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ON b-ORDER DUNFORD-PETTIS OPERATORS

AND THE b-AM-COMPACTNESS PROPERTY

R. ALAVIZADEH and K. H. AZAR

Abstract. In this paper, we introduce b-order Dunford-Pettis operators, that is,
an operator T from a normed Riesz space E into a Banach space X is called b-order
Dunford-Pettis if T carries each b-order bounded subset of E into a Dunford-Pettis
subset of X, and we investigate its relationship with order Dunford-Pettis operators.
We also introduce the b-AM -compactness property for a Banach lattice and we
study some of its topological properties and its relationships with the Dunford-
Pettis property. We show that the identity operator of Banach lattice E is b-
order Dunford-Pettis if and only if E has the b-AM -compactness property. We
characterize Banach lattices E and F on which the adjoint of each operator from E
into F which is b-order Dunford-Pettis and weak Dunford-Pettis, is Dunford-Pettis.

1. Introduction

Let us recall that a norm bounded subset A of a Banach space X is a Dunford-
Pettis set whenever every weakly compact operator from X to an arbitrary Banach
space carries A to a norm totally bounded set. An operator T : X → Y between
two Banach spaces is called a Dunford-Pettis operator if T carries weakly con-
vergent sequences to norm convergent sequences. A Banach space X is said to
have the Dunford-Pettis property if every weakly compact operator T defined on
X and taking values in a Banach space Y is Dunford-Pettis. For example, the
Banach space `∞ has the Dunford-Pettis property but the Banach space `2 does
not have the Dunford-Pettis property. In [6], Aqzzouz and Bouras introduced the
AM -compactness property for Banach lattices. A Banach lattice E is said to have
the AM -compactness property if every weakly compact operator defined on E
and taking values in a Banach space X is AM -compact. For example, the Banach
lattice `1 has the AM -compactness property, but L2[0, 1] does not have the AM -
compactness property. They used the AM -compactness property to characterize
Banach lattices on which each positive weak Dunford-Pettis operator is almost
Dunford-Pettis, and conversely. They proved that Banach lattice E has the AM -
compactness property if and only if for each x ∈ E+, [−x, x] is a Dunford-Pettis
set. Also, they proved that a Banach lattice E has the AM -compactness property
if and only if for every weakly null sequence {fn} ⊂ E′, we have |fn| → 0 for
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σ(E′, E). They showed that Banach lattice E with the Dunford-Pettis property
and order continuous norm has the AM -compactness property. In this paper, we
introduce the b-AM -compactness property and investigate Banach lattices which
under some conditions have the b-AM -compactness property.

The class of order Dunford-Pettis operators was introduced by Aqzzouz and
Bouras in [5]. An operator T from a normed Riesz space E into a Banach space
X is called order Dunford-Pettis if it carries each order bounded subset of E onto
a Dunford-Pettis set of X. For example, the identity operator of Banach lattice c0
is order Dunford-Pettis. They studied the class of Dunford-Pettis sets in Banach
lattices, and establish some sufficient conditions for which a Dunford-Pettis set is
relatively weakly compact (resp,. relatively compact). They proved that Banach
lattice E has the AM -compactness property if and only if the identity operator
of E is order Dunford-Pettis. In this paper, we introduce b-order Dunford-Pettis
operators and prove some of their properties. Then we study relationship between
order Dunford-Pettis operators and b-order Dunford-Pettis operators. We show
that the identity operator of Banach lattice E is b-order Dunford-Pettis if and
only if E has the b-AM -compactness property. Bouras, El Kaddouri, H’Michane,
and Moussa characterized Banach lattices E and F on which the adjoint of each
operator from E into F which is order Dunford-Pettis and weak Dunford-Pettis, is
Dunford-Pettis, see [10]. In this paper, we characterize Banach lattices E and F on
which the adjoint of each operator from E into F which is b-order Dunford-Pettis
and weak Dunford-Pettis, is Dunford-Pettis.

