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SOME GENERALIZED HERMITE-HADAMARD TYPE
INEQUALITIES INVOLVING FRACTIONAL INTEGRAL
OPERATOR FOR FUNCTIONS WHOSE SECOND
DERIVATIVES IN ABSOLUTE VALUE ARE S-CONVEX

E. SET, S. S. DRAGOMIR aND A. GOZPINAR

ABSTRACT. In this article, a general integral identity for twice differentiable map-
ping involving fractional integral operators is derived. Secondly by using this iden-
tity we obtain some new generalized Hermite-Hadamards type inequalities for func-
tions whose absolute values of second derivatives are s-convex and concave. The
main results generalize the existing Hermite-Hadamard type inequalities involving
the Riemann-Liouville fractional integral. Also we point out, some results in this
study in some special cases such as setting s =1, A = a, 0(0) = 1 and w = 0, more
reasonable than those obtained in [8].

1. INTRODUCTION AND PRELIMINARIES

Let f: I C R — R be a convex function on an interval I in the set of real numbers
R. Then, for a, b € I with a < b, the following so-called Hermite-Hadamard
inequality (see, e.g., [12])

(1.1) f(a;b)<bia/:f(x)dm<f(a);—f(b)

holds true. Since its discovery in 1983, Hermite-Hadamard’s inequality has been
considered the most useful inequality in mathematical analysis. A number of the
papers have been written on this inequality providing new proofs, noteworthy
extensions, generalizations and numerous applications, see and references therein
6, 7, 12, 15].

Two definitions of s-convexity (0 < s < 1) of real-valued functions are well known
in the literature.

Definition 1.1. Let 0 < s < 1. A function f: [0,00) — R is said to be s-Orlicz
convex or s-convex in the first sense if for every z,y € [0,00) and «, 8 > 0 with
o’ + % =1, we have

(1.2) flaz + By) < o®f(z) + 5°f(y).
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We denote the set of all s-convex functions in the first sense by K!. This defi-
nition of s-convexity was introduced by Orlicz in [14] and was used in the theory
of Orlicz spaces. Then, s-convex function in the second sense was introduced in
Breckner’s paper [4] and a number of properties and connections with s-convexity
in the first sense are discussed in paper [10].

Definition 1.2. [4] A function f: Ry — R is said to be s-convex in the second
sense if
flox + py) < o f(z) + 57 f(y)
for all z,y e Ry and all o, 8 > 0 with a + 5 = 1.

We denote this by K2. It is obvious that the s-convexity means just the con-
vexity when s = 1.

In [6] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality
which holds for s-convex functions in the second sense as follows

Theorem 1.1. Suppose that f: [0,00) — [0,00) is an s-convex function in the
second sense, where s € (0,1] and let a,b € [0,00), a < b. If f € Li]a,b] then the
following inequality holds

a b a
19 () ek [ e 100

The constant k& = 54%1 is the best possible in the second inequality in (1.3). For
more study, see ([2, 3, 6, 11]).

In the following, we give some necessary definitions and preliminary results
which are used and referred to throughout this paper.

Definition 1.3. Let f € Li[a,b]. The Riemann-Liouville integrals J f and
Jit f of order av > 0 with a > 0 are defined by

! /w(x — 1)L f(t)de, x>a

Jor f (@) = (o)

and
b
Ji- f(x) = ﬁ/ (t— alc)“_lf(t)dt7 x < b,

respectively, where I'(a) = [~ e u®~!du. Here JO, f(z) = J)_ f(z) = f(x).

In the case of & = 1, the fractional integral reduces to the classical integral.
Some recent results and properties concerning this operator can be found [5, 9,
27, 19, 16, 20, 21].

The beta function is defined as follows:

[(a)L'(b)

B(a,b) = =—=

(a,) I'(a+b)

where I' (o) is Gamma function. In [27], Sarikaya et al. gave a remarkable inte-

gral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional
integrals as follows.

1
= / t2= 11 —t)’tat, a,b>0,
0
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Theorem 1.2. Let f: [a,b] — R be a positive function with 0 <a <b and f €
[a,b]. If f is convex function on [a,b], then the following inequality for fractional
integrals holds.

a+b [(a+1) f(a)+ f(b)
1.4 ( ) < T () + T f(a)) < DY)
(1.4) I _Q(b_a)a[a+f()+ b fla)] < 5

It is obviously seen that if we take & = 1 in Theorem 1.2, then the inequality
(1.4) reduces to well known Hermite-Hadamard’s inequality as (1.1).

Hermite Hadamard type inequality for s-convex functions on Riemann-Liouville
fractional integral is given in [19] as follows.

