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SOME GENERALIZED INTEGRAL INEQUALITIES

VIA FRACTIONAL INTEGRALS

M. Z. SARIKAYA, H. BUDAK and F.USTA

Abstract. The main goal of this paper is to introduce a new integral definition con-

cerned with fractional calculus. Then we establish generalized Hermite-Hadamard

type integral inequalities for convex function using proposed fractional integrals.
The results presented in this paper provide extensions of those given in earlier

works.

1. Introduction & Preliminaries

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very significant in the literature (see, e.g., [11, p. 137], [5]). These inequalities
state that if f : I → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b, then

(1) f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Both inequalities hold in the reversed direction if f is concave. We note that
Hadamard’s inequality may be regarded as a refinement of the concept of convexity
and it follows easily from Jensen’s inequality. Hadamard’s inequality for convex
functions has received renewed attention in recent years and a remarkable variety
of refinements and generalizations have been studied (see, for example, [1, 2, 5,
6, 11, 15, 16]).

On the other hand, a number of mathematicians have studied the fractional
integral inequalities and their applications using Riemann-Liouville fractional in-
tegrals. For results connected with Hermite-Hadamard type inequalities involving
fractional integrals, one can see [3, 4, 8, 12, 13, 14, 17, 18, 19]. In the fol-
lowing, we present a brief synopsis of all necessary definitions and results that are
required. More details, one can consult [7, 9, 10].
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Definition 1.1. Let f ∈ L1[a, b]. The Riemann-Liouville fractional integrals
Jαa+f and Jαb−f of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1
f(t)dt, x > a,

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)
α−1

f(t)dt, x < b,

respectively. Here, Γ(α) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).

In [13], Sarikaya et al. proved a variant of Hermite-Hadamard’s inequalities in
Riemann-Liouville fractional integral forms as follows

Theorem 1.2. Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequalities for
fractional integrals hold

(2) f
(a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

2

with α > 0.

Remark. For α = 1, inequality (2) reduces to inequality (1).

Meanwhile, Sarikaya et al. [13] presented the following important integral iden-
tity including the first-order derivative of f to establish many interesting Hermite-
Hadamard-type inequalities for convex functions via Riemann-Liouville fractional
integrals of the order α > 0.

Lemma 1.3. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If f ′ ∈ L1[a, b], then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]
=
b− a

2

∫ 1

0

[(1− t)α − tα] f ′ (ta+ (1− t)b) dt.

Using this Lemma, the authors obtained the following fractional integral in-
equality in [13]

Theorem 1.4. Let f : [a, b] → R be a differentiable mapping on (a, b) with
a < b. If |f ′| is convex on [a, b], then the following inequality for fractional integrals
holds

(3)

∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣
≤ b− a

2 (α+ 1)

(
1− 1

2α

)
[f ′(a) + f ′(b)] .

The aim of this paper is to present a new definition concerned with fractional
integrals and establish generalized Hermite-Hadamard type integral inequalities
for convex function involving this fractional integrals.
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2. Main Findings & Cumulative Results

In order to obtain our results, let us start with some notations given in [8]. Let
f : I◦ → R be a function such that a, b ∈ I◦ and 0 < a < b <∞. Throughout this

article, we suppose that F (x) = f(x) + f̃(x) and f̃(x) = f(a+ b−x) for x ∈ [a, b].
Then it is easy to show that if f is a convex function, then F is also a convex
function.

We are now give a new generalized definitions concerned with fractional integrals
as follows

Definition 2.1. Let u : [a, b] → R be an increasing and positive monotone
function on (a, b) and f, u ∈ L[a, b] with a < b. The generalized Riemann-Liouville

fractional integrals Jα,ka+,uf and Jα,kb−,uf of order α > 0 with a ≥ 0 are defined by

Jα,ka+,u (f) (x) =
1

Γ(α)

∫ x

a

(x− t)α−1 (u(x)− u(t))
k
f(t)dt, x > a,

and

Jα,kb−,u (f) (x) =
1

Γ(α)

∫ b

x

(x− t)α−1 (u(t)− u(x))
k
f(t)dt, x < b,

provided that the integrals exist, respectively, k ∈ N ∪ {0}.