2. Preliminary Information

We use the term operator T : E → F between two Riesz spaces to mean a (maybe
unbounded) linear mapping. Let E and F be two vector lattices (Riesz spaces),
let x, y ∈ E with x ≤ y, and let the order interval [x, y] be the subset of E defined
by [x, y] = {z ∈ E : x ≤ z ≤ y}. A subset of E is called order bounded if it is
included in an order interval. Let T : E → F be an operator between two Riesz
spaces E and F . T is order bounded if it maps order bounded subsets of E to
order bounded subsets of F .

By E′ and E′′, we denote the topological dual and topological bidual of E,
respectively. The vector space E∼ of all order bounded linear functionals on E
is called the order dual of E. The vector space E∼∼ = (E∼)∼ denotes the order
bidual of E. The algebraic adjoint of T denoted by T ′ : F ′ → E′, and its order
adjoint denoted by T∼ : F∼ → E∼.

The b-order bounded subsets of E are the order bounded in E∼∼. T is b-order
bounded if it maps b-order bounded subsets of E to b-order bounded subsets of F .

A vector lattice E is said to be discrete if it admits a complete disjoint system
of discrete elements, where we say a nonzero element x ∈ E is discrete whenever
the ideal generated by x coincides with the vector subspace generated by x. A
Banach lattice is a Banach space (E, ‖.‖) such that E is a vector lattice and its
norm satisfies the following property: for each x, y ∈ E, if |x| ≤ |y|, then we have
‖x‖ ≤ ‖y‖. A norm ‖·‖ of a Banach lattice E is order continuous if for each net
(xα)α∈Λ such that xα ↓ 0, (i.e., (xα) is decreasing and inf{xα : α ∈ Λ} = 0), we
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have ‖xα‖ → 0. A Banach lattice E is said to be a Kantorovich–Banach space
(KB-space) whenever every increasing norm bounded sequence of E+ is norm-
convergent. If E is a Banach lattice and x ∈ E+, then the principal ideal Ix
generated by x is

Ix = {y ∈ E : there exists λ > 0 with |y| ≤ λx} ,

and thus Ix under the norm ‖·‖∞, defined by

‖y‖∞ = inf {λ > 0 : |y| ≤ λx} , y ∈ Ix,

is an AM -space with the unit x, whose closed unit ball is the order interval [−x, x].
For an operator T : E → F between two Riesz spaces, we say that its modulus |T |
exists whenever

|T | := T ∨ (−T )

exists. By using [1, Theorem 1.18], for Riesz spaces E and F whenever F is
Dedekind complete, each order bounded operator T : E → F satisfies the following
statement

|T | (x) = sup {|Ty| : |y| ≤ x}
for each x ∈ E+. We refer to [1, 11] and [2] for any unexplained terms from vector
lattice theory.

3. Main Results

In the following, we introduce the class of b-order Dunford-Pettis operators and
the b-AM -compactness property, and we investigate some of their properties. We
study application of these new concepts in the topological properties of Dunford-
Pettis sets and operators.

Definition 3.1. An operator T from a normed Riesz space E into a Banach
space X is called b-order Dunford-Pettis if T carries each b-order bounded subset
of E into a Dunford-Pettis subset of X.

For example, we know that `1 has property (b) and its norm is order continuous.
Therefore, if A ⊂ `1 is a b-order bounded set, then it is weakly compact. On the
other hand, `1 has the Schur property. Thus, A is norm compact, and hence
Dunford-Pettis. Therefore, the identity operator of Banach lattice `1 is b-order
Dunford-Pettis. Also, we can give Banach lattice c0 as an example of a Banach
lattice without property (b) that its identity operator is b-order Dunford-Pettis.
Indeed, Bc0 (the closed unit ball of c0) is a Dunford-Pettis set by Lemma 3.5.
Therefore, each norm bounded subset of c0, specifically each b-order bounded
subset of c0, is Dunford-Pettis. But the identity operator of `∞ is not a b-order
Dunford-Pettis operator (since [−1, 1], the closed unit ball of `∞, is not Dunford-
Pettis). Let E be a normed Riesz space and let X be a Banach space. Recall that
an operator T from E into X is AM -compact (resp., b-AM -compact) if it maps
order bounded (resp., b-order bounded) subset of E to relatively compact subset of
X. By K(E,X), AM(E,X), and AMb(E,X), we denote the collection of compact,
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AM -compact, and b-AM -compact operators from E into X, respectively. Clearly,
we have

K(E,X) ⊂ AMb(E,X) ⊂ AM(E,X).

