the associated
primes of the top local homology module Ha

n(M).

1. Introduction

Throughout this paper assume that (R,m) is a commutative Noetherian local ring,
a is an ideal of R and M is an R-module. In [2] Cuong and Nam defined the local
homology modules Ha

i (M) with respect to a by

Ha
i (M) = lim←−

n

TorR
i (R/an, M).

This definition is dual to Grothendieck’s definition of local cohomology modules
and coincides with the definition of Greenless and May in [6] for an Artinian
R-module M . For basic results about local homology we refer the reader to [2, 3]
and [13]; for local cohomology see [1].

In [8] Macdonald and Sharp studied the top local cohomology module with
respect to the maximal ideal and showed that Att(Hn

m(N)) = {p ∈ Ass N :
dim R/p = n}, where N is a finitely generated R-module of dimension n. Cuong
and Nam proved in [2] a dual result stating that

AssR̂(Hm
d (M)) = {p ∈ AttR̂(M) : dim R̂/p = d}

for a non-zero Artinian R-module M of Noetherian dimension d. In this paper
we study the top local homology module Ha

n(M), where M is a non-zero Artinian
R-module of Noetherian dimension n and a is an arbitrary ideal of R. The module
Ha

n(M) is called a top local homology module because max{i : Ha
i (M) 6= 0} ≤ n

by [2, Proposition 4.8].
A non-zero R-module M is called secondary if the multiplication map by any

element a of R is either surjective or nilpotent. A secondary representation of the
R-module M is an expression for M as a finite sum of secondary modules. If such
a representation exists, we will say that M is representable. A prime ideal p of R
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is said to be an attached prime of M if p = (N :R M) for some submodule N of
M . If M admits a reduced secondary representation M = S1 +S2 + . . .+Sn, then
the set of attached primes AttR(M) of M is equal to {

√
0 :R Si for i = 1, . . . , n}.

Note that every Artinian R-module M is representable and minimal elements of
the set V(Ann(M)), the set of prime ideals of R containing ideal Ann(M), belong
to Att(M). It is well known that if N is a submodule of Artinian R-module M ,
then Att(M/N) ⊆ Att(M) ⊆ Att(N) ∪Att(M/N) (See [9, Section 6]).

We now recall the concept of Noetherian dimension NdimR(M) of an R-module
M . For M = 0 we define NdimR(M) = −1. Then by induction, for any integer
t ≥ 0, we define NdimR(M) = t when

i) NdimR(M) < t is false, and
ii) for every ascending chain M1 ⊆M2 ⊆ . . . of submodules of M there exists

an integer m0 such that NdimR(Mm+1/Mm) < t for all m ≥ m0.
Thus M is non-zero and finitely generated if and only if NdimR(M) = 0. If M

is Artinian module, then NdimR(M) <∞. (For more details see [7] and [11]).
Following [5], for any R-module M , we define the cohomological dimension of

M with respect to a as

cd(a, M) = max{i : Hi
a(M) 6= 0}.

By [1, Theorem 6.1.2 and Theorem 6.1.4], we have cd(a, M) ≤ dim M and
cd(m, M) = dim M . We will call

hd(a, M) := max{i : Ha
i (M) 6= 0}

the homological dimension of M with respect to a. It follows from [2, Proposi-
tions 4.8 and 4.10] that if M is an Artinian R-module, then hd(a, M) ≤ NdimR(M)
and hd(m, M) = NdimR(M).

Throughout the paper, for an R-module M , E(R/m) denotes the injective en-
velope of R/m and D(.) denotes the Matlis duality functor HomR(., E(R/m)). It
is well known that dim D(M) = dim M . Also, if M is an Artinian R-module, then
M ' D D(M) and D(M) is a Noetherian R̂-module. (See [1, Theorem 10.2.19]
and [10, Theorem 1.6(5)]).

Note that if M is an Artinian R-module, then Ha
i (M) ' D(Hi

a(D(M))) for
all i (See [2, Proposition 3.3(ii)]), and therefore hd(a, M) = cd(a, D(M)). Thus
hd(a, M) ≤ dim D(M) = dim M .

The main result of this paper shows that if M is a non-zero Artinian R-module
such that NdimR M = n, then

AssR(Ha
n(M)) = {P ∩R : P ∈ AttR̂ M and cd(aR̂, R̂/P) = n}.

2. THE RESULTS

To prove our main result, we need the following lemmas.