Example 1. If we choose u(t) = t and f(t) = 1, it follows that

(4) Jα,ka+,t(1)(x) =
(x− a)α+k

(α+ k)Γ(α)

and

(5) Jα,kb−,t(1)(x) =
(b− x)

α+k

(α+ k)Γ(α)
.

First, we present a new Hermite-Hadamard type of inequalities for new gener-
alized fractional integrals in the following theorem

Theorem 2.2. Let f : [a, b]→ R be a convex function on [a, b] and u : [a, b]→ R
be an increasing and positive monotone function on (a, b), and f, u ∈ L[a, b] with
a < b. Then F is also integrable and the following inequalities for fractional integral
operators hold

(6)

f
(a+ b

2

) [
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

]
≤ 1

2

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]
≤
[
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

] f(a) + f(b)

2

with α > 0 and k ∈ N ∪ {0}.
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Proof. Since f is an convex mapping on [a, b], we have

(7) f
(x+ y

2

)
≤ f(x) + f(y)

2

for x, y ∈ [a, b]. Now, for t ∈ [0, 1], let x = ta+ (1− t)b and y = (1− t)a+ tb. Then
we find that

(8) 2f
(a+ b

2

)
≤ f (ta+ (1− t)b) + f ((1− t)a+ tb) .

Then multiplying both sides of (8) by tα−1 (u(b)− u (ta+ (1− t)b))k and integrat-
ing the resulting inequality with respect to t over [0, 1], we deduce that

2f
(a+ b

2

) 1∫
0

tα−1 (u(b)− u (ta+ (1− t)b))k dt

≤
1∫

0

tα−1 (u(b)− u (ta+ (1− t)b))k f (ta+ (1− t)b) dt

+

1∫
0

tα−1 (u(b)− u (ta+ (1− t)b))k f ((1− t)a+ tb) dt.

Using the change of variable y = ta+ (1− t)b, we have

2f
(a+ b

2

)
Jα,ka+ (1)(b) ≤ Jα,ka+

(
f̃
)
(b) + Jα,ka+ (f) (b),

i.e.,

(9) 2f
(a+ b

2

)
Jα,ka+ (1)(b) ≤ Jα,ka+ (F ) (b).

Similarly, multiplying both sides of (8) by tα−1 (u ((1− t)a+ tb)− u(a))
k

and in-
tegrating the resulting inequality with respect to t over [0, 1], we obtain

2f
(a+ b

2

) 1∫
0

tα−1 (u ((1− t)a+ tb)− u(a))
k

dt

≤
1∫

0

tα−1 (u ((1− t)a+ tb)− u(a))
k
f (ta+ (1− t)b) dt

+

1∫
0

tα−1 (u ((1− t)a+ tb)− u(a))
k
f ((1− t)a+ tb) dt.

Using the change of variable y = (1− t)a+ tb, we have

(10) 2f
(a+ b

2

)
Jα,kb−,u(1)(a) ≤ Jα,kb−,u (F ) (a).
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Summing the inequalities (9) and (10), we get

f
(a+ b

2

) [
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

]
≤ 1

2

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]
.

This completes the proof of first inequality in (6).
For the proof of the second inequality in (6), since f is convex, we have

(11) f (ta+ (1− t)b) + f ((1− t)a+ tb) ≤ [f(a) + f(b)] .

Multiplying both sides of (11) by tα−1 (u(b)− u (ta+ (1− t)b))k and integrating
the resulting inequality with respect to t over [0, 1], we have

1∫
0

tα−1 (u(b)− u (ta+ (1− t)b))k f (ta+ (1− t)b) dt

+

1∫
0

tα−1 (u(b)− u (ta+ (1− t)b))k f ((1− t)a+ tb) dt

≤ [f(a) + f(b)]

1∫
0

tα−1 (u(b)− u (ta+ (1− t)b))k dt.