By DPo(E,X) and DPb(E,X), we denote the collection of order Dunford-Pettis
and b-order Dunford-Pettis operators, respectively. It is clear that

AM(E,X) ⊂ DPo(E,X), AMb(E,X) ⊂ DPb(E,X).

Note that the inclusions may be proper. In fact, the identity operator I : L1[0, 1]→
L1[0, 1] is both b-order Dunford-Pettis and order Dunford-Pettis but neither
AM -compact nor b-AM -compact.

In the next example we show that the inclusion

DPb(E,X) ⊂ DPo(E,X)

also may be proper. Before giving an example which shows that the above inclusion
is strict, we need a preliminary Lemma.

Lemma 3.2. Let X be a Banach space and let A be a subset of X. Then, A is
a Dunford-Pettis set as a subset of X if and only if A is a Dunford-Pettis set as
a subset of X ′′.

Proof. Let A be a Dunford-Pettis set as a subset of X and let T : X ′′ → Y be
a weakly compact operator, where Y is an arbitrary Banach space. Put S = T

∣∣
X

.
Therefore, S is a weakly compact operator. Since A ⊂ X is a Dunford-Pettis set,
S(A) = T (A) is relatively compact. Consequently, A is a Dunford-Pettis set as a
subset of X ′′.

Conversely, let A be a Dunford-Pettis set as a subset of X ′′ and let T be a
weakly compact operator from X into an arbitrary Banach space Y . We know
that T ′′ : X ′′ → Y ′′ is weakly compact. Hence T ′′(A) is relatively compact. Since
T = T ′′

∣∣
X

, T (A) is relatively compact, the proof is complete. �

Example 3.3. Put

L = {(an) ∈ c0 | (nan) ∈ c0} .
It is easy to see that L is a normed Riesz space and it is indeed an order ideal of
c0. First, we prove that `∞ is the topological bidual of L. It is sufficient to show
that the linear operator ψ : L′ → `1 defined by

ψf = (f(en)),

is a well defined linear isometry which is also a lattice isomorphism, where {en}
is the standard basis of L. Let {en} be the standard basis of L. Fix an arbitrary
f ∈ L′. For each n ∈ N, put

xn(m) =

{
sgn(f(em)), m = 1, 2, . . . , n,
0, m > n

where sgn(x) is the sign of x ∈ R (i.e., sgn(0) = 0 and sgn(x) = x/ |x| for x 6= 0).
Clearly, (xn) ∈ L and ‖xn‖ ≤ 1 for all n ∈ N. We have

‖f‖ ≥ f(xn) = f

( n∑
k=1

sgn(f(ek))ek

)
=

n∑
k=1

sgn(f(ek))f(ek) =

n∑
k=1

|f(ek)| .
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Hence
∑∞
k=1 |f(ek)| ≤ ‖f‖. That is, ψ is well defined. It is easy to see that ψ is

a linear bijective map. The above argument also shows that

‖ψf‖ = ‖(f(en))‖1 =

∞∑
k=1

|f(ek)| ≤ ‖f‖ .

On the other hand, let x = (x1, x2, · · · ) ∈ L such that ‖x‖ ≤ 1. Then,

‖f(x)‖ =

∥∥∥∥f( ∞∑
k=1

xkek

)∥∥∥∥ =

∥∥∥∥ ∞∑
k=1

xkf(ek)

∥∥∥∥ ≤ ∞∑
k=1

|xk| |f(ek)| ≤
∞∑
k=1

|f(ek)| .

