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INTEGRAL TRANSFORMS AND AMERICAN OPTIONS:

LAPLACE AND MELLIN GO GREEN

G. ALOBAIDI, R. MALLIER and M. C. HASLAM

Abstract. We use Mellin and Laplace transforms to study the price of American

options, and show that both transforms produce solutions and integral equations
which are equivalent to the Green’s function approach. Conventional rather than

partial transforms are used. We also combine a boundary fixing transformation

with the integral transforms.

1. Introduction

One of the classic problems of mathematical finance is the pricing of American
options and the associated free boundary. For the uninitiated, financial derivatives
are securities whose value is based on the value of some other underlying security,
and options are an example of derivatives, carrying the right but not the obligation
to enter into a specified transaction in the underlying security. A call option allows
the holder to buy the underlying security at a specified strike price E, while a put
option allows the holder to sell the underlying at the price E. Unlike Europeans,
which can be exercised only at expiry. American options may be exercised at
any time at or before expiry, For vanilla Americans, the pay-off from immediate
exercise is the same as the pay-off at expiry, namely max (S − E, 0) for a call and
max (E − S, 0) for a put. Naturally, a rational investor will choose to exercise
early if that maximizes his return, and it follows that there will be regions where
it is optimal to hold the option and others where exercise is optimal, with a free
boundary known as the optimal exercise boundary separating these regions. For
vanilla Americans, there have been numerous studies of this free boundary, as
well a number of reviews such as [6, 10, 11, 22], but a closed form solution for
its location remains elusive, as does a closed form expression for the value of an
American option, although a number of series solutions have been presented such
as [18, 1, 41] and an infinite sum of double integrals [62].

We would note that [59] proved that the free boundary was regular for vanilla
Americans, and that the results of [58] on the analyticity of solutions to general
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Stefan problems are also applicable to American options, while [13] has shown
existence and uniqueness for the free boundary for the put.

One popular approach over the years has been to reformulate the problem as
an integral equation for the location of the free boundary, which can be solved
using either asymptotics or numerics. Two forms of this integral equation ap-
proach are pertinent here. As our reference point, we will use the Green’s function
approach [35, 44, 7, 30, 32, 29]; by reference point, we mean that this is exist-
ing work to which we will compare our results obtained by other methods. The
Green’s function approach was originally developed for physical Stefan problems
by Kolodner [35] and later applied to economics by McKean [44] who rederived
the results in [35] using a partial Fourier transform, which was published as an
appendix to a 1965 paper on the pricing of American warrants by Samuelson [53]
which predated the publication of the Black-Scholes [8] and Merton [45] studies
and involved hard-to-estimate discount rates rather than the risk-free rate which
[8, 45] arrived at using a continuous-time arbitrage argument. These results were
applied to vanilla Americans with great success by Kim [32] and Jacka [29], who
independently derived the same results, Kim both by using McKean’s formula
and by taking the continuous limit of the Geske-Johnson formula [25] which is
a discrete approximation for American options, and thereby demonstrating that
those two approaches led to the same result, and Jacka by applying probability
theory to the optimal stopping problem. [9] later used these results to show how
to decompose the value of an American into intrinsic value and time value. The
approach in [44, 32, 29] leads to an integral equation for the location of the
free boundary, which was solved numerically by [28], by approximating the free
boundary as a multipiece exponential function by [31], and, in a slightly different
form, using asymptotics by [12, 21, 26, 34, 36]. Chiarella [15] has surveyed
the Green’s function approach to American options using the incomplete Fourier
transform and demonstrated how the various representations are related, as well
as considering their economic interpretations.

The other method we would mention is the integral transform approach, which
is the subject of the present paper. The use of integral transform methods for
Stefan-type free boundary problems dates back at least as far as the classic work
of Evans et al. [20], who considered the recrystallization of an infinite metal slab.
In that work, the governing partial differential equation (PDE) was the diffusion
equation,

∂V

∂τ
= σ2 ∂

2V

∂x2
,(1)

and [20] were able to apply a partial Laplace transform in time to (1) to re-
duce the PDE to an ordinary differential equation in transform space. The so-
lution of that ordinary differential equation together with the conditions of the
free boundary enabled [20] to give an integral equation formulation of their prob-
lem, which they solved as a series. Overviews of partial transforms, sometimes
called modified transforms or incomplete transforms, can be found in standard
texts on diffusion and Stefan problems, such as [19, 27, 47]. Broadly speaking,
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the objective of applying an integral transform such as the Laplace transform,
L [A (τ)] =

∫∞
0

e−pτ A (τ) dτ , or Mellin transform, M [A (S)] =
∫∞
0
A (S)Sp−1dS,

to a PDE such as the diffusion equation (1) or the Black-Scholes-Merton equation,

∂V

∂τ
− σ2S2

2

∂2V

∂S2
− (r −D)S

∂V

∂S
+ rV = 0,(2)

is to reduce the dimension of the problem, by which we mean that if we apply a
transform to an equation such as (1) or (2) with derivatives with respect to two
(or more) variables, the transformed equation should have derivatives with respect
to one fewer variables. In order to achieve this goal, it is obviously necessary to
pick the correct integral transform, and for the Black-Scholes-Merton equation (2)
the natural integral transforms are Laplace with respect to time τ and Mellin with
respect to stock price S, where natural in this sense means that the transformed
equation does indeed have derivatives with respect to fewer variables. For the dif-
fusion equation (1), the natural integral transforms are again Laplace with respect
to time τ but now either Fourier or two-sided Laplace with respect to x. Although
it is straightforward to apply integral transforms to unbounded problems, where
the governing equation applies everywhere, it is less straightforward to apply them
to problems with boundaries, as typically the governing equation does not apply
once the boundary is crossed, and it was for this reason that partial integral trans-
forms were developed, in which the transform is only applied where the governing
equation holds, and the function being transformed is essentially set to zero else-
where. With a partial Laplace transform, for example, instead of taking an in
integral from τ = 0 to τ = ∞, there would typically be an integral from τ = τf
to τ = ∞, where τf is the location of the boundary which often depends on the
other variables in the problem. Although partial transforms address the issue that
the governing equation does not apply once they boundary is crossed, they can be
difficult to invert, because the inverse is required to be zero where the equation
does not apply. In many problems, this is not an issue, especially in free boundary
problems where it is often possible to obtain an integral equation for the location
of the boundary in transform space without needing to invert the transform.