Then, we get

(12) Jα,ka+,u (F ) (b) ≤ [f(a) + f(b)] Jα,ka+,u(1)(b).

Similarly, multiplying both sides of (11) by tα−1 (u ((1− t)a+ tb)− u(a))
k

and
integrating the resulting inequality with respect to t over [0, 1], we get

(13) Jα,kb−,u (F ) (a) ≤ [f(a) + f(b)] Jα,kb−,u(1)(a).

By adding the inequalities (12) and (13), we have

1

2

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]
≤
[
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

] f(a) + f(b)

2
,

which completes the proof. �

Remark. If we choose k = 0 in Theorem 2.2, then the inequality (6) reduces
to inequality (2).

Corollary 2.3. If we choose u(t) = t in Theorem 2.2, then we have the in-
equality for Riemann-Liouville fractional integrals

f
(a+ b

2

)[ (x− a)α+k + (b− x)
α+k

(α+ k)Γ(α)

]

≤ Γ(α+ k)

2Γ(α)

[
Jα+k
a+ (F ) (b) + Jα+k

b− (F ) (a)
]

≤

[
(x− a)α+k + (b− x)

α+k

(α+ k)Γ(α)

]
f(a) + f(b)

2
.



32 M. Z. SARIKAYA, H. BUDAK and F.USTA

Proof. From Definition 2.1 with u(t) = t, we have

(14) Jα,ka+,t (F ) (b) =
1

Γ(α)

∫ b

a

(b− t)α−1
(x− t)kF (t)dt =

Γ(α+ k)

Γ(α)
Jα+k
a+ (F ) (b)

and similarly,

(15) Jα,kb−,t (F ) (a) =
Γ(α+ k)

Γ(α)
Jα+k
b− (F ) (b).

Using the equalities (4), (5), (14), and (15), we obtain the desired result. �

Now, we give an important identity for new generalized fractional integrals in
the following theorem

Lemma 2.4. Let f : [a, b] → R be a differentiable function on (a, b) and u :
[a, b] → R be an increasing and positive monotone function on (a, b) with a < b.
If f ′, u ∈ L[a, b], then F is also differentiable and F ∈ L[a, b], and the following
equality holds

(16)

[
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

] f(a) + f(b)

2
− 1

2

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]
=

(b− a)α

2Γ(α)

b∫
a

G(y)F ′(y)dy,

where F ′(y) = f ′(y)− f ′(a+ b− y) and

(17)

G(y) =

[ y−a
b−a∫
0

sα−1 (u(b)− u (sa+ (1− s)b))k ds

]

+

[ 1∫
y−a
b−a

(1− s)α−1 (u(sa+ (1− s)b)− u(a))
k

ds

]
.

Proof. Integrating by parts, we have

I1 =

1∫
0

[ t∫
0

sα−1 (u(b)− u (sa+ (1− s)b))k ds

]
f ′ ((1− t)a+ tb) dt

=
Γ(α)

(b− a)α+1
Jα,ka+ (1)(b)f(b)− Γ(α)

(b− a)α+1
Jα,ka+

(
f̃
)
(b).

Similarly, using the integration by parts,

I2 =

1∫
0

[ t∫
0

sα−1 (u(b)− u (sa+ (1− s)b))k ds

]
f ′ (ta+ (1− t)b) dt

= − Γ(α)

(b− a)α+1
Jα,ka+,u(1)(b)f(a) +

Γ(α)

(b− a)α+1
Jα,ka+,u (f) (b),
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I3 =

1∫
0

[ 1∫
t

(1− s)α−1
(u(sa+ (1− s)b)− u(a))

k
ds

]
f ′ (at+ (1− t)b) dt

=
Γ(α)

(b− a)α+1
Jα,kb−,u(1)(a)f(a)− Γ(α)

(b− a)α+1
Jα,kb−,u (f) (a),

and

I4 =

1∫
0

[ 1∫
t

(1− s)α−1
(u((sa+ (1− s)b)− u(a))

k
ds

]
f ′ ((1− t)a+ tb) dt

= − Γ(α)

(b− a)α+1
Jα,kb−,u(1)(a)f(b) +

Γ(α)

(b− a)α+1
Jα,kb−,u

(
f̃
)

(a).