Thus, ‖f‖ ≤
∑∞
k=1 |f(ek)|. Therefore, ‖ψf‖ = ‖f‖, that is, ψ is an onto isometry.

Since ψ and ψ−1 are positive, it follows from [1, Theorem 2.15] that ψ is an onto
lattice isomorphism. We proved that `1 is the dual of L, and hence `∞ is the
bidual of L.

Now, we define T : L→ `∞ as follows:

T (a1, a2, · · · ) = (na1, na2, · · · ), (a1, a2, · · · ) ∈ L.
Let 0 ≤ x = (xn) ∈ c0. Thus, T [0, x] ⊂ [0, (nxn)]. Since I : c0 → c0 is order
Dunford-Pettis, [0, (nxn)] is a Dunford-Pettis set. Therefore, T [0, x] is Dunford-
Pettis, that is, T is order Dunford-Pettis. Now, we claim that the operator T is
not b-order Dunford-Pettis. Since the sequence {en}, the standard basis of L, is
order bounded in `∞, it is order bounded in L∼∼. Therefore, {en} is a b-order
bounded subset of L.

T ({en | n ∈ N}) = {nen | n ∈ N}.
Therefore, T ({en | n ∈ N}) is a norm unbounded subset of `∞. Hence T ({en |
n ∈ N}) is not a Dunford-Pettis set. Consequently, T is not b-order Dunford-Pettis.

Definition 3.4. A Banach lattice E is said to have the b-AM -compactness
property if every weakly compact operator from E into an arbitrary Banach space
X is b-AM -compact.

For example, c0 and `1 have the b-AM -compactness property. Clearly, each
Banach lattice with the b-AM -compactness property has the AM -compactness
property. We believe that the converse is false in general. However, right now we
do not have an example. Nonetheless, there exists a Banach lattice which does
not have the b-AM -compactness property. In fact, `∞ which does not have the
AM -compactness property, does not have the b-AM -compactness property, either.

The next result characterizes the b-order Dunford-Pettis operators. For the
proof of the next Theorem, we need the following Lemma.

Lemma 3.5. Let T be an operator from a normed space X into a Banach space
Y . Then, the adjoint T ′ : Y ′ → X ′ is Dunford-Pettis if and only if T (BX) is a
Dunford-Pettis set, where BX is the closed unit ball of X.

Proof. One can repeat the argument of [5, Remark 4]. �

Theorem 3.6. Let T be an operator from a Banach lattice E into a Banach
space X. Then the following statements are equivalent:
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(a) T is b-order Dunford-Pettis operator,
(b) for each weakly compact operator S from X into an arbitrary Banach space

Z, the composed operator ST is b-AM -compact,
(c) for each 0 ≤ x′′ ∈ E′′, the operator (T

∣∣
Y

)′ is a Dunford-Pettis operator,
where Y = Ix′′ ∩ E.

Proof. (a)⇒(b) Obvious.
(b)⇒(a) Let A be a b-order bounded subset of E. It is sufficient to prove that

an arbitrary weakly compact operator S from X into an arbitrary Banach space
Z carries T (A) into a norm totally bounded set. Since by our hypothesis, ST is
b-AM -compact, S(T (A)) = ST (A) is relatively compact. This proves that T is
b-order Dunford-Pettis.

(a)⇒(c) Let 0 ≤ x′′ ∈ E′′ and let Y = Ix′′ ∩ E. Since BY = [−x′′, x′′] ∩ E is
b-order bounded, T (BY ) is a Dunford-Pettis set. Therefore, by using Lemma 3.5
the adjoint of the restriction of T to Y is a Dunford-Pettis operator.

(c)⇒(a) It sufficient to prove that for each 0 ≤ x′′ ∈ E′′, T ([−x′′, x′′] ∩ E) is a
Dunford-Pettis set.