For securities which involve both equity and debt, such as equity-linked debt
or convertible bonds, one approach has been to combine the Black-Scholes model
with an interest rate model, which leads to a three-dimensional PDE involving
derivatives with respect to the interest rate r as well as S and τ , and it is possible
to take the Laplace transform with respect to τ and the Mellin transform with
respect to S to reduce the dimension of the problem by two [40, 42].

Having given a very brief sketch of the use of integral transforms to solve
diffusion-like PDEs in general, we now turn to American options. The price
V (S, τ) of an American option is governed by the Black-Scholes-Merton PDE
(2). American options can be exercised at any time at or before expiry, and this
early exercise feature leads to a free boundary problem very similar to the Stefan
problem, and indeed it is well-known that (2) can be transformed into the diffu-
sion equation (1), this transformation having been crucial to the derivation of the
original Black-Scholes formula [8]. As we mentioned above, the natural integral
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transforms for (2) are Laplace with respect to τ and Mellin with respect to S, and
applying either of these transforms to (2) yields an ordinary differential equation
which can be solved fairly easily. Both of these natural transforms have previously
been applied to American options. In [2, 3, 4, 5, 39], we followed Evans and ap-
plied a partial Laplace transform in time to study American, and American-style
exotic, options, while [33] used what was essentially a partial Mellin transform
with respect to S. To be more precise, [33] used a change of variables which both
fixed the boundary and turned (2) into a diffusion-like equation, and then used a
Laplace transform with respect to the new spatial variable, but if the change of
variables is reversed, it becomes apparent that this Laplace transform is equivalent
to applying a partial Mellin transform with respect to stock price S to the original
equation (2). More recently, [23, 24, 48, 49, 50] have used conventional Mellin
transforms with respect to S. Partial Fourier transforms have been considered in
[15, 16, 17], while [54, 55, 57] have combined a boundary fixing transformation
with Fourier sine and cosine transformations on a half-space.

In the present study, we will again use integral transforms to study the Black-
Scholes-Merton PDE, specifically Laplace and Mellin transforms, which are the
natural transforms for this PDE, but rather than use partial transforms applied
only to the region where it is optimal to hold the option, we will apply conventional
transforms to the whole of space. To do so, we obviously need to have a PDE which
covers the whole of space, not just the region where it is optimal to hold. There
is actually a straightforward way to do this, which can be found in for example
[37]. When an American option is exercised early, with exercise taking place on
the free boundary, it is exchanged for another portfolio with value P (S, τ); for
an American call, which carries the right to buy the underlying at strike price E,
this new portfolio is P (S, τ) = S − E, while for an American put, which carries
the right to sell the underlying, P (S, τ) = E − S. This new portfolio will obey
the nonhomogeneous form of (2), meaning (2) together with a forcing term on the
right-hand side, and so when we apply our integral transform, we apply it to (2)
together with a forcing term, with this forcing term zero where it is optimal to
hold the option. This explanation should become clearer in the next section when
we present the analysis.

2. Analysis

Our starting point is the Black-Scholes-Merton partial differential equation (PDE)
[8, 45] governing the price V of an equity derivative,

BS (V ) =

[
∂

∂τ
− σ2S2

2

∂2

∂S2
− (r −D)S

∂

∂S
+ r

]
V = 0 ,(3)

where S is the price of the underlying stock and τ = T − t is the time remaining
until expiry. In our analysis, the volatility σ, risk-free interest rate r, and dividend
yield D are assumed constant. For European options, which can be exercised only
at expiry, we must solve (3) together with the condition that the payoff at expiry
V (S, 0) is specified. The value of a European option can be written in terms of a
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Green’s function as

V (S, τ) =

∫ ∞
0

V (Z, 0)G

(
S

Z
, τ

)
dZ

Z
,

G (S, τ) =
e−rτ

σ
√

2πτ
exp

(
− [ln(S) + ντ ]

2

2σ2τ

)
,

(4)

where V (S, 0) is the payoff at expiry, and we have introduced ν = r −D − σ2/2.
American options, by contrast, can be exercised at any time at or before expiry,

with early exercise taking place on an optimal exercise boundary, which [44, 45]
recognized was a free boundary. We will denote this free boundary by S = Sf (τ)
or equivalently τ = τf (S) and write the pay-off from early exercise as P (S, τ).
For American options, we must solve (3) together with the condition that the
payoff at expiry V (S, 0) is specified and the additional conditions that at the
free boundary, we require V (Sf (τ), τ) = P (Sf (τ), τ) and (∂V/∂S) (Sf (τ), τ) =
(∂P/∂S)(Sf (τ), τ). These two conditions at the free boundary mean that both
the value of the option and its delta are continuous there. The condition on the
delta is known as the high contact or smooth pasting condition [53]. It follows
from [35, 44, 7, 30, 32, 29] that we can write the value of an American option as
the combination of the European value together with another term coming from
the right to exercise early,

V (S, τ) =

∫ ∞
0

V (Z, 0)G

(
S

Z
, τ

)
dZ

Z

+

∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
S

Z
, τ − ζ

)
dZdζ

Z
,

(5)

with F (S, τ) = 0 where it is optimal to hold the option, while where exercise is
optimal F (S, τ) = BS (P ) which is the result of substituting the early exercise
payoff into (3). This solution (5) is a valid solution to BS (V ) = F (S, τ) for all
τ ≥ 0 and all S, not just in the region where it is optimal to retain the option.
Applying the conditions at the free boundary to (5) leads to a pair of integral
equations for the location of the free boundary [44, 32, 29], which in the case
of vanilla Americans were solved numerically by [28], by approximating the free
boundary as a multipiece exponential function by [31], and using asymptotics by
[12, 21, 26, 34, 36].

