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SUBTANGENT-LIKE STATISTICAL MANIFOLDS

A. M. BLAGA

Abstract. Subtangent-like statistical manifolds are introduced and characteriza-

tion theorems for them are given. The special case when the conjugate connections

are projectively (or dual-projectively) equivalent is considered.

1. Introduction

A statistical manifold is a Riemannian manifold, whose each point is a proba-
bility space. It connects information geometry, affine differential geometry and
Hessian geometry. Information geometry is a branch of mathematics that applies
the techniques of differential geometry to the field of probability theory. This is
done by taking probability distributions for a statistical model as the points of
a Riemannian manifold, forming a statistical manifold. The Fisher information
metric provides the Riemannian metric. Information geometry can be applied in
various areas, where parametrized distributions play a role such as in statistical
inference, time series and linear systems, quantum systems, neuronal networks,
machine learning, statistical mechanics, biology, mathematical finance, etc. In [1],
[2], [3], [8], [9] the statistical manifolds are studied from the point of view of infor-
mation geometry and it is given a new description of the statistical distributions
by using the obtained geometric structures. The statistical manifold was intro-
duced by S. Amari [1] as being a triple (M,∇, g) consisting of a smooth manifold
M , a non-degenerate metric g on it and a torsion-free affine connection ∇ with
the property that ∇g is symmetric. With it we can associate another torsion-free
affine connection ∇∗ defined by the relation

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇∗XZ)(1.1)

for any X, Y , Z ∈ X(M), called the conjugate (or the dual) connection of ∇
with respect to g. In this case, ∇∗g is also symmetric (∇∗g = −∇g), therefore,
(M,∇∗, g) is a statistical manifold, too. It’s easy to see that the conjugate of the
conjugate connection of ∇ coincides with ∇, i.e., (∇∗)∗ = ∇.

Starting from this, different notions of generalized connections were also defined.
These were contained in the following general formulation, namely, two connections

Received July 17, 2013; revised October 21, 2013.
2010 Mathematics Subject Classification. Primary 53C15, 53C25.
Key words and phrases. statistical manifold; almost subtangent structure.



148 A. M. BLAGA

are conjugate in a larger sense if there exists a (0, 3)-tensor field C on M satisfying

X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇∗XZ) + C(X,Y, Z)(1.2)

for any X, Y , Z ∈ X(M). A simple condition on C is implied by the symmetry of
∇g, that is, g((∇∗)∗XY − ∇XY,Z) = C(X,Y, Z) − C(X,Z, Y ) [4]. For a certain
tensor field C, some particular cases were stated in [4], [11], [12], [13] defining
that ∇ and ∇∗ are said to be

1. generalized conjugate [11], [12] with respect to g by a 1-form η if

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇∗XZ)− η(X)g(Y, Z);

2. semi-conjugate [11], [13] with respect to g by a 1-form η if

X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇∗XZ) + η(Z)g(X,Y );

3. dual semi-conjugate [4] with respect to g by a 1-form η if

X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇∗XZ)− η(X)g(Y,Z)− η(Y )g(X,Z).

The motivation of studying the first types of conjugate connections comes for
the first ones from Weyl geometry [10]. The second ones naturally appear in affine
hypersurface theory [13] and the last ones establish the connection between them
[4]. One important feature of generalized connections is their invariance under
gauge transformations [4].

In [16], K. Takano studied the statistical manifolds with an almost complex
structure. In what follows, we shall study the interference of an almost subtangent
structure on a statistical manifold. Recall that the almost tangent structures were
introduced by R. S. Clark and M. Bruckheimer [5], [6] and independently, by
H. A. Eliopoulos [14]. An almost tangent structure on a 2n-dimensional smooth
manifold M is an endomorphism J of the tangent bundle TM of constant rank,
satisfying

ker J = Im J.(1.3)

The pair (M,J) is called the almost tangent manifold. The name is motivated
by the fact that (1.3) implies the nilpotence J2 = 0 exactly as the natural tangent
structure of tangent bundles. It is known that the most important G-structures
of the first type are those defined by linear operators satisfying certain algebraic
relations. Note that the almost tangent structures define a class of conjugate
G-structures on M , a group G for a representative structure consisting of all

matrices of the form

(
A 0
B A

)
, where A, B are matrices of order n × n and A is

non-singular.
In addition, if we assume that J is integrable, i.e.,

NJ (X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2 [X,Y ] = 0(1.4)

then J is called the tangent structure and (M,J) is called tangent manifold.
Basic facts following directly from the definition are stated in [17]:
(i) the distribution Im J(= ker J) defines a foliation denoted by V (M) and

called the the vertical distribution.
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Example 1.1. [7] M = R2, Je(x, y) = (0, x) is a tangent structure with ker Je
the Y -axis, hence the name. The subscript e comes from ”Euclidean“.