Put Y = Ix′′ ∩E. By our hypothesis, the adjoint of the restriction of T to Y is
a Dunford-Pettis operator. So by using Lemma 3.5, the proof is complete. �

Some basic properties of b-order Dunford-Pettis operators are summarized in
the next proposition. For an arbitrary pair of normed spaces X and Y , the symbol
B(X,Y ) denote the vector space of all bounded operators from X into Y .

Proposition 3.7. Let E and F be two normed Riesz spaces, and let X and Y
be two Banach spaces. We have

(a) The vector space DPb(E,X)∩B(E,X) is a closed vector subspace of vector
space B(E,X).

(b) The vector space DPb(E,X)∩B(E,X) is a closed vector subspace of vector
space DPo(E,X) ∩B(E,X).

(c) If T ∈ DPb(E,X), then for each bounded operator S : X → Y , the composed
operator ST is b-order Dunford-Pettis.

(d) If T : E → F is a b-order bounded operator, then for each operator S ∈
DPb(F,X), the composed operator ST is b-order Dunford-Pettis.

Proof. (a) Let S be a bounded operator in norm closure DPb(E,X)∩B(E,X).
So there exist {Tn} ⊂ DPb(E,X)∩B(E,X) such that Tn → S is norm. Let V be
a weakly compact operator from X into an arbitrary Banach space Z. We have
‖V Tn − V S‖ → 0. By using Theorem 3.6, V Tn is a b-AM -compact operator for
each n. Therefore, by using [9, Theorem 2.9 (1)], V S is b-AM -compact. Now
again by using Theorem 3.6, we have S ∈ DPb(E,X) ∩B(E,X).

(b) It follows from the fact that DPo(E,X) ∩ B(E,X) is closed in B(E,X),
see [10, Proposition 3.1 (a)].

(c) Let T ∈ DPb(E,X) and let S : X → Y be a bounded operator. We prove
that ST ∈ DPb(E, Y ). By using Theorem 3.6, it is sufficient to prove that for a
weakly compact operator V from Y into an arbitrary Banach space Z, V (ST ) is
b-AM -compact. We know that V S is a weakly compact operator from X into Z.
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Since T ∈ DPb(E,F ), by using Theorem 3.6 we conclude that V (ST ) = (V S)T is
b-AM -compact. That is, ST is a b-order Dunford-Pettis operator.

(d) Obvious. �

Recall from [3] that an operator T : E → F between two Riesz spaces is called
strongly order bounded if it maps b-order bounded subsets of E into order bounded
subsets of F . A Riesz space E is said to have the property (b) if every subset A of E
is order bounded whenever it is order bounded in E∼∼. In the following result, we
give some sufficient conditions under which an operator is b-order Dunford-Pettis.

Proposition 3.8. (a) Let E be a Banach lattice and let X be a Banach
space. An operator T : E → X is b-order Dunford-Pettis whenever its sec-
ond adjoint T ′′ : E′′ → X ′′ is an order Dunford-Pettis operator.

(b) Let E and F be two normed Riesz spaces and let X be a Banach space.
If T : E → F is a strongly order bounded operator, then for each operator
S ∈ DPo(F,X), the composed operator ST is b-order Dunford-Pettis.

Proof. (a) Let A be a b-order bounded subset of E. Since A is order bounded in
E′′, and T ′′ is order Dunford-Pettis, T ′′(A) is a Dunford-Pettis subset of X ′′. We
know that T (A) = T ′′(A). It follows from Lemma 3.2, T (A) is a Dunford-Pettis
subset of X. Therefore, T is b-order Dunford-Pettis.

(b) Obvious. �

Corollary 3.9. Let E be a normed Riesz space with property (b) and let X be
a Banach space. We have

DPo(E,X) = DPb(E,X).

Proof. It follows from part 3.8 of Proposition 3.8 and the fact that I : E → E
is strongly order bounded. �

Theorem 3.10. Let E be a Banach lattice that its bidual has order continuous
norm and let X be a Banach space with the Dunford-Pettis property. Then, each
continuous operator T : E → X is b-order Dunford-Pettis.