Theorem 1.3. Let f: [a,b] — R be a positive function with 0 < a < b and
f € Lila,b]. If f is s-convex mapping in the second sense on [a,b], then the
following inequality for fractional integral with o > 0 and s € (0,1] hold

211 ("50) < g i FO) + 5 f(@)
(1.5)
a1 +B(a78+1)] f(a);rf(b)7

where B(a,b) is beta function.

In [8] Dragomir et al proved the following identity and by using this identity
they established new results involving Riemann-Liouville fractional integrals for
twice differentiable convex mappings.

Lemma 1.1. [8] Let f: I C R — R be a twice differentiable function on I°, the
interior of I. Assume that a,b € I° with a < b and " € Lla,b], then the following
identity for fractional integral with o > 0 holds
fla)+f(b) T(a+1)

- JE JEf(b
2 2(b_a,)a[ b f(a’)+ a+f( )]
(b—a)®

et D) /0 t(1—t") [f" (ta+ (1 —1)b) + 7 (tb + (1 — t)a)] dt.

In [25], Raina introduced a class of functions defined formally by

(1.6)

oy ooy N~ k) ,
(L.7) o) = F 5 (z) = ;} mx (p,A>0; z €R),

where the coefficients (k) (k € N=NU{0}) are a bounded sequence of positive
real numbers and R is the set of real numbers. With the help of (1.7), Raina [25]
and Agarwal et al. [1] defined the following left-sided and right-sided fractional
integral operators respectively, as follows

18)  (TPrarm®) (@) = /z(x — ) F w1 lp(t)dt (x> a>0),

b
(1.9 (Tgrp—swe) (2) = / (t =2 UF L w(t —2)le(t)dt - (0 <z <b),
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where A\,p > 0, w € R and ¢(¢) is such that the integral on the right side ex-
its. Recently some new integral inequalities this operator have appeared in the
literature (see, e.g., [23, 22, 24, 1, 17, 18, 29)).

It is easy to verify that J7 .. .,¢(z) and J7, ,_.,¢(z) are bounded integral
operators on L(a,b), if

(1.10) M= Fg a1 w(b —a)’] < oo.

In fact, for ¢ € L(a,b), we have

(1.11) 1753 at (@)l < Mb—a)* el
and

(1.12) 1T 3 b (@)l < MM(b — a) e,
where

el = [ bgo(t)pdt);.

Here, many useful fractional integral operators can be obtained by specializing
the coefficient o (k). For intance the classical Riemann-Liouville fractiona integrals
J¢ and Ji* of order « follow easily by setting A = a, 0(0) = 1 and w = 0 in (1.8)
and (1.9).

In [26] generalized Hermite-Hadamard’s inequality for s-convex mapping frac-
tional integral operators as follows.

Theorem 1.4. Let f: [a,b] — R be a function with 0 < a < b and f € L1]a,b].
If f is an s-convex function on [a,b] then we have the following inequalities for
generalized fractional integral operators

(1.13)
a+b 1
21(%57) < 5 T 7\ [w(b— a)] (Tl @)+ (Tonnd ) 0]
1 00,5 p
< F G [ A1) + o5 wlb — a)”]] [£(a) + FO))
where
__ k) _
ao,s(k)—m, k=0,1,2... and

Ar(\, ) = /01 A1 = )P F7\[w(b — a)Pt?]dt.

In this paper, first aim is to establish a new integral identity for a twice dif-
ferentiable function via fractional integral operators. Using this new identity, we
present some Hermite-Hadamard type inequalities for functions whose second-
order derivatives absolute values are s-convex and concave in the second sense.
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2. MAIN RESULTS

Lemma 2.1. Let f: [a,b] — R be a twice differentiable mapping on (a,b)
(a < b). Also, p,A >0 and w € R. If f" € Lla,b], then the following equality for
generalized fractional integrals holds

(2.1)
Tl - I [T ) @+ (Tinerf) O
(b—a

2 [
=5 X /0 {t]—'g’/\ﬁ[w(b— a)”]
— PVUETafw(b = @) ] [ (tat (1= ) + £ (1= t)a + )] }at.
Proof. Integrating by parts and changing variables with x = (ta + (1 — t)b) we
get
(2.2)

1
I = Foolu(b - a)p]/o tF" (ta + (1 — £)b) dt

o 1/1f (ta+ (1—t)b) dt}

o a=blJo

= Foatalw(b - a)"]{aibtf' (ta + (1—t)b)
= Flapalw(d - am{ 1 faﬁ f <(c;>_—az)f2<b> }

by using same method

1
Iy = FJ xqalw(b = a)’] /O tf" (1 = t)a + th) dt

23 S0 f0) - f@
= Pl - ) { 2 - LO =L,

analogously

(2.4)