In what follows, we will discuss the relation of the expression (5) for the value
of the option and the resulting integral equations with the corresponding expres-
sions obtained using Mellin transforms and Laplace transforms. To facilitate this
comparison, we will formulate the problem slightly differently and decompose the
value of the option into the value from immediate exercise, P (S, τ) and the resid-
ual, R(S, τ),

V (S, τ) = P (S, τ) +R(S, τ).(6)

For vanilla Americans, V (S, 0) = P (S, 0), so in this case we are decomposing the
value of the option into its intrinsic value and time value [9].
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With this formulation, R(S, τ) is zero where it is optimal to exercise the option,
with R (Sf (τ), τ) = (∂R/∂S) (Sf (τ), τ) = 0 on the free boundary, while where it
optimal to hold, R obeys

BS (R) = −BS (P ) ,(7)

where BS is the Black-Scholes-Merton operator defined in (3). At expiry, R(S, 0) =
0. This has a solution using (5),

R(S, τ) =

∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
S

Z
, τ − ζ

)
dZdζ

Z
,(8)

where now we have defined F (S, τ) = 0 where it is optimal to exercise the option,
while where holding is optimal F (S, τ) = −BS (P ). Once again, (8) is a valid
solution to BS (R) = F (S, τ) for all τ ≥ 0 and all S, not just in the region where
it is optimal to retain the option. Applying the conditions on R and (∂R/∂S) at
the free boundary to (8) gives a pair of integral equations,∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
Sf (τ)

Z
, τ − ζ

)
dZdζ

Z
= 0,∫ τ

0

∫ ∞
0

F (Z, ζ)
∂G

∂S

(
Sf (τ)

Z
, τ − ζ

)
dZdζ

Z
= 0.

(9)

For a call, we have P (S, τ) = (S − E)H (S − E), where E is the strike price of
the option and H is the Heaviside step function, so that for a call,

F (S, τ) =

(
[rE −DS]H (S − E) +

[
(r −D) (S − E) +

σ2S

2

]
Sδ (S − E)

+
σ2S2

2
[(S − E) δ (S − E)]

′
)
H (Sf (τ)− S) ,

(10)

while for a put, we have P (S, τ) = (E − S)H (E − S) and

F (S, τ) =

(
[DS − rE]H (E − S) +

[
(D − r) (E − S) +

σ2S

2

]
Sδ (E − S)

+
σ2S2

2
[(E − S) δ (E − S)]

′
)
H (S − Sf (τ)) ,

(11)

with δ the Dirac delta function. The factors H (Sf (τ)− S) and H (S − Sf (τ)) in
(10) and (11) ensure that F is zero where it is optimal to exercise. The use of the
Heaviside step function to extend the governing PDE to region where exercise is
optimal can be found in standard texts [37, 61] and studies such as [16].

Using (10) and (11) in (8), for a call we have

R(S, τ) =

∫ τ

0

σ2

2E
G
(S
E
, τ − ζ

)
dζ

+

∫ τ

0

∫ Sf (ζ)

E

(rE −DZ)G
(S
Z
, τ − ζ

)dZdζ

Z
,

(12)
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while for a put, we have

R(S, τ) =

∫ τ

0

σ2

2E
G
(S
E
, τ − ζ

)
dζ

+

∫ τ

0

∫ E

Sf (ζ)

(DZ − rE)G
(S
Z
, τ − ζ

)dZdζ

Z
.

(13)

The well-known put-call symmetry for American options [14, 43] is apparent in
(12) and (13). The first equation in (9) then becomes∫ τ

0

σ2

2E
G
(Sf (τ)

E
, τ − ζ

)
dζ

+

∫ τ

0

∫ Sf (ζ)

E

(rE −DZ)G
(Sf (τ)

Z
, τ − ζ

)dZdζ

Z
= 0

(14)

for a call, while for a put we have∫ τ

0

σ2

2E
G
(Sf (τ)

E
, τ − ζ

)
+

∫ τ

0

∫ E

Sf (ζ)

(DZ − rE)G
(Sf (τ)

Z
, τ − ζ

)dZdζ

Z
= 0.

(15)

A similar pair of equations can be written using the second equation in (9).

2.1. Mellin Transforms

The main object of this study is to show that conventional Mellin and Laplace
transforms can applied to American options. We will first consider a Mellin trans-
form with respect to stock price S. To make the analysis as painless as possible,
we will approach it from two directions simultaneously. We will apply a Mellin
transform to the governing PDE and solve the resulting ordinary differential equa-
tion (ODE) in transform space to obtain an expression for the transform of the
solution. Rather than invert this transform, we will apply a forward transform to
the Green’s function solution (8) presented above, which will be the same as the
solution of the ODE, meaning that the inverse transform yields (8).

We recall that the Mellin transform of a function A(S) and its inverse are [52]

Â (p) =M [A (S)] =

∫ ∞
0

A (S)Sp−1dS,

A(S) =M−1
[
Â(p)

]
=

1

2π i

∫ σ+i∞

σ−i∞
Â(p)S−pdp.