Lemma 2.1. Let (R,m) be a local ring, a be an ideal of R and 0 → L →
M → N → 0 be an exact sequence of Artinian R-modules. Then hd(a, M) =
Max{hd(a, L), hd(a, N)}.
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Proof. Since D(M) is Noetherian R̂-module, by [5, Corollary 2.3(i)],
cd(aR̂, D(N)) ≤ cd(aR̂, D(M)). Hence by the Independence Theorem ([1, Theo-
rem 4.2.1]), cd(a, D(N)) ≤ cd(a, D(M)). Therefore hd(a, N) ≤ hd(a, M). From
the long exact sequence

Ha
i+1(L)→ Ha

i+1(M)→ Ha
i+1(N)→ Ha

i (L)→ Ha
i (M)→ . . .

we deduce that hd(a, L) ≤ hd(a, M). Hence Max{hd(a, L), hd(a, N)} ≤ hd(a, M).
From the above long exact sequence we also infer that hd(a, M) ≤ Max{hd(a, L),
hd(a, N)} and the proof is complete. �

Lemma 2.2. Let (R,m) be a complete local ring, a be an ideal of R and M be
a non-zero Artinian module. Then cd(a, R/p) ≤ hd(a, M) for all p ∈ Att(M).

Proof. Since D(M) is a Noetherian R-module and Supp(R/p) ⊆ Supp(D(M))
for all p ∈ Ass D(M), by [5, Theorem 2.2] we infer that cd(a, R/p) ≤ cd(a, D(M))
for all p ∈ Ass D(M). Since Att(M) = Ass D(M) and cd(a, D(M)) = hd(a, M),
we obtain cd(a, R/p) ≤ hd(a, M) for all p ∈ Att(M). �

Lemma 2.3. Let (R,m) be a local ring, a be an ideal of R and M be an Artinian
R-module. Then hd(a, M) ≤ cd(a, R/ Ann M).

Proof. Let R
′

:= R/ Ann M . By [12, Theorem 3.3], Ha
i (M) ' HaR

′

i (M) for
all i. Thus hd(a, M) = hd(aR

′
, M). Since hd(aR

′
, M) ≤ cd(aR

′
, R

′
) (see [6,

Corollary 3.2]) and cd(aR
′
, R

′
) = cd(a, R

′
) (see [5, Lemma 2.1]), we conclude that

hd(a, M) ≤ cd(a, R
′
). �

Lemma 2.4. Let (R,m) be a complete local ring, a be an ideal of R and M be
a non-zero Artinian module of dimension n with hd(a, M) = n. Then the set

Σ := {N
′

: N
′
is a submodule of M and hd(a, M/N

′
) < n}

has a smallest element N . The module N has the following properties:
i) hd(a, N) = dim N = n.
ii) N has no proper submodule L such that hd(a, N/L) < n.
iii) Att(N) = {p ∈ Att(M) : cd(a, R/p) = n}.
iv) Ha

n(N) ' Ha
n(M).

Proof. It is clear that M ∈ Σ and thus Σ is not empty. Since M is an Artinian
R-module, the set Σ has a minimal member N . By Lemma 2.1, if N1, N2 ∈ Σ,
then hd(a, M/N1 ∩ N2) < n. Since the intersection of any two members of Σ is
again in Σ, it follows that N is contained in every member of Σ implying that N
is the smallest element of Σ.

i) Since hd(a, M/N) < n, from the exact sequence 0 → N → M → M/N → 0
and Lemma 2.1 we obtain hd(a, N) = n. From n = hd(a, N) ≤ dim N ≤ dim M =
n we derive dim N = n.

ii) Suppose that L is a submodule of N such that hd(a, N/L) < n. From the
exact sequence

0→ N/L→M/L→M/N → 0
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and Lemma 2.1 we infer hd(a, M/L) < n. Hence L ∈ Σ and L = N .
iii) If p ∈ Att(N), then p = Ann(N/L), where L is a submodule of N . By

(ii), hd(a, N/L) = n. Hence n = hd(a, N/L) ≤ dim R/p ≤ dim(M) = n. Thus
dim(R/p) = dim(M). Since dim(M) = dim(R/ Ann(M)), we conclude that p is a
minimal element of the set V(Ann(M)). Thus p ∈ Att(M).

On the other hand, using Lemma 2.3, we derive n = hd(a, N/L) ≤ cd(a, R/p) ≤
dim(R/p) ≤ dim(M) = n. Therefore cd(a, R/p) = n.

Now suppose that p ∈ Att(M) and cd(a, R/p) = n. Since hd(a, M/N) < n and
cd(a, R/p) = n, Lemma 2.2 implies that p /∈ Att(M/N). Therefore p ∈ Att(N).

iv) The exact sequence 0→ N →M →M/N → 0 induces the exact sequence

Ha
n+1(M/N)→ Ha

n(N)→ Ha
n(M)→ Ha

n(M/N)→ .

Since hd(a, M/N) < n , Ha
n+1(M/N) = Ha

n(M/N) = 0. Therefore Ha
n(N) '

Ha
n(M). �

Theorem 2.5. Let (R,m) be a complete local ring, a be an ideal of R and M
be a non-zero Artinian module of dimension n. Then

Ass(Ha
n(M)) = {p ∈ Att(M) : cd(a, R/p) = n}.