1
I = / P ow(b — a)t]f" (ta + (1 — )by d
0

1

f (ta+ (1 —t)b)

= t)‘+1.7-'g7>\+2[w(b — a)’t’]

a—>b 0
1 "(ta+ (1 —1t)b
—/O tAf;A+1[w(b—a)ptp]f( a—(b ))dt

fta+ (1 —t)b)|"

’ 1
= Fawalwb -1 Y - Lopre - ap L0
0

a—b a—b

e 1—t)b
a_b/o P Efulp — aper) LD,

+
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a—>b (b—a)?
by o\ M i (b 1 )
tamar ) (ma)  Fofmo-or (520) 7550
. fﬁ,prz[w(b - a)p]f/ (a) B ]:;;7,>\+1[w(b_ a)’]f (a) + (j:,A,aJr;wf) (b)
B a—b (b—a)? (b— a) 2

and

Lp:A PHLET fw(b— a)?t?)f" (1 tha + th) dt
(2.5) , .
F ol —aflf ) Foynlwb—aplf4) (T wf) @

b_a —a)p T o

Thus combining (2.2), (2.3), (2.4) and (2.5) as I; + Iy — Is — I4 and multiplying
2
both sides of the obtained equality with @, which proof is completed. O

Remark 2.1. Setting A = «, 0(0) = 1 and w = 0 in Lemma 2.1, we find the
same identity as [8, Lemma 1].

Using this lemma, we can get the following results via generalized fractional
integral operator for twice differentiable function whose absolute value is s-convex
and s-concave.

Theorem 2.1. Let f: [a,b] — R be a twice differentiable function on (a,b)
(a < b). Also, p,X > 0 and w € R. If |f"| is s-convex in the seconde sense

on (a,b) then the following inequality for generalized fractional integral operators
holds

Franaluot-a OO [T f) @+ () 0]

< O i — ) (1@ + |0

where s € (0,1], B(..,..) is Euler beta function and

(A + pk)
24+ s5)(A+pk+s+2)

o1,s(k) = o(k) [( +B(2,s+1)—B(A+pk+27s+1)} .
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Proof. From Lemma 2.1 with properties of modulus, we get
(2.6)

|77 sl (b= )]

< O [ e salito - ) 2475, futo - )

Farfe) 1
2 2(b—a)*

(T F) @) + (T ) O)]

X ‘ [f"(ta+ (1 =t)b) + f"((1 = t)a + tb)] (}dt

a)? = o(k)|w|*( —a”k/
|t — MPEE | (ta + (1 — t)b)|dt
kz:o L'(pk +A+2)
(b—a)® o (k)|wl* b_apk/ AfpkL || prr(
+ [t = ATPREL| (1 — t)a + tb) |de.
2 kzzo T(pk + )\ +2)

Since |f”| is s-convex, we have
(2.7)
1

/1(t — APRED) | £ (ta + (1 — t)b)|dt + / (t = AP F7((1 = t)a + tb)|dt
0 0

! 1+s A+pk ! _4\s A pk‘ // "
< [/0 s (1 — A )dt+/0 t(1—t)%(1 — M dt} [l £ (@)|+ | (b)]]
_ { (A+pk)
~L@2+s) A+ pk+s+2)

Thus combining the inequalities (2.6) and (2.7), the requested result is obtained.
O

4+ B(2,5+1) — B(A+pk+z,s+1>} |7 (@)] + | £ ).

Corollary 2.1. If we take s = 1 in Theorem 2.1, we get the following inequality

R e AV R G 1|

< OOl sl - @) 1@ + 1701

where

At ph
Hp)} pA>0, weR.

o1,1(k) = o(k) [2(/\ + pk + 2)

Corollary 2.2. If we take A = «, 0(0) =1 and w = 0 in Corollary 2.1, we get
the following inequality

‘f(a) + /() T(a+1)

2(b—a)*

[J5-f(a) + T+ £ (0)]

< Oz @ 1))
T dla+ 1) (a+2) ’

which is more reasonable than the result obtained [8, Theorem 2] under the same
assumptions.
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Remark 2.2. Setting s=1, A\=a =1, 6(0) =1 and w = 0 in Theorem 2.1 we
come to the same result as [28, Proposition 2].

Theorem 2.2. Let f: [a,b] — R be a twice differentiable function on (a,b)
(a < b). Also, p,A > 0 and w € R. If |f"|? is s-convex in the second sense
and g > 1 with % + % =1, then the following inequality for generalized fractional
integral operators holds

fla) + f(b) 1

Fiaalwlb =155 52 = s (T w§)@ + (Faarn)O)]
< O ps ol — oy | L0

where s € (0,1] and B(..,..) is Euler beta function and

1
B 1 p+1 P
o2(k) = 20(k) {)\-l—pkB()\—f—pk’er 1)]

Pmof From Lemma 2.1 have

(2.8
\ R T (/AT R LA 1]

(b—a)?