(16)

Convolution can be defined in several ways for Mellin transforms, including

A (S) ∗B (S) =

∫ ∞
0

A

(
S

Z

)
B (Z)

dZ

Z
,

M [A (S) ∗B (S)] = Â (p) B̂ (p) ,

(17)
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so that (8) is a convolution integral,

R(S, τ) =

∫ τ

0

F (S, ζ) ∗G(S, τ − ζ)dζ,

R̂(p, τ) =

∫ τ

0

F̂ (p, ζ)Ĝ(p, τ − ζ)dζ,

(18)

with R̂ the transform of (8). We will need Ĝ and F̂ shortly,

Ĝ(p, τ) = exp

[(
−r − νp+

σ2p2

2

)
τ

]
,

F̂ (p, τ) =
D
(
S2−p
f (τ)− E2−p

)
p− 2

−
rE
(
S1−p
f (τ)− E1−p

)
p− 1

+
σ2E2−p

2
,

(19)

with F̂ (p, τ) the same for both the call and the put. We would stress that our
Mellin transform (16) covers the whole of space, 0 ≤ S <∞, and therefore covers
both the region where it is optimal to hold the option and that where exercise is
optimal. In the second region (8) is a perfectly good solution, even though the
option is no longer held. A consequence of this is that we are setting aside the
conditions on R and (∂R/∂S) at the free boundary. In effect, we are arguing that
(8) is valid for all S, and that the location of the free boundary Sf (τ) can be
determined by applying the conditions at the free boundary to (8), which leads
to (9).

This is in contrast to the partial transform approach, where the transform is
only applied where it is optimal to hold the option. At this point, we should
briefly mention the work of [33], who used what was essentially a partial Mellin
transform. If we return to our definition of the Mellin transform (16), and make
the transformation S = e−x and A(S) = B(x), we arrive at the two-sided Laplace
transform [51]

L(2) [B (x)] (p) =

∫ ∞
−∞

B (x) e−px dx.(20)

For the two-sided Laplace transform, convolution follows from (17),

A (x) ∗B (x) =

∫ ∞
−∞

A (x− z)B (z) dz,

L(2) [A (x) ∗B (x)] = Â (p) B̂ (p) .

(21)

By contrast, [33] used a one-sided Laplace transform,

L(1) [B (x)] (p) =

∫ ∞
0

B (x) e−px dx.

A (x) ∗B (x) =

∫ x

0

A (x− z)B (z) dz,

L(1) [A (x) ∗B (x)] = Â (p) B̂ (p) ,

(22)
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having first used the Landau boundary fixing transformation X = S/Sf (τ) [38,
19, 57] to fix the free boundary at X = 1. It is worth noting that the convolutions
for one- and two-sided Laplace transforms (21) and (22) are different, with the
limits of integration being −∞ to +∞ for the two-sided transform but 0 to x for
the one-sided transform. This one-sided Laplace transform is essentially the same
as taking a partial Mellin transform, which we define for the call as

Mc [A(S, τ)] =

∫ Sf (τ)

0

A(S, τ)Sp−1dS,(23)

while for the put, we define

Mp [A(S, τ)] =

∫ ∞
Sf (τ)

A(S, τ)Sp−1dS.(24)

These definitions are of course equivalent to setting the value of a function equal to
zero where it is optimal to exercise, which is what the decomposition (6) implies.
The definitions (23) and (24) differ from an earlier partial Mellin transform defined
by Naylor [46] and discussed in [56]. Naylor defined finite Mellin transforms of
the first and second kind to be

M1 [V (S)] =

∫ Z

0

(
Z2p

Sp+1
− Sp−1

)
V (S)dS,

M2 [V (S)] =

∫ Z

0

(
Z2p

Sp+1
+ Sp−1

)
V (S)dS.

(25)

In (18) and (19), we have the Mellin transform of our solution (8). We will
now apply a (conventional) Mellin transform (16) to (7) and work forward trying
to solve the problem in Mellin transform space and thereby recover (18,19) and
thence (8). If we apply a conventional transform (16) to (7), we get an ODE for
the transform of the residual R,[

d

dτ
− σ2p2

2
+ pν + r

]
R̂ = F̂ (p, τ).(26)

Again, we would note that we have transformed (7) in both the region where it is
optimal to hold and that where exercise is optimal. Interestingly, the conventional
and partial Mellin transforms of F will be the same since F is zero where it
is optimal to exercise. Since R(S, 0) = 0 for vanilla Americans, it follows that

R̂(p, 0) = 0, and (26) has a solution

R̂(p, τ) =

∫ τ

0

F̂ (p, ζ) exp

[(
σ2p2

2
− pν − r

)
(τ − ζ)

]
dz

=

∫ τ

0

F̂ (p, ζ)Ĝ(p, τ − ζ)dζ,

(27)

which of course recovers (18) and thence (8).
The next issue is whether we can arrive at an equation for the free boundary

from (27). Obviously, if we invert the transform, we can again arrive at (9).
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However, a rather different equation can be derived if we take the limit τ → ∞
of (8),

R∞(S) = lim
τ→∞

∫ τ

0

∫ ∞
0

F (Z, ζ)G

(
S

Z
, τ − ζ

)
dZdζ

Z
,(28)

where R∞ is the perpetual version of the residue. If we apply the same limit to
(27), we arrive at the transform of (28), namely

R̂∞(p) = lim
τ→∞

∫ τ

0

F̂ (p, ζ)Ĝ(p, τ − ζ)dζ

= lim
τ→∞

∫ τ

0

D
(
S2−p
f (ζ)− E2−p

)
p− 2

−
rE
(
S1−p
f (ζ)− E1−p

)
p− 1

+
σ2E2−p

2

]
exp

[(
−r − νp+

σ2p2

2

)
(τ − ζ)

]
dζ.

