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SOME GENERALIZED INTEGRAL INEQUALITIES
VIA FRACTIONAL INTEGRALS

M. Z. SARIKAYA, H. BUDAK anD F. USTA

ABSTRACT. The main goal of this paper is to introduce a new integral definition con-
cerned with fractional calculus. Then we establish generalized Hermite-Hadamard
type integral inequalities for convex function using proposed fractional integrals.
The results presented in this paper provide extensions of those given in earlier
works.

1. INTRODUCTION & PRELIMINARIES

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very significant in the literature (see, e.g., [11, p. 137], [5]). These inequalities
state that if f: I — R is a convex function on the interval I of real numbers and
a,b € I with a < b, then

. 545 < b [ rwan < 1OTIO,

Both inequalities hold in the reversed direction if f is concave. We note that
Hadamard’s inequality may be regarded as a refinement of the concept of convexity
and it follows easily from Jensen’s inequality. Hadamard’s inequality for convex
functions has received renewed attention in recent years and a remarkable variety
of refinements and generalizations have been studied (see, for example, [1, 2, 5,
6, 11, 15, 16]).

On the other hand, a number of mathematicians have studied the fractional
integral inequalities and their applications using Riemann-Liouville fractional in-
tegrals. For results connected with Hermite-Hadamard type inequalities involving
fractional integrals, one can see [3, 4, 8, 12, 13, 14, 17, 18, 19]. In the fol-
lowing, we present a brief synopsis of all necessary definitions and results that are
required. More details, one can consult [7, 9, 10].
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Definition 1.1. Let f € Li[a,b]. The Riemann-Liouville fractional integrals
J& f and Jg¥ f of order o > 0 with a > 0 are defined by

I S@) = g [ =t r0d e
and . .
T 1) = [ - s, a<b

respectively. Here, I'() is the Gamma function and JO, f(z) = J)_f(z) = f(x).

In [13], Sarikaya et al. proved a variant of Hermite-Hadamard’s inequalities in
Riemann-Liouville fractional integral forms as follows

Theorem 1.2. Let f: [a,b] — R be a positive function with 0 < a < b and
f € Lifa,b]. If f is a convex function on [a,b], then the following inequalities for
fractional integrals hold

@) f(a+b)< MNa+1)

2 /7 20b—a)™
with o > 0.

fla) +5()
2

[Ja £(0) + i f(a)] <

Remark. For o = 1, inequality (2) reduces to inequality (1).

Meanwhile, Sarikaya et al. [13] presented the following important integral iden-
tity including the first-order derivative of f to establish many interesting Hermite-
Hadamard-type inequalities for convex functions via Riemann-Liouville fractional
integrals of the order a > 0.

Lemma 1.3. Let f: [a,b] = R be a differentiable mapping on (a,b) with a < b.
If f' € Ly]a,b], then the following equality for fractional integrals holds:
fla)+f(b) T(a+1)

2 T 2(b—a) [T f(b) + J5 f(a)]

_ bZQAI[(I—t)a—ta}f’(ta+(1—t)b)dt.

Using this Lemma, the authors obtained the following fractional integral in-
equality in [13]

Theorem 1.4. Let f: [a,b] — R be a differentiable mapping on (a,b) with
a < b. If | f'| is convex on [a,b], then the following inequality for fractional integrals

holds

’ Ha) £ 7O Tt rha )4 g pa)]

2 2(b—a)
®) b—a 1
< sar (L 3e) V@ + 1O

The aim of this paper is to present a new definition concerned with fractional
integrals and establish generalized Hermite-Hadamard type integral inequalities
for convex function involving this fractional integrals.
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2. MAIN FINDINGS & CUMULATIVE RESULTS

In order to obtain our results, let us start with some notations given in [8]. Let
f:I° — R be a function such that a,b € I° and 0 < a < b < co. Throughout this
article, we suppose that F(z) = f(z) + f(z) and f(z) = f(a+b—z) for z € [a, b)].
Then it is easy to show that if f is a convex function, then F' is also a convex
function.