Proof. We use similar proof techniques as those which were developed in [10,
Proposition 3.2]. Let T be an operator from E into X and let A be a b-order
bounded subset of E. Thus, A is order bounded in E′′. Therefore, by using [1, The-
orem 4.9], A is σ(E′′, E′′′)-compact. Since A ⊂ E, A is σ(E,E′)-compact. Thus,
T (A) is relatively weakly compact. On the other hand, since X has the Dunford-
Pettis property, the identity operator of X is weak Dunford-Pettis. Therefore,
T (A) is a Dunford-Pettis subset of X. �

In the next result we prove that a Banach lattice E has the b-AM -compactness
property if and only if its b-order bounded subsets are Dunford-Pettis.

Theorem 3.11. Let E be a Banach lattice. Then the following statements are
equivalent:

(a) E has the b-AM -compactness property,
(b) I : E → E is b-order Dunford-Pettis,
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(c) each positive operator from E into E is b-order Dunford-Pettis,
(d) for each 0 ≤ x′′ ∈ E′′, [−x′′, x′′] ∩ E is a Dunford-Pettis set.

Proof. (a) ⇒ (b) It follows from Theorem 3.6.

(b)⇒ (c) Let T : E → E be a positive operator and let A be a b-order bounded
set in E. Since T is positive, it is b-order bounded. Therefore, T (A) is a b-order
bounded set in E. So by our hypothesis, T (A) = I(T (A)) is a Dunford-Pettis set.
This proves that T is a b-order Dunford-Pettis operator.

(c) ⇒ (b) Obvious.

(b)⇒ (a) Let T be a weakly compact operator from E into an arbitrary Banach
space X. We prove that T is b-AM -compact. Let A be a b-order bounded set in
E. Since I is b-order Dunford-Pettis, A = I(A) is a Dunford-Pettis set. Therefore,
T (A) is a totally bounded subset of X. Consequently, T is a b-AM -compact
operator.

(b) ⇒ (d) Obvious.

(d)⇒ (b) Let A be a b-order bounded subset of E. So, there exists 0 ≤ x′′ ∈ E′′
such that A ⊂ [−x′′, x′′] ∩E. Therefore, by our hypothesis, A is a Dunford-Pettis
set in E′′. By using Lemma 3.2, A is a Dunford-Pettis set in E. Since I(A) = A,
I is a b-order Dunford-Pettis operator. �

The following theorem gives some sufficient conditions under which a Banach
lattice has the b-AM -compactness property.

Theorem 3.12. A Banach lattice E has the b-AM -compactness property if one
of the following assertions is valid:

(a) the bidual of E has order continuous norm and E has the Dunford-Pettis
property,

(b) the lattice operations in E′ are weakly sequentially continuous,
(c) the topological dual E′ is discrete with order continuous norm,
(d) E has the AM -compactness property and each b-order bounded disjoint se-

quence in E+ is Dunford-Pettis,
(e) E is a discrete KB-space,
(f) E has property (b) and the AM -compactness property,
(g) E′′ has the AM -compactness property.

Proof. (a) Follows from Theorem 3.10 and Theorem 3.11.

(b) It is sufficient to show that for each 0 ≤ x′′ ∈ E′′, [−x′′, x′′]∩E is Dunford-
Pettis. Let {xn} be a sequence in [−x′′, x′′]∩E and let {fn} be an arbitrary weakly
null sequence in E′. We have

0 ≤ |fn(xn)| ≤ |fn| |xn| ≤ |fn| (x′′).

It follows from our hypothesis and fn(x′′) → 0 that |fn| (x′′) → 0. Therefore,
fn(xn)→ 0. The result follows from [4, Theorem 1].