(29)

For the call, (29) is the transform of

R∞(S) = lim
τ→∞

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

[
σ2

2E
exp

(
− [ln(S/E) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)

+

∫ Sf (ζ)

E

(rE −DZ) exp

(
− [ln(S/Z) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)
dZ

Z

]
dζ,

(30)

while for the put, it is the transform of

R∞(S) = lim
τ→∞

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

[
σ2

2E
exp

(
− [ln(S/E) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)

+

∫ E

Sf (ζ)

(DZ − rE) exp

(
− [ln(S/Z) + ν (τ − ζ)]

2

2σ2 (τ − ζ)

)
dZ

Z

]
dζ.

(31)

2.2. Laplace Transforms

We now turn our attention to Laplace transforms. Our analysis will follow a
broadly similar path to that for Mellin transforms, and we will again tackle the
problem from two directions. We recall that the Laplace transform of a function
A(S) and its inverse are [52]

Â = L [A (τ)] =

∫ ∞
0

e−pτ A (τ) dτ,

A(τ) = L−1
[
Â(p)

]
=

1

2π i

∫ σ+i∞

σ−i∞
Â(p) epτ dp.

(32)

Convolution for Laplace transforms is defined by

A (τ) ∗B (τ) =

∫ τ

0

A (ζ)B (τ − ζ) dζ,

L [A (τ) ∗B (τ)] = Â(p)B̂(p),

(33)
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so that (8) is a convolution integral

R(S, τ) =

∫ ∞
0

F (Z, τ) ∗G
(
S

Z
, τ

)
dZ

Z
,

R̂(S, p) =

∫ ∞
0

F̂ (Z, p)Ĝ

(
S

Z
, p

)
dZ

Z
,

(34)

with R̂ the transform of (8). For the Laplace transform approach, we must write F
in a slightly different, but equivalent, form to (10) and (11). For Mellin transforms,
we wrote the free boundary as S = Sf (τ), while for Laplace transforms, we will
invert this and write τ = τf (S). For values of S for which an option is held until
expiry, we define τf (S) = 0. We can then replace the terms H (Sf (τ)− S) in (10)
and H (S − Sf (τ)) in (11) by H (τ − τf (S)), so that for the call,

F (S, τ) =

(
[rE −DS]H (S − E) +

[
(r −D) (S − E) +

σ2S

2

]
Sδ (S − E)

+
σ2S2

2
[(S − E) δ (S − E)]

′
)
H (τ − τf (S))H (S∗ − S) ,

(35)

while for the put,

F (S, τ) =

(
[DS − rE]H (E − S) +

[
(D − r) (E − S) +

σ2S

2

]
Sδ (E − S)

+
σ2S2

2
[(E − S) δ (E − S)]

′
)
H (τ − τf (S))H (S − S∗) .

(36)

S∗ is the location of the free boundary in the limit τ →∞ which can be deduced
from the perpetual American option [60, 61]. We will need Ĝ and F̂ shortly,

Ĝ(S, p) =
[
2 (p+ p0)σ2

]−1/2 ×
 S−

(ν+σ
√

2(p+p0))
σ2 S > 1

S−
(ν−σ

√
2(p+p0))
σ2 S < 1

,(37)

with p0 =
(
4(D − r)2 + 4σ2(D + r) + σ4

)
/(8σ2). For the call

F̂ (S, p) = −
(

[rE −DS]H (S − E) +

[
(r −D) (S − E) +

σ2S

2

]
Sδ (S − E)

+
σ2S2

2
[(S − E) δ (S − E)]

′
)
H (S∗ − S)

e−pτf (S)

p
,

(38)

while for the put,

F̂ (S, p) = −
(

[DS − rE]H (E − S) +

[
(D − r) (E − S) +

σ2S

2

]
Sδ (E − S)

+
σ2S2

2
[(E − S) δ (E − S)]

′
)
H (S − S∗)

e−pτf (S)

p
.

(39)
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Because of the split nature of Ĝ, we note that we can write (34) as

R̂(S, p) =
[
2 (p+ p0)σ2

]−1/2 ∫ S

0

F̂ (Z, p)

(
S

Z

)− (ν−σ
√

2(p+p0))
σ2 dZ

Z

+
[
2 (p+ p0)σ2

]−1/2 ∫ ∞
S

F̂ (Z, p)

(
S

Z

)− (ν+σ
√

2(p+p0))
σ2 dZ

Z
.

(40)

As with the Mellin transforms, we would stress that our Laplace transform (32)
covers the whole of space, 0 ≤ τ <∞, and therefore covers both the region where
it is optimal to hold the option and that where exercise is optimal. Once again,
in the second region (8) is a perfectly good solution, even though the option is
no longer held. This is in contrast to the partial transform approach, where the
transform is only applied where it is optimal to hold the option. The partial
Laplace transform is due to Evans [20, 19], and can be defined as

L [A (τ)] =

∫ ∞
τf (S)

e−pτ A (τ) dτ.(41)

We will now apply a (conventional) Laplace transform (32) to (7), and work for-
ward to recover (8). We are transforming (7) both in the region where it is optimal
to hold and where exercise is optimal. From (7), we get an ODE for the transform
of the residual R,[

p− σ2S2

2

d2

dS2
− (r −D)S

d

dS
+ r

]
R̂ = F̂ (S, p),(42)

which has homogeneous solutions,

R̂1 = S−
(ν−σ

√
2(p+p0))
σ2 , R̂2 = S−

(ν+σ
√

2(p+p0))
σ2 .(43)

We note that since r, D and σ are all assumed to be positive, and we assume that
p has a positive real part from the definition of the Laplace transform, then the
real part of the exponent in R̂1 is assumed positive, while that in R̂2 is assumed
negative. The Wronskian of R̂1 and R̂2 is