We are now give a new generalized definitions concerned with fractional integrals

as follows

Definition 2.1. Let u: [a,b] — R be an increasing and positive monotone
function on (a,b) and f,u € La,b] with a < b. The generalized Riemann-Liouville
fractional integrals Js‘jr’fu f and Jl?;’fu f of order a@ > 0 with a > 0 are defined by

T () @) = o

() /w(x — ) (u2) —u(®)* f(O)AL, @ >a,

and
b
7/ (2 — )1 (u(t) — u(x))” f(t)dt, z < b,

provided that the integrals exist, respectively, k € N U {0}.
Example 1. If we choose u(t) =t and f(t) = 1, it follows that

a,k _ (:L’ - a)aJrk
(4) Ja+,t(1)(x) - (Oé + k)F(a)
and

o _ ot
(5) ijt(l)(x) T @t k()

First, we present a new Hermite-Hadamard type of inequalities for new gener-
alized fractional integrals in the following theorem

Theorem 2.2. Let f: [a,b] — R be a convex function on [a,b] andu: [a,b] — R
be an increasing and positive monotone function on (a,b), and f,u € Lla,b] with
a < b. Then F is also integrable and the following inequalities for fractional integral
operators hold

7430 [t ) + 1 ) ()

—~
D

=
A

[Tt (P) () + T, () ()]

fa) + f(b)
2

1
-2

IN

et D) + 7, (1) (@)

with o > 0 and k € N U{0}.
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Proof. Since f is an convex mapping on [a, b], we have

) f<:c42ry) < f(w);rf(w

for z,y € [a,b]. Now, for ¢t € [0,1], let x =ta+ (1 —t)b and y = (1 —¢)a +tb. Then
we find that

(®) 2/ (%5

Then multiplying both sides of (8) by t*1 (u(b) — u (ta + (1 — t)b))" and integrat-
ing the resulting inequality with respect to t over [0, 1], we deduce that

a+b

)§f(ta+(1—t)b)+f((1—t)a+tb).

aer / 1 k
1 (u(b) — u (ta + (1 — t)b))" dt
)
< /t”"l (u(b) — u (ta + (1 — )b))* f (ta + (1 — t)b) dt
0

+ / £ (u(b) —uta+ (1= 1)b)" f (1~ t)a+ tb) dt.
0

Using the change of variable y = ta + (1 — )b, we have

2 (2D )0 < T (PO + T () 0),

(9) 2/ (557 ) St () < T2 (F) (o).

Similarly, multiplying both sides of (8) by t*~ (u ((1 — t)a + tb) — u(a))" and in-
tegrating the resulting inequality with respect to ¢ over [0, 1], we obtain

a+b

1
aer /t“ U(u ((1 = t)a + tb) — u(a))* dt
0

< /t“*l (u((1—t)a+tb) — u(a))® f (ta+ (1 — t)b) dt
0

1
+ /t‘“‘l (u((1 = t)a+ tb) — u(a))® £ (1 — t)a + tb) dt.
0
Using the change of variable y = (1 — ¢)a + tb, we have

(10) 2f(a+b)

Tt (D(a) < T (F) (a).
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Summing the inequalities (9) and (10), we get

F(550) [t 00 + 2, 0)@)] < 5 [T, F) 0 + 55, () @)]
(6

This completes the proof of first inequality in (6).
For the proof of the second inequality in (6), since f is convex, we have

(11) fta+ (1 =8)b) + f((1—t)a+1tb) < [f(a) + f(b)]-
(

Multiplying both sides of (11) by t*~* (u(b) — u (ta + (1 — t)b))" and integrating
the resulting inequality with respect to t over [0, 1], we have

/t"‘_l (u(b) — u (ta+ (1 —£)b))* f (ta+ (1 — t)b) dt
’ 1
+ /t"“l (u(b) —u (ta+ (1 —£)b))" £ (1 = t)a + tb) dt
0

a) + () /ta—l (u(b) — u (ta + (1 — )b))* dr.