(c) It follows from [8, Proposition 2.6] that the lattice operations in E′ are
weakly sequentially continuous.
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(d) Put A = [−x′′, x′′] ∩ E for some 0 ≤ x′′ ∈ E′′. It is sufficient to show that
A is a Dunford-Pettis set. Since E has the AM -compactness property, for each
x ∈ A+ = [0, x′′]∩E, [−x, x] is Dunford-Pettis. If {xn} is a disjoint sequence in A+,
then by our hypothesis, {xn} is Dunford-Pettis. It follows from [5, Corollary 2.13]
that A is Dunford-Pettis.

(e) It follows from [9, Corollary 2.10].

(f) Obviuos.

(g) It follows from Lemma 3.2 and the fact that each subset of a Dunford-Pettis
set is Dunford-Pettis. �

The next theorem characterizes Banach lattices E and F on which the adjoint
of each operator from E into F which is b-order Dunford-Pettis and weak Dunford-
Pettis, is Dunford-Pettis.

Theorem 3.13. Let E and F be two Banach lattices. The following assertions
are equivalent:

(a) each order Dunford-Pettis and weak Dunford-Pettis operator T : E → F has
an adjoint T ′ : F ′ → E′ that is Dunford-Pettis,

(b) each b-order Dunford-Pettis and weak Dunford-Pettis operator T : E → F has
an adjoint T ′ : F ′ → E′ that is Dunford-Pettis,

(c) one of the following is valid:
(1) E′ has order continuous norm,
(2) F ′ has the Schur property.

Proof. (a) ⇒ (b) Obvious.

(b) ⇒ (c) We use similar proof techniques as those which were developed in
[7, Theorem 3.5]. Assume by way of contradiction that (c) is not correct, i.e., E′

does not have order continuous norm and F ′ does not have the Schur property.
We have to construct a b-order Dunford-Pettis and weak Dunford-Pettis operator
T : E → F such that its adjoint is not Dunford-Pettis. Since the norm of E′ is not
order continuous, by [1, Theorem 4.69], `1 embeds complementably in E. That
is, there exist, a positive projection P : E → `1. On the other hand, F ′ does not
have the Schur property so there exists a weakly null sequence {fn} in F ′ such
that ‖fn‖ = 1 for all n ∈ N. Since sup‖y‖≤1 ‖fn(y)‖ = 1, there exists a sequence

{yn} of positive elements in the closed unit ball of F such that for some ε > 0, we
have |fn(yn)| ≥ ε for all n ∈ N. We define the operator S : `1 → F as follow:

Sa =
∑
n

anyn, a = (a1, a2, . . .) ∈ `1.

Now we consider T = S ◦P . As `1 is a discrete KB-space and P ≥ 0, P is b-AM -
compact. Therefore, T is b-AM -compact. So clearly, T is a b-order Dunford-Pettis
operator. Since `1 has the Dunford-Pettis property, T is also weak Dunford-Pettis.
But as shown in [10, Theorem 3.1], its adjoint T ′ : F ′ → E′ is not Dunford-Pettis.

(c) ⇒ (a) It follows from [10, Theorem 3.1]. �
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In the next theorem we prove that b-order Dunford-Pettis operators satisfy the
domination property.

Theorem 3.14. Let S, T : E → F be two operators from a Banach lattice E
into a Banach lattice F such that 0 ≤ S ≤ T . If T is b-order Dunford-Pettis, then
S is also b-order Dunford-Pettis.

Proof. Let S, T : E → F be two operators from a Banach lattice E into a
Banach lattice F such that 0 ≤ S ≤ T , and let T be b-order Dunford-Pettis. Let
0 ≤ x′′ ∈ E′′ be arbitrary and fixed and Y = Ix′′ ∩E. Then by using Theorem 3.6,
(T
∣∣
Y

)′ : F ′ → Y ′ is a Dunford-Pettis operator. Since 0 ≤ (S
∣∣
Y

)′ ≤ (T
∣∣
Y

)′, and Y ′

has order continuous norm (since Y is an M -space), by using [1, Theorem 5.90],
(S
∣∣
Y

)′ is a Dunford-Pettis operator. Therefore, by using Theorem 3.6, we conclude
that S is a b-order Dunford-Pettis operator. �
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