Then it follows that

(18)

I1 − I2 + I3 − I4 =
Γ(α)

(b− a)α+1

[
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

]
[f(a) + f(b)]

− Γ(α)

(b− a)α+1

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]
.

If we multiply both sides of (18) by (b−a)α+1

2Γ(α) , then we obtain the following result

(19)

[
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

] f(a) + f(b)

2
− 1

2

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]
=

(b− a)α+1

2Γ(α)

{ 1∫
0

[ t∫
0

sα−1 (u(b)− u (sa+ (1− s)b))k ds

]
×
[
f ′ ((1− t)a+ tb)− f ′ (at+ (1− t)b)

]
dt

+

1∫
0

[ 1∫
t

(1− s)α−1
(u(sa+ (1− s)b)− u(a))

k
ds

]

×
[
f ′ ((1− t)a+ tb)− f ′ (at+ (1− t)b)

]
dt

}
.

Using the change of variable y = (1− t)a+ tb in (19), since

G(y) =

[ y−a
b−a∫
0

sα−1 (u(b)− u (sa+ (1− s)b))k ds

]

+

[ 1∫
y−a
b−a

(1− s)α−1 (u(sa+ (1− s)b)− u(a))
k

ds

]
,
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then it follows that[
Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)

] f(a) + f(b)

2
− 1

2

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]
=

(b− a)α

2Γ(α)

b∫
a

G(y)F ′(y)dy.

Thus the desired equality (16) has been obtained. �

Theorem 2.5. Let f : [a, b]→R be a differentiable function on (a, b), u : [a, b]→R
be an increasing and positive monotone function on (a, b), and f ′, u ∈ L[a, b] with
a < b. Then F is also differentiable and F ∈ L[a, b]. If |f ′| is convex on [a, b], then
the following inequality holds

(20)

∣∣∣ [Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)
] f(a) + f(b)

2(b− a)α

− 1

2(b− a)α

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

] ∣∣∣
≤ 1

2Γ(α)

b∫
a

|G(y)|dy (|f ′(a)|+ |f ′(b)|) .

Proof. Notice that F ′(y) = f ′(y) − f ′(a + b − y). By the convexity of |f ′| , it
follows

(21)
|F ′(y)| =

∣∣∣∣f ′(b− yb− a
a+

y − a
b− a

b

)
− f ′

(
b− y
b− a

b+
y − a
b− a

a

)∣∣∣∣
≤ |f ′(a)|+ |f ′(b)| .

By inequalities (16) and (21), we obtain∣∣∣∣[Jα,ka+,u(1)(b) + Jα,kb−,u(1)(a)
] f(a) + f(b)

2
− 1

2

[
Jα,ka+,u (F ) (b) + Jα,kb−,u (F ) (a)

]∣∣∣∣
≤ (b− a)α

2Γ(α)

b∫
a

|G(y)| |F ′(y)|dy

≤ (b− a)α

2Γ(α)

b∫
a

|G(y)|dy (|f ′(a)|+ |f ′(b)|) .

Thus the proof is completed. �

Remark. If we choose k = 0 in Theorem 2.5, then

G(y) =
[(y − a)α − (b− y)α]

α(b− a)α
.

Thus, the ineuality (20) reduces to the ineuality (3).
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Corollary 2.6. If we choose k = 1 in Theorem 2.5, |u| is convex on [a, b], then
we have the inequality∣∣∣∣[Jα,1a+,u(1)(b) + Jα,1b−,u(1)(a)

]f(a)+f(b)

2(b− a)α
− 1

2(b− a)α

[
Jα,1a+,u (F ) (b)+Jα,1b−,u (F ) (a)

]∣∣∣∣
≤ (b− a)

Γ(α+ 2)
(|u(a)|+ |u(b)|) (|f ′(a)|+ |f ′(b)|) .