W = R̂1R̂
′
2 − R̂′1R̂2 = −2σ−1 [2 (p+ p0)]

1/2
S−1−2ν/σ

2

,(44)

so that we can write the solution to (42) using variation of parameters as

R̂ = − R̂1(S)

∫ ∞
S

2R̂2(Z)F̂ (Z, p)dZ

σ2Z2W
− R̂2(S)

∫ S

0

2R̂1(Z)F̂ (Z, p)dZ

σ2Z2W

=
[
2 (p+ p0)σ2

]−1/2 ∫ S

0

F̂ (Z, p)

(
S

Z

)− (ν+σ
√

2(p+p0))
σ2 dZ

Z

+
[
2 (p+ p0)σ2

]−1/2 ∫ ∞
S

F̂ (Z, p)

(
S

Z

)− (ν−σ
√

2(p+p0))
σ2 dZ

Z
,

(45)

which of course recovers (40) and thence (8).
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Once again, we wonder out loud whether we can arrive at an equation for the
free boundary from (40). Again, if we invert the transform, we arrive at (9), but
there does not appear to be any other obvious equation in Laplace transform space.

2.3. Fourier Transforms

The analysis using Fourier transforms is straightforward because of the well-known
relation between Mellin transforms, two-sided Laplace transforms, and Fourier
transforms. We should recall our definitions of the Mellin (16), and the two-sided
Laplace (20) transforms discussed earlier,

M [A (S)] (p) =

∫ ∞
0

A (S)Sp−1dS,

L(2) [B (x)] (p) =

∫ ∞
−∞

B (x) e−px dx.

(46)

which were linked via the transformation S = e−x and A(S) = B(x). If we write
p = i s in (16), we arrive at one of the definitions of the Fourier transform,

F [B (x)] (s) =

∫ ∞
−∞

B (x) e− i sx dx = L(2) [B (x)] (i s).(47)

Convolution for Fourier transforms is defined by

A (x) ∗B (x) =

∫ ∞
0

A (x− z)B (z) dz,

F [A (x) ∗B (x)] = Â (s) B̂ (s) .

(48)

If follows that combining the transformation S = e−x with a Fourier transform is
equivalent to taking a complex Mellin transform, so that many of the results for
Mellin transforms carry over to Fourier transforms, with in particular

R̂(s, τ) =
∫ τ
0
F̂ (s, ζ)Ĝ(s, τ − ζ)dζ.(49)

with

Ĝ(s, τ) = exp

[(
−r − ν i s− σ2s2

2

)
τ

]
,

F̂ (s, τ) =
D
(
S2−i s
f (τ)− E2−i s

)
i s− 2

−
rE
(
S1−i s
f (τ)− E1−i s

)
i s− 1

+
σ2E2−i s

2
.

(50)

F̂ (s, τ) is the same for both the call and the put. From (26), the ODE for the
transform of the residual R becomes[

d

dτ
+
σ2s2

2
+ i sν + r

]
R̂ = F̂ (s, τ),(51)
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which has a solution

R̂(s, τ) =

∫ τ

0

F̂ (s, ζ) exp

[(
−σ

2s2

2
− i sν − r

)
(τ − ζ)

]
dz

=

∫ τ

0

F̂ (s, ζ)Ĝ(s, τ − ζ)dζ,

(52)

which of course recovers (49) and thence (8).

3. Boundary Fixing Transformation

In our analysis so far, we have assumed that the boundary was a free boundary,
located at S = Sf (τ) or equivalently at τ = τf (S). However, it is also possible to
use Landau’s boundary fixing transformation and write S = XSf (τ) so that the
free boundary is fixed at X = 1. For completeness, we present the analysis for the
Mellin transform combined with the Landau transform.

If we write V (XSf (τ), τ) = VF (X, τ), then (3) becomes

BSF (V | =
[
∂

∂τ
− σ2X2

2

∂2

∂X2
−
(
r −D +

S′f (τ)

Sf (τ)

)
X

∂

∂X
+ r

]
VF

= 0.

(53)

The Landau transformation fixes the boundary, but introduces a new term given by

−
(
S′f (τ)/Sf (τ)

)
X (∂ /∂X) in (53), with the result that the conditions at the free

boundary are easier to implement but the underlying PDE is more complicated.
Both [21, 36] and [33] took this approach.

At expiry τ = 0, we have VF (X, 0) = (XS0 − E)H (XS0 − E), where S0 =
Sf (0) is the location of the free boundary at expiry. At the free boundary, X = 1,
we exchange VF for the portfolio XSf (τ)−E, and we require that the value of the
option and its delta be continuous across the boundary, so VF (1, τ) = Sf (τ)− E
and (∂VF /∂X) (1, τ) = Sf (τ). Once again, we will work in terms of the residual
defined in (6), and to this end, we will introduce RF (X, τ) = R(XSf (τ), τ) and
FF (X, τ) = F (XSf (τ), τ). We can then use (4,8) to write

RF (X, τ) =

∫ τ

0

∫ ∞
0

FF (Z, ζ)GF

(
X

Z
, τ, ζ

)
dZdζ

Z
,

GF (X, τ, ζ) =
e−r(τ−ζ)

σ
√

2π (τ − ζ)
exp

−
[
ln(X) + ln

(
Sf (τ)
Sf (ζ)

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)

 .

(54)

From (54), we see that GF is slightly more complicated than G. The integral
equations (9) from continuity of the option and its delta at the free boundary
become ∫ τ

0

∫ ∞
0

FF (Z, ζ)GF

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0,∫ τ

0

∫ ∞
0

FF (Z, ζ)
∂GF
∂X

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0.