Then, we get
(12) Toik o (F) (0) < [f(a) + f(B)] Tt (1) (0).

Similarly, multiplying both sides of (11) by t*~! (u ((1 —t)a + tb) — u(a))k and
integrating the resulting inequality with respect to ¢ over [0, 1], we get

(13) Tt () (a) < [f(a) + FO)] T2", (1)(a).
By adding the inequalities (12) and (13), we have
b
L[t e+ gt ) )] < [t o)+ o] 12O
which completes the proof. O

Remark. If we choose k = 0 in Theorem 2.2, then the inequality (6) reduces
to inequality (2).

Corollary 2.3. If we choose u(t) = t in Theorem 2.2, then we have the in-
equality for Riemann-Liouville fractional integrals

ot b (x _ a)a+k 4 (b _ m)a+k
f( 9 ) (a+ k)T ()
- Fg;(z)k) [T (F) (b) + JoH (F) ()]

(2 =)+ + O —2)"™"| fa) + f()
(a+ k)() 2 '
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Proof. From Definition 2.1 with u(t) = ¢, we have

ok 1 b a—1 k la+k) aik
(1) T )0 = g [ 0= @0 F0a = SEEE ) )
and similarly,
o,k _ F(OZ + k) a+k
(15) S (F) () = T Sy (F) (0).
Using the equalities (4), (5), (14), and (15), we obtain the desired result. O

Now, we give an important identity for new generalized fractional integrals in
the following theorem

Lemma 2.4. Let f: [a,b] — R be a differentiable function on (a,b) and u:
[a,b] — R be an increasing and positive monotone function on (a,b) with a < b.
If f',u € Lla,b], then F is also differentiable and F € Lla,b], and the following
equality holds

et o) + 2, @] LG ek () 6y 4+ 0k, ) @)

2 2
(16) e
= (bzrm))/G(y)F’(y)d%

a

where F'(y) = f'(y) = f'(a+b—y) and

Proof. Integrating by parts, we have
1t

L :/ {/sa1(u(b)—u(sa+(1—s)b))kds} F((1 = t)a+ th) dt
0 0

N (brszmm’“(l)(b)f(b) - U)FSLH 7 (o).

Similarly, using the integration by parts,
1t

= s (u(b) — u (sa — b)) *ds| ¥ (ta -
Iz—o/ L/ (u(b) (sa+ (1 —1s)b))"d }f (ta+ (1 —t)b)dt
['(a) o,k ['(a) a,k

= a1 atu(1)(0) f(a) + e (f) (b),



SOME GENERALIZED INTEGRAL INEQUALITIES ... 33

L @f0) - G s i, (1) @),

L= /1 {j(l—s)a_l(u((sa+(1—s)b) —u(a))kds} £ (1= t)a + tb) dt
r

Nt (F) ).

(b _ a)a+1 b—,u

- ek (1)) 50 +

(b _ a)a+1 b—,u
Then it follows that

I'(a)
(b—a)ott

G E(GO;LH {Jgirk,u (F) (b) + Jba_’lfu (F) (a)} .

Li—L+13—-1,=
(18)

et ) + Ik, (@) (@) + £0)]

If we multiply both sides of (18) by (b;;():; 1, then we obtain the following result

et D) + 7, (1) (@) fla) £ 70) 1 [Tt (F) (0) + 3%, (F) ()]

2 2
B W{/ U 7 ) —ufsat 1 —s>b>>kd5]
(19) < [£(0~ tyat tb) — £ (at + (1~ 1) |

+/1 {j(l—s)al(u(sa—i—(l—s)b) —u(a))kds]
0 t
X [f’ (1= t)a+th) — f (at + (1 t)b)]dt}.