Proof. If n = 0, then M has a finite length and therefore akM = 0 for some
k ∈ N. Hence

Ass(Ha
n(M)) = Ass(M) = {m} = Att(M) = {p ∈ Att(M) : cd(a, R/p) = 0}.

Thus we can assume that n > 0. If Ha
n(M) = 0, then hd(a, M) < n. Hence by

Lemma 2.2 cd(a, R/p) < n for all p ∈ Att(M). This implies {p ∈ Att(M) :
cd(a, R/p) = n} = ∅ = Ass(Ha

n(M)) and the result has been proved in this
case. Now assume that n > 0 and Ha

n(M) 6= 0. Then hd(a, M) = dim M =
n. By Lemma 2.4, we can assume that M has no proper submodule L with
hd(a, M/L) < n and we must show that Ass(Ha

n(M)) = Att(M).
If r /∈ ∪p∈Att Mp, then the exact sequence 0→ (0 :M r)→M

r→M → 0 induces
the exact sequence Ha

n(0 :M r) → Ha
n(M) r→ Ha

n(M). Using [3, Lemma 4.7], we
obtain NdimR(0 :M r) ≤ n−1, and therefore Ha

n(0 :M r) = 0. Since 0→ Ha
n(M) r→

Ha
n(M) is exact, we infer r /∈ ∪p∈Ass Ha

n(M)p and ∪p∈Ass Ha
n(M)p ⊆ ∪p∈Att Mp. Since

Att M is a finite set, every p ∈ AssR(Ha
n(M)) is included in some q ∈ Att M .

For such q there exists a submodule L of M satisfying q = Ann(M/L). Hence
n = hd(a, M/L) ≤ dim M/L ≤ dim R/q ≤ dim R/p ≤ n. This shows p = q and
Ass Ha

n(M) ⊆ Att(M).
To prove the reverse inclusion, assume p ∈ Att(M). There exists a submodule

L of M such that Att(L) = {p}. Since we have assumed that M has no proper
submodule U with hd(a, M/U) < n, Lemma 2.4 implies that cd(a, R/p) = n.
Hence by Lemma 2.2, we have hd(a, L) = n and Ha

n(L) 6= 0. Since cd(a, R/p) = n
and Att(L/U) ⊆ Att L = {p} for all submodules U , Lemma 2.2 shows that L
cannot have any proper submodule U such that hd(a, L/U) < n. Analogously as
above, we obtain Ass Ha

n(L) ⊆ Att(L) = {p}. Since Ha
n(L) 6= 0, we establish that

Ass Ha
n(L) = {p}. However, from the exact sequence 0 → Ha

n(L) → Ha
n(M) →
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Ha
n(M/L) we see that {p} = Ass Ha

n(L) ⊆ Ass Ha
n(M). Therefore p ∈ Ass Ha

n(M),
that completes the proof. �

Corollary 2.6. Let (R,m) be a complete local ring, a be an ideal of R and M
be a non-zero Artinian module of dimension n. Then

Ass(Hm
n (M)) = {p ∈ Att(M) : dim(R/p) = n}.

Proof. Since cd(m, R/p) = dim R/p, it follows from Theorem 2.5. �

The following Theorem is the main result of this paper.

Theorem 2.7. Let (R,m) be a local ring, a be an ideal of R and M be a
non-zero Artinian R-module with NdimR M = n. Then

AssR(Ha
n(M)) = {P ∩R : P ∈ AttR̂ M and cd(aR̂, R̂/P) = n}.

Proof. Since dimR̂ D(M) = dimR̂ M = NdimR M = n (for details consult
[4]), by [1, Theorem 7.1.6], Hn

aR̂
(D(M)) is an Artinian local cohomology mod-

ule and D(Hn
aR̂

(D(M))) ' HaR̂
n (M) is a Noetherian R̂-module. It is well known

that AssR(L) = {P ∩ R : P ∈ AssR̂ L} for each finitely generated R̂-module L

(See [9, Exercise 6.7]). Thus AssR(HaR̂
n (M)) = {P ∩ R : P ∈ AssR̂(HaR̂

n (M))}.
Since by [13, Proposition 4.3], Ha

n(M) ' HaR̂
n (M) as R-modules, we conclude

that AssR(Ha
n(M)) = {P ∩ R : P ∈ AssR̂(HaR̂

n (M))}. According to Theo-
rem 2.5, AssR̂(HaR̂

n (M)) = {P : P ∈ AttR̂ M and cd(aR̂, R̂/P) = n}. Therefore
AssR(Ha

n(M)) = {P ∩R : P ∈ AttR̂ M and cd(aR̂, R̂/P) = n}. �
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