(ii) there exists an atlas on M with local coordinates (x, y) = (xi, yi)1≤i≤n
such that J = ∂

∂yi ⊗ dxi, i.e.,

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0.(1.5)

We call (x,y) canonical coordinates and the change of canonical coordinates (x,y)→
(x̃, ỹ) is given by 

x̃i = x̃i (x)

ỹi =
∂x̃i

∂xa
ya +Bi(x).

(1.6)

It results the description in terms of G-structures. Namely, a tangent structure is
a G-structure with

G =

{
C =

(
A On

B A

)
∈ GL(2n,R) ; A ∈ GL(n,R), B ∈ gl(n,R)

}
(1.7)

and G is the invariance group of matrix J =

(
On On

In On

)
, i.e., C ∈ G if and only

if C · J = J · C.
The natural almost tangent structure J of M = TN is an example of tangent

structure having exactly the expression (1.5) if (xi) are the coordinates on N and
(yi) are the coordinates in the fibers of TN → N . Also, Je in Example 1.1 has
the above expression (1.5) with n = 1, whence it is integrable.

If the condition 1.3 is weakened, requiring that only J squares to 0, we call J an
almost subtangent structure. In this case, Im J ⊂ ker J and for a non-degenerate
metric g on M , ker J is the Lagrangian distribution for the almost symplectic
structure ωJJ(X,Y ) := g(X, JY ) − g(JX, Y ), X, Y ∈ X(M). In this context
we introduce the analogue notion of a holomorphic statistical manifold, namely,
the special statistical manifold and give a construction of strong special statistical
manifolds.

2. Subtangent-like statistical manifolds

Let M be a smooth manifold, g a non-degenerate metric and J an almost subtan-
gent structure on M .

Definition 2.1. We say that (M, g, J) is an almost subtangent-like manifold
if there exists an endomorphism of the tangent bundle J∗ satisfying

g(JX, Y ) + g(X,J∗Y ) = 0(2.1)

for any X, Y ∈ X(M).

In this case, (J∗)2 = 0, (J∗)∗ = J and J∗ is called an conjugate (or the dual)
almost subtangent structure of J .
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If J and J∗ are two conjugate almost subtangent structures, then J − J∗ and
J + J∗, respectively, are symmetric and skew-symmetric with respect to g. Also,
JJ∗ + J∗J is symmetric with respect to g.

Example 2.1. Regarding the Example 1.1 (i), we get the metric g = diag(1,−1)
and then (R2, g, Je) is an almost subtangent-like statistical manifold with

J∗e (x, y) = (y, 0)

or equivalently

J∗e

(
∂

∂x

)
= 0, J∗e

(
∂

∂y

)
=

∂

∂x
.

Definition 2.2. We say that (M,∇, g, J) is an almost subtangent-like sta-
tistical manifold if (M,∇, g) is statistical manifold and (M, g, J) is an almost
subtangent-like manifold. Moreover, if ∇J = 0, we drop the adjective almost.

From (2.1), we get that ImJ∗ ⊂ ker J∗ ⊥g Im J ⊂ ker J .
Note that on a subtangent-like statistical manifold (M,∇, g, J), the linear con-

nection ∇ restricts to the distribution kerJ , which means that for Y ∈ ker J , it
follows ∇XY ∈ ker J for any X ∈ X(M).

Concerning the conjugate structures of an almost subtangent-like statistical
manifold, we can state the following result

Proposition 2.3. Let (M,∇, g, J) be an almost subtangent-like statistical man-
ifold, ∇∗ the conjugate connection of ∇ and J∗ a conjugate almost subtangent
structure of J . Then

1. (M,∇∗, g, J∗) is an almost subtangent-like statistical manifold;
2. g((∇XJ)Y,Z) + g(Y, (∇∗XJ∗)Z) = 0 for any X, Y , Z ∈ X(M);
3. if (M,∇, g, J) is a subtangent-like statistical manifold, then (M,∇∗, g, J∗)

is a subtangent-like statistical manifold, too.