(55)



INTEGRAL TRANSFORMS AND AMERICAN OPTIONS 259

For a call, the counterpart of the forcing term (10) is

FF (X, τ) = ([rE −DXSf (τ)]H (XSf (τ)− E)

+

[
(r −D) (XSf (τ)− E) +

σ2XSf (τ)

2

]
XSf (τ)δ (XSf (τ)− E)

+
σ2X2S2

f (τ)

2
[(XSf (τ)− E) δ (XSf (τ)− E)]

′

)
H (1−X) ,

(56)

while for a put, (11) is replaced by

FF (X, τ) = ([DXSf (τ)− rE]H (E −XSf (τ))

+

[
(D − r) (E −XSf (τ)) +

σ2XSf (τ)

2

]
XSf (τ)δ (E −XSf (τ))

+
σ2X2S2

f (τ)

2
[(E −XSf (τ)) δ (E −XSf (τ))]

′

)
H (X − 1) .

(57)

Using (56) and (57) in (54), for a call (12) is replaced by

RF (X, τ) =

∫ τ

0

σ2Sf (ζ)

2E
GF

(
XSf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ 1

E/Sf (ζ)

(rE −DZSf (ζ))GF

(
X

Z
, τ, ζ

)
dZdζ

Z
,

(58)

and for a put (13) is replaced by

Rf (X, τ) =

∫ τ

0

σ2ESf (ζ)

2
GF

(
XSf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ E/Sf (ζ)

1

(DZSf (ζ)− rE)GF

(
X

Z
, τ, ζ

)
dZdζ

Z
.

(59)

The first equation in (55) then becomes∫ τ

0

σ2Sf (ζ)

2E
GF

(
Sf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ 1

E/Sf (ζ)

(rE −DZSf (ζ))GF

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0,

(60)

for a call, while for a put we have∫ τ

0

σ2ESf (ζ)

2
GF

(
Sf (ζ)

E
, τ, ζ

)
dζ

+

∫ τ

0

∫ E/Sf (ζ)

1

(DZSf (ζ)− rE)GF

(
1

Z
, τ, ζ

)
dZdζ

Z
= 0.

(61)

A similar pair of equations can be written using the second equation in (55).
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3.1. Mellin Transforms

The analysis in this section is very similar to that presented without the use of the
boundary fixing transformation, and once again, we will approach the problem
from two directions simultaneously. We will apply a Mellin transform to the
governing PDE after the Landau transformation and solve the resulting ordinary
differential equation (ODE) in transform space to obtain an expression for the
transform of the solution. Rather than invert this transform, we will apply a
forward transform to the Green’s function solution (54) presented above, which
will be the same as the solution of the ODE, meaning that the inverse transform
yields (54).

The Mellin transform used here is (16), but taking a transform with respect to
X rather than S. As with (8), (54) is a convolution integral,

RF (X, τ) =

∫ τ

0

FF (X, ζ) ∗GF (X, τ, ζ) dζ,

R̂F (p, τ) =

∫ τ

0

F̂F (p, ζ)ĜF (p, τ, ζ) dζ,

(62)

with R̂F the transform of RF . We can write ĜF and F̂F in terms of Ĝ and F̂ (19),
the transforms obtained without fixing the boundary,

ĜF (p, τ, ζ) = Ĝ(p, τ)

(
Sf (τ)

Sf (ζ)

)−p
= exp

[(
−r − νp+

σ2p2

2

)
(τ − ζ)

](
Sf (τ)

Sf (ζ)

)−p
,

F̂F (p, τ) = S−pf (τ)F̂ (p, τ)

=

D
(
S2−p
f (τ)− E2−p

)
p− 2

−
rE
(
S1−p
f (τ)− E1−p

)
p− 1

+
σ2E2−p

2

]
S−pf (τ).

(63)

F̂F (p, τ) is the same for both the call and the put. Once again, our Mellin transform
covers the whole of space, 0 ≤ X < ∞, rather than just the region where it is
optimal to hold the option.

We will now apply a Mellin transform to the equation BSF (RF ) = FF and
work forward to recover (54). This yields an ODE for the transform of RF ,[

d

dτ
− σ2p2

2
+ p

(
ν +

S′f (τ)

Sf (τ)

)
+ r

]
R̂F = F̂F (p, τ).(64)

Thus has an additional term p
(
S′f (τ)/Sf (τ)

)
R̂F compared to (26). Again, we

have transformed the equation for 0 ≤ X < ∞, not just where it is optimal to
hold. Since RF (S, 0) = 0 for vanilla Americans, it follows that R̂F (p, 0) = 0, and
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(64) has a solution

R̂F (p, τ) =

∫ τ

0

F̂F (p, ζ) exp

[(
σ2p2

2
− pν − r

)
(τ − ζ)

](
Sf (τ)

Sf (ζ)

)−p
dz

=

∫ τ

0

F̂F (p, ζ)ĜF (p, τ, ζ)dζ,

(65)

which of course recovers (62) and thence (54).
Again, we must consider if we can arrive at an equation for the free boundary

from (65), other than the obvious transform of (55). Once again, we will apply
the limit τ →∞ to (54),

RF∞(X) = lim
τ→∞

∫ τ

0

∫ ∞
0

FF (Y, ζ)GF

(
X

Y
, τ, ζ

)
dY dζ

Y
,(66)

where RF∞ is the perpetual version of the residue. If we apply the same limit to
(65), we arrive at the transform of (66), namely

R̂F∞(p) = lim
τ→∞

∫ τ

0

F̂F (p, ζ)ĜF (p, τ, ζ)dζ

= lim
τ→∞

∫ τ

0

D
(
S2−p
f (ζ)− E2−p

)
p− 2

−
rE
(
S1−p
f (ζ)− E1−p

)
p− 1

+
σ2E2−p

2

]
exp

[(
−r − νp+

σ2p2

2

)
(τ − ζ)

]
S−pf (τ)dζ.