Using the change of variable y = (1 — t)a + tb in (19), since

G = | / (u(0) ~ u(sa-+ (1= 1) |
0

|

Y
b—

(1— 5" (u(sa+ (1—s)b) —u(a))” ds] ,

P~
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then it follows that

[t 00) + gt @] L0 ek ) )+ g, () (@)

b
ZQZng/G@ﬂ”@My

Thus the desired equality (16) has been obtained. O

Theorem 2.5. Let f:[a,b] =R be a differentiable function on (a,b), u: [a,b] =R
be an increasing and positive monotone function on (a,b), and f',u € Lla,b] with
a <b. Then F is also differentiable and F € L{a,b]. If | f’| is convex on [a,b], then
the following inequality holds

| et ) + 5, (1) @) JW

1

(20) - s P )+ L () @]

b
1 ’ ’
< 5 | 1C@Ia 1@+ 17 ).

Proof. Notice that F'(y) = f'(y) — f'(a + b — y). By the convexity of |f’|, it

follows
b—y  y—a b—y, y—a
!/ _ ! - g - J
|F@”"f<b—a“+b—a0 'f(b—ab+b—aa
< If' @]+ @)
By inequalities (16) and (21), we obtain

[z + 7t @] HOT I St 0+ a2 ) @)

(21)

b
<G [16wlFwlay

b
< & [1cwlanisr @i+ 1r o).

Thus the proof is completed. O

Remark. If we choose & = 0 in Theorem 2.5, then

[(y —a)* — (b—y)°]
alb—a)> '

Thus, the ineuality (20) reduces to the ineuality (3).

G(y) =
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Corollary 2.6. If we choose k =1 in Theorem 2.5, |u] is convex on [a,b], then
we have the inequality

et )+ g @] G L e e e, () )]

(b—a)
I'a+2)

<

(lu(a)] + [u(®)]) (If (@)] + [/ (D)) -

Proof. Using (17) with k = 1, we have

b—a
= 1
= u(b) / s*7lds — u(a) /(1 Y2~ tds
0 y—a

By using the convexity of |u|, we obtain

y—a

|G(y)| < |u(b)| (y B Z)(b i_ Z;ia” (b — y)a + / sa—l |u (sa + (1 — S)b)| ds

+ / (1 ) u(sa+ (1 — s)b)|ds

IO a)@f'au (b -y / a)| + (1 — s) [u(b)|) ds
0

+ / (1= [s[u(a)| + (1 = ) [u(b)[] ds
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_ @)y —a)” + u(@)](b=y)* | Y= a)* = (b—y)
= ab—a)e *lu(a)] { @+ (b—a) " ab—a)e

=)+ b=y (y—a)
+ () [ @+ G-art " ab- a)a}

= hu(a) [@a)““ b=y 2<by>a]

(a+1)(b—a)t! + alb—a)>

_ (y _ a)a-H + (b _ y)a+1 2(y _ a)a
+ Wb)'[ (@t 1) (b apt a(b—a)‘l]'

Thus, we have the inequality

T /\ Wiy < 1y (u(a)] + ulb)).

which completes the proof. O

Corollary 2.7. If we choose u(t) = t in Theorem 2.5, then we have the in-
equality for Riemann-Liouville fractional integrals,

[(x —a)* 4 (b—a)* ™ f(a) + f(D)
(a+ E)(«) 2(b—a)e
~ Dla+k)
2T () (b —a)”
(b — a)k+1 ! /
< TP e (@ o).
Proof. Using (17) with u(t) = ¢, we have

[Jsﬁ (F) (b) + Jo* (F) <a>]

y—
b—

G(y)| = (b—a)* / wth=1dg |

a+k 1d8

\H

(y _ a)a+k + (b _ y)a+k
@+ B-ar

Then it follows that

b
1
= [ 1GW)|dy (If'(a)| + £ (®)])
(22) QF(Q)G/
(b )k+1

- GG T @+ o).

This completes the proof. O
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3. CONCLUDING REMARKS

In this study, a new definitions for fractional integrals have been proposed and
tested. Then the introduced fractional integral operators have been applied to
Hermite Hadamard type integral inequalities to validate their generalized proper-
ties.
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