Proof. 1. From the previous considerations. 2. From a direct computation.
3. From 1 and 2. �

3. J-conjugate connections and the statistical structure

Let g be a non-degenerate metric on M , ∇ an affine connection, ∇∗ its conjugate
w.r.t. g, J an almost subtangent structure and J∗ its conjugate w.r.t. g.

Define the J-conjugate connections of ∇ and ∇∗ by

∇(J) := ∇− J ◦ ∇J, ∇∗(J) := ∇∗ − J ◦ ∇∗J

and the J∗-conjugate connections of ∇ and ∇∗ by

∇(J∗) := ∇− J∗ ◦ ∇J∗, ∇∗(J
∗) := ∇∗ − J∗ ◦ ∇∗J∗.

W.r.t. g, the conjugate connection of ∇(J) is ∇∗(J∗) and the conjugate connec-
tion of ∇(J∗) is ∇∗(J), i.e.,

(∇(J))∗ = ∇∗(J
∗), (∇(J∗))∗ = ∇∗(J).
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The following propositions establish properties of the J-(and J∗-)conjugate con-
nections of an affine connection and its dual and provide necessary and sufficient
conditions for these connections to give rise to statistical or almost subtangent-like
statistical manifolds.

Proposition 3.1. Let (M,∇, g) be a statistical manifold and J an almost
subtangent structure. Then (M,∇(J), g) is a statistical manifold if and only if
∇XJY − ∇Y JX ∈ ker J and g(X, (∇ZJ)Y ) = g(Z, (∇XJ)Y ) for any X, Y ,
Z ∈ X(M).

Proof. Notice that

(∇(J)
X g)(Y,Z) = (∇Xg)(Y,Z) + g(J(∇XJY ), Z) + g(Y, J(∇XJZ))

and the relation between the torsion of ∇(J) and the torsion of ∇ is

T∇(J)(X,Y ) = T∇(X,Y )− J(∇XJY −∇Y JX)

for any X, Y , Z ∈ X(M). �

In particular, if J is a subtangent structure, then (M,∇(J), g) is a statistical
manifold.

Proposition 3.2. Let (M,∇, g, J) be an almost subtangent-like statistical man-
ifold, ∇∗ the conjugate connection of ∇ and J∗ a conjugate almost subtangent
structure of J .

1. (a) (M,∇(J), g, J) is an almost subtangent-like statistical manifold if and
only if ∇XJY − ∇Y JX ∈ ker J and g(X, (∇ZJ)Y ) = g(Z, (∇XJ)Y )
for any X, Y , Z ∈ X(M).

(b) If (M,∇(J), g, J) is an almost subtangent-like statistical manifold, then
(M, (∇(J))∗, g, J∗) is an almost subtangent-like statistical manifold or
equivalent, (M,∇∗(J∗), g, J∗) is almost subtangent-like statistical man-
ifold.

2. (a) (M,∇(J∗), g, J∗) is an almost subtangent-like statistical manifold if and
only if ∇XJ

∗Y−∇Y J
∗X ∈kerJ∗ and g(X, (∇ZJ

∗)Y )=g(Z, (∇XJ
∗)Y )

for any X, Y , Z ∈ X(M).

(b) If (M,∇(J∗), g, J∗) is an almost subtangent-like statistical manifold,
then
(M, (∇(J∗))∗, g, J) is an almost subtangent-like statistical manifold or
equivalent, (M,∇∗(J), g, J) is an almost subtangent-like statistical man-
ifold.

Proof. (a) follows from Proposition 2.3 and (b) from Proposition 2.3 and the
observation that (∇(J∗))∗ = ∇∗(J). �

4. Special statistical manifolds

An analogue of the notion of holomorphic statistical manifold defined in [15] can
be here considered, namely, the special statistical manifold (s.s.m.).
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4.1. Weak special statistical manifold

Definition 4.1. We say that the subtangent-like statistical manifold (M,∇, g, J)
is weak s.s.m. if the 2-form ωJ(X,Y ) := g(X, JY ) is ∇-parallel.

A necessary and sufficient condition for a subtangent-like statistical manifold
to be weak s.s.m. is given in the following proposition

Proposition 4.2. The subtangent-like statistical manifold (M,∇, g, J) is weak
s.s.m. if and only if

(∇Xg) ◦ (J × I) = −g ◦ (∇XJ × I)

for any X ∈ X(M).