Proof. Using (17) with k = 1, we have

G(y) =

y−a
b−a∫
0

sα−1 (u(b)− u (sa+ (1− s)b)) ds

+

1∫
y−a
b−a

(1− s)α−1 (u(sa+ (1− s)b)− u(a)) ds

= u(b)

y−a
b−a∫
0

sα−1ds− u(a)

1∫
y−a
b−a

(1− s)α−1ds

−

y−a
b−a∫
0

sα−1u (sa+ (1− s)b) ds+

1∫
y−a
b−a

(1− s)α−1u(sa+ (1− s)b)ds.

By using the convexity of |u| , we obtain

|G(y)| ≤ |u(b)| (y − a)
α

+ |u(a)| (b− y)α

α(b− a)α
+

y−a
b−a∫
0

sα−1 |u (sa+ (1− s)b)|ds

+

1∫
y−a
b−a

(1− s)α−1 |u(sa+ (1− s)b)|ds

≤ |u(b)| (y − a)
α

+ |u(a)| (b− y)α

α(b− a)α
+

y−a
b−a∫
0

sα−1 [s |u(a)|+ (1− s) |u(b)|] ds

+

1∫
y−a
b−a

(1− s)α−1 [s |u(a)|+ (1− s) |u(b)|] ds
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=
|u(b)| (y − a)

α
+ |u(a)| (b− y)α

α(b− a)α
+|u(a)|

[
(y − a)

α+1−(b− y)α+1

(α+1) (b− a)α+1
+

(b− y)α

α(b− a)α

]
+ |u(b)|

[
− (y − a)

α+1
+ (b− y)α+1

(α+ 1) (b− a)α+1
+

(y − a)α

α(b− a)α

]
= |u(a)|

[
(y − a)

α+1 − (b− y)α+1

(α+ 1) (b− a)α+1
+

2(b− y)α

α(b− a)α

]

+ |u(b)|

[
− (y − a)

α+1
+ (b− y)α+1

(α+ 1) (b− a)α+1
+

2(y − a)α

α(b− a)α

]
.

Thus, we have the inequality

1

2Γ(α)

b∫
a

|G(y)|dy ≤ (b− a)

Γ(α+ 2)
(|u(a)|+ |u(b)|) ,

which completes the proof. �

Corollary 2.7. If we choose u(t) = t in Theorem 2.5, then we have the in-
equality for Riemann-Liouville fractional integrals,∣∣∣∣∣

[
(x− a)α+k + (b− x)

α+k

(α+ k)Γ(α)

]
f(a) + f(b)

2(b− a)α

− Γ(α+ k)

2Γ(α) (b− a)
α

[
Jα+k
a+ (F ) (b) + Jα+k

b− (F ) (a)

]∣∣∣∣
≤ (b− a)k+1

(α+ k) (α+ k + 1) Γ(α)
(|f ′(a)|+ |f ′(b)|) .

Proof. Using (17) with u(t) = t, we have

|G(y)| = (b− a)k

y−a
b−a∫
0

sα+k−1ds+

1∫
y−a
b−a

(1− s)α+k−1ds

=
(y − a)

α+k
+ (b− y)

α+k

(α+ k)(b− a)α
.

Then it follows that

(22)

1

2Γ(α)

b∫
a

|G(y)|dy (|f ′(a)|+ |f ′(b)|)

=
(b− a)k+1

(α+ k) (α+ k + 1) Γ(α)
(|f ′(a)|+ |f ′(b)|) .

This completes the proof. �
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3. Concluding remarks

In this study, a new definitions for fractional integrals have been proposed and
tested. Then the introduced fractional integral operators have been applied to
Hermite Hadamard type integral inequalities to validate their generalized proper-
ties.
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fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013),
2403–2407.

14. Sarıkaya M. Z., Filiz H. and Kiriş M. E., On some generalized integral inequalities for
Riemann-Liouville fractional integrals, Filomat 296 (2015), 1307–1314.

15. Sarıkaya M. Z. and Budak H., Generalized Hermite-Hadamard type integral inequalities for
functions whose 3rd derivatives are s-convex, Tbilisi Math. J. 7(2) (2014), 41–49.
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