(67)

For the call, (67) is the transform of

RF∞(X) =

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

σ2Sf (ζ)

2E
exp

−
[
ln
(
XSf (τ)
E

)
+ ν (τ−ζ)

]2
2σ2 (τ − ζ)


+

∫ 1

E/Sf (ζ)

(rE −DZSf (ζ))

× exp

−
[
ln
(
XSf (τ)
ZSf (ζ)

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)

 dZ

Z

dζ,

(68)
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while for the put, it is the transform of

RF∞(X) =

∫ τ

0

e−r(τ−ζ)

σ
√

2π (τ − ζ)

σ2Sf (ζ)

2E
exp

−
[
ln
(
XSf (τ)
E

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)


+

∫ E/Sf (ζ)

1

(DZSf (ζ)− rE)

× exp

−
[
ln
(
XSf (τ)
ZSf (ζ)

)
+ ν (τ − ζ)

]2
2σ2 (τ − ζ)

 dZ

Z

dζ.

(69)

4. Discussion

In the previous two sections, we revisited the use of integral transforms to tackle
American options, using conventional Mellin, Laplace and Fourier transforms
(16,32,47) rather than their partial counterparts. We were able to use conven-
tional transforms rather than partial transforms because we were able to extend
the governing PDE to the region where exercise is optimal by using the PDE
obeyed by the early exercise pay-off, which is in effect also the approach taken by
the Green’s function approach. In each case, we transformed the governing PDE
into an ODE in transform space and solved the ODE, finding that in each case,
the solution of the ODE was the same as the transform of the Green’s function
solution, which we used as our reference solution, and the same was true when we
combined a Mellin transform with Landau’s boundary fixing transformation. Each
of these approaches leads to leads to a pair of integral equations for the location
of the free boundary, and again we found that the integral equations from the
transform approaches were the same as those from the Green’s function approach.
This is the principal result of this paper, and the motivation for our study, that
all roads (or at least the roads considered here) lead to Rome, by which we mean
that the differing approaches produce equivalent solutions and equivalent integral
equations. In one sense, our analysis is not a surprise, because the Green’s func-
tion solution (8) is both a Mellin and a Laplace convolution. In another sense,
however, it is a surprise as our analysis required us to use a PDE in the region
where exercise is optimal, and historically, there have been concerns over whether
it is possible to apply full-space transforms in such situations, which led to the
development of partial transforms [19, 20, 46, 56] and their application to free
boundary problems, although recent studies such as [16] have done much to allay
those concerns.

The pair of integral equations for the location of the free boundary (9) has been
written in a number of different forms in the extensive literature on the Green’s
function approach. Chiarella [15] has discussed how the various representations
are related. The integral equations produced by our analysis do not have any
particular advantage over the existing literature, and that was not the goal of
our study. It is probably true that some of the integral equations in the existing
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literature are easier to solve either as a series close to expiry or numerically than
those produced by our analysis, and it is probably also true that some of the
integral equations in the existing literature are in a form that makes some property
or other of the solution more readily apparent than those produced by our analysis,
but this is an aspect of the problem which we have not explored as that was
not the object of our study. We have not concerned ourselves with whether one
approach or another is in some sense better, or whether one approach is efficacious
or another meretricious, although if other researchers choose to pursue that path
we would encourage them. For much of our analysis, we applied integral transforms
directly to the Black-Scholes-Merton PDE (2) rather than following many earlier
authors and transforming this PDE into a diffusion-like equation. There is of
course some value in making such a transformation, not least because the diffusion
equation has been studied for longer, and in more depth, than the Black-Scholes-
Merton PDE, and in this respect at least, it could be argued that studies such
as [15, 16, 17, 54, 55, 57], which apply various flavors of Fourier transform
to a diffusion-like equation, and [33], which applies a Laplace transform, have
an advantage over studies working directly with the Black-Scholes-Merton PDE.
With such a transformation, the pair of integral equations (9) for the location of
the free boundary would simply be replaced by the same equations with S and
Z replaced by the transformed variables, so that the equations would involve the
Green’s function for the diffusion-like equation rather than the Green’s function
for the Black-Scholes-Merton PDE.

In our study, we wrote the pair of integral equations (9) for the location of the
free boundary in a very simple form which is both a Mellin (in S) and a Laplace
(in τ) convolution of a nonhomogeneous forcing term F (S, τ) with the Green’s
function G (S, τ). This was deliberate, as in this study we have not been con-
cerned with solving these integral equations or discussing their various properties.
Rather, we chose this particular form to ensure that the integral transforms were
straightforward and to allow us to square the circle and show that the roads con-
sidered here all lead to Rome, with the different approaches producing equivalent
integral equations.

As we mentioned above, for each case studied here, the solution of the ODE
in transform space is simply the transform of the Green’s function solution, so
that the equations for the free boundary stemming from these transforms are
simply those stemming from the Green’s function approach (55). For the Mellin
transform, if we take the limit τ → ∞ we arrive at an alternative, and more
complicated, set of equations (31), (30), (68), (69) in addition to (55).

In the Introduction, we said that for the Black-Scholes-Merton PDE (2), the
natural transforms are Laplace with respect to τ and Mellin with respect to S,
where natural in this sense means that the transformed equation does indeed
have derivatives with respect to fewer variables. Equivalently, if we transform the
Black-Scholes-Merton PDE into a diffusion-like equation, the natural transforms
are again Laplace with respect to τ but now either two-sided Laplace or Fourier
with respect to the transformed variable x. From our analysis, it would seem that
Mellin with respect to S (or equivalently two-sided Laplace or Fourier with respect
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to x) is the more natural and direct approach because it leads to a first order ODE
in transform space (26), (51), (64) while Laplace with respect to τ leads to a more
complicated second order ODE in transform space (42).
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