Proof. Computing (∇XωJ)(Y, Z) = −(∇Xg)(JY, Z)−g((∇XJ)Y,Z) for any X,
Y , Z ∈ X(M) and from the condition ∇ωJ = 0, we get the required relation. �

Proposition 4.3. Under the hypothesis above,
1. (M,∇, g, J) is weak s.s.m. if and only if (M,∇, g, J∗) is weak s.s.m..

2. (M,∇∗, g, J) is weak s.s.m. if and only if (M,∇∗, g, J∗) is weak s.s.m..

Proof. It is a consequence of the previous relations. �

4.2. Strong special statistical manifold

Definition 4.4. We say that the subtangent-like statistical manifold (M,∇, g, J)
is strong s.s.m. if the 2-form ωJJ(X,Y ) := g(X, JY )− g(JX, Y ) is ∇-parallel.

A necessary and sufficient condition for a subtangent-like statistical manifold
to be strong s.s.m. is given in the following proposition

Proposition 4.5. The subtangent-like statistical manifold (M,∇, g, J) is strong
s.s.m. if and only if

(∇Xg) ◦ (I × J)− (∇Xg) ◦ (J × I) = g ◦ (∇XJ × I)− g ◦ (I ×∇XJ),

Proof. Follows from Proposition 4.2. �

Consider (M,∇, g, J) an almost subtangent-like statistical manifold, ∇∗ the
conjugate connection of ∇ and J∗ a conjugate almost subtangent structure of J
and define

ωJJ∗(X,Y ) := g(X, JY )− g(J∗X,Y ),

ωJ∗J(X,Y ) := g(X, J∗Y )− g(JX, Y ),

ωJ∗J∗(X,Y ) := g(X, J∗Y )− g(J∗X,Y ).

A simple computation shows that on a subtangent-like statistical manifold
(M,∇, g, J), the relation between ωJ , ωJ∗ and the 2-forms are defined above

ωJJ(X,Y ) = ωJ(X,Y )− ωJ(Y,X),

ωJJ∗ = 2ωJ , ωJ∗J = 2ωJ∗ , ωJ∗J∗ = −ωJJ
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and

(∇XωJJ∗)(Y,Z) = −(∇XωJ∗J)(Z, Y ),

(∇∗XωJJ∗)(Y,Z) = −(∇∗XωJ∗J)(Z, Y ),

(∇XωJJ∗)(Y, Z) + (∇∗XωJJ∗)(Y,Z) = −g((∇XJ
∗)Y + (∇∗XJ∗)Y,Z)

for any X, Y , Z ∈ X(M).

Proposition 4.6. Under the hypothesis above,
1. (M,∇, g, J) is strong s.s.m. if and only if (M,∇, g, J∗) is strong s.s.m..

2. (M,∇∗, g, J) is strong s.s.m. if and only if (M,∇∗, g, J∗) is strong s.s.m..

Proof. It is a consequence of the fact that ωJJ = −ωJ∗J∗ . �

Remark that the notion of weak s.s.m. implies the strong s.s.m., but conversely
it’s not always true. The notions are equivalent if and only if

(∇XωJ)(Y, Z) = (∇XωJ)(Z, Y ),

for any X, Y , Z ∈ X(M).
Now using the 2-form ωJJ , we can associate to any affine connection ∇ another

affine connection ∇∗ such that ωJJ is ∇∗-parallel

ωJJ(Y,∇∗XZ) = ωJJ(Y,∇XZ) +
1

2
(∇XωJJ)(Y,Z),(4.1)

X, Y , Z ∈ X(M). Indeed, from the skew-symmetry of ωJJ , we get

(∇∗XωJJ)(Y, Z) = −1

2
[(∇XωJJ)(Y, Z) + (∇XωJJ)(Z, Y )] = 0.

Therefore, this procedure gives a way to construct strong special statistical mani-
folds.

Theorem 4.7. Let (M,∇, g, J) be an almost subtangent-like statistical man-
ifold and J∗ a conjugate almost subtangent structure of J . If (∇J̄Xg)(Y,Z) =
g((∇Y J̄)X,Z) for any X, Y , Z ∈ X(M), where J̄ := J + J∗, then the affine
connection ∇∗ defined by relation (4.1) is the conjugate connection of ∇. In this
case, (M,∇∗, g, J) is a strong special statistical manifold.

Proof. Replacing ωJJ in (4.1) and considering the symmetry of ∇g, we obtain
the required relation. �

5. Projectively equivalent statistical manifolds

Geometrically, two torsion-free affine connections are projectively equivalent if
they have the same geodesics as unparameterized curves. Thus, they determine a
class of equivalence on a given manifold called the projective structure.

We say that two affine connections ∇ and ∇∗ on M are

1. projectively equivalent if there exists a 1-form η on M such that

∇∗XY = ∇XY + η(X)Y + η(Y )X(5.1)

for any X, Y ∈ X(M).
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2. dual-projectively equivalent if there exists a 1-form η on M such that

∇∗XY = ∇XY − g(X,Y )η]g ,(5.2)

for any X, Y ∈ X(M), where g(η]g , X) = η(X), X ∈ X(M).

Note that if two connections are projectively equivalent or dual-projectively
equivalent, their conjugate connections may not be projectively or dual-projectively
equivalent, respectively.

Proposition 5.1. If (M,∇, g) is a statistical manifold and ∇∗ is the conjugate
connection of ∇, then ∇ and ∇∗ are η-projective equivalent or η-dual-projective
equivalent if and only if η ⊗ I = I ⊗ η.

Proof. Replacing the expression of ∇∗ in 1.1 and taking into account that ∇g
is symmetric, we obtain the required relation. �

Remark that if η ⊗ I = I ⊗ η, then for any endomorphism J of the tangent
bundle, η ⊗ J = (η ◦ J)⊗ I and J ⊗ η = I ⊗ (η ◦ J).

Proposition 5.2. Let (M,∇, g) be a statistical manifold and ∇∗ the conjugate
connection of ∇. Consider ω a 2-form on M .

1. If ∇ and ∇∗ are η-projective equivalent, then ∇ω = ∇∗ω + 4η ⊗ ω.
2. If ∇ and ∇∗ are η-dual-projective equivalent, then

(∇Xω)(Y,Z) = (∇∗Xω)(Y,Z)− g(X,Y )ω(η]g , Z)− g(X,Z)ω(Y, η]g )

for any X, Y , Z ∈ X(M).

Proof. From the previous proposition. �

Corollary 5.3. Let (M,∇, g, J) be an almost subtangent-like statistical mani-
fold and ∇∗ the conjugate connection of ∇.

1. If ∇ and ∇∗ are η-projective equivalent, then ∇J = ∇∗J and ∇η = ∇∗η +
2η ⊗ η.

2. If ∇ and ∇∗ are η-dual-projective equivalent, then

(∇XJ)Y = (∇∗XJ)Y − g(X,Y )J(η]g ) + g(X, JY )η]g

and

(∇Xη)Y = (∇∗Xη)Y − g(X,Y )η(η]g )

for any X, Y ∈ X(M).

Proof. From the previous propositions. �

Corollary 5.4. Let (M,∇, g, J) be a special almost subtangent-like statistical
manifold, ∇∗ the conjugate connection of ∇ and ωJ the 2-form defined by (g, J).

1. If ∇ and ∇∗ are η-projective equivalent, then ∇J = ∇∗J , ∇η = ∇∗η+2η⊗η
and 0 = ∇∗ωJ + 4η ⊗ ω.
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2. If ∇ and ∇∗ are η-dual-projective equivalent, then

(∇XJ)Y = (∇∗XJ)Y − g(X,Y )J(η]g ) + g(X, JY )η]g ,

(∇Xη)Y = (∇∗Xη)Y − g(X,Y )η(η]g ),

0 = (∇∗XωJ)(Y, Z)− g(X, JY )η(Z)− g(JX,Z)η(Y )

for any X, Y , Z ∈ X(M).

Proof. From the previous propositions and from the fact that η⊗J∗ = (η◦J∗)⊗I
and J ⊗ η = I ⊗ (η ◦ J). �

Remark 5.1. To the class of pairs (∇,∇∗) which are solutions of the nonlinear
system

∇J = ∇∗J
∇η = ∇∗η + 2η ⊗ η
∇ω = ∇∗ω + 4η ⊗ ω

(5.3)

for J , η and ω apriori given, for ωJ(X,Y ) = g(X, JY ), the η-projective equivalent
conjugate connections on the special almost subtangent-like statistical manifold
(M,∇, g, J) belong.
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