< / [0 s alw(® — a)?] — 1D o fw(b — a)°t]|
0

[ (ta+(1—t b) + f"((1 — t)a + tb)] |dt

(b—a)? X o(k)|w|* (ba)”k/ MpktL | g
< |t — A TPEE | f7 (ta 4 (1 — t)b)|dt
_ )2 =2 _ k
(b 2&) Z U(I]?()Lk—’_/\—’_c;p / |t t)\+pk+1|}f// t)a+tb)|dt.

~
Il

0

Using Holder Inequality and the s-convexity of | f”/|? we get the following inequality
(2.9)

/1 tL =P [|f (ta + (1= 0)b)| + | £ (1 — t)a + tb)|] dt

< [ 01 ) dt] {[ 01|f” (ta+(1-1)b)| th] U|f” 1— t)a+tb)]"dt] l}

1
[ t:D t()‘erk))pdt]

S

IN

() 0@+ 1w

O

=2 [P (e + )] () e ot
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By changing x = t*T** and simple calculating we get

1
1 p+1
tP(1 — tAFPRYPaE = B 1).
/0 ( ) N+ pk ()\+pk’p+>

Thus combining (2.8) and (2.9), the desired result is obtained. O

Remark 2.3. Setting A =a =1, 0(0) =1 and w = 0 in Theorem 2.2 the same
result as in [11, Theorem 10].

Corollary 2.3. Taking s =1 in Theorem 2.2, the following inequality holds

Foraluotb = BT e 77 D@ + (T N0

2
/" (a)] + If"(b)lq] .

_a)?
< Ol - o) |

— 2 pA+2 2

where p, A >0, w € R, B(..,..) is Euler beta function and

oo (k) = 20(k) {()\_&pk)B<f_:rplk,p+1)] "

Corollary 2.4. Taking A = «, 0(0) = 1 and w = 0 in Corollary 2.3, the
following inequality holds

’f(a)Jrf(b) _ Tla+1)
2 2(b—a)>
(b—a)” {13 p+1,p+1)r’ {If”(a)lulf”(b)Iqr’

(a+1) | 2

i f(@) + I F0))|

<

which is more reasonable than obtained [8, Theorem 3] under the same assump-
tions.

Theorem 2.3. Let f: [a,b] — R be a twice differentiable function on (a,b)
(a < b). Also, p,A >0 and w € R. If |f”|q is s-convex in the second sense and

q > 1, then the following inequality for generalized fractional integral operators
holds

Foaluoo =t HOTI e (77 D@ + (T O]

2 2(b
(b— a)Q 03,5
S 2 ]:p,3)\+2

[lwl(b = a)?],
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where s € (0,1], B(..,..) is Euler beta function and

B Aok 1M
03,5(k) = o(k) [Q(M‘Plﬁ‘?)}

A+ pk ")+ 3 . g a
% { {(8+2)(>\+pk+5+2)|f (@)|T+(B(2,5+1) = B(A+pk+2,5+1)) | /(D) ]

g A+ pk ol
+ [(B(z,s+1)—B<A+pk+2,s+1))f @'+ oty ®) } }

Proof. From Lemma 2.1 with properties of modulus we get
(2.10)

‘f,‘;xﬂ[w(b—a)”](f(a);f(b)) — Q(bia))‘ [( po,)\,b*;wf)(a)—"_(j;:)\,a*;wf)(b)]’

(b—a)?

IA

/ 7 s sali(b — )] — PFLET (b — a)?te)|
x| [f”(ta—i—(l—t) )+ (1= t)a+ tb)] |dt
(b—a)* & o(k)wl* (b -

pk/
|t — MR | (ta + (1 — )b)|dt
2 = L(pk+ X +2)

IN

a2 & k
0o Za(sljlictwrzp / |t = P71 = ta + th)|dt.
k=0

Using Power-mean Inequality and s-convexity of |f”|?, we obtain the following
inequality

(2.11)
1
/t(l TP (ta + (1= 0)b)| + | f/((1 — t)a + tb)|] dt
0
1 -3+ a1 L
A tpk+1 A tpk+1 7 o q
< [/0 (t—t )dt} UO (t—t )| (ta+ (1 = t)b)| dt]

1—1 1

+ Uol(t — t>\+pk+1)dt:| ' {/Ol(t — t)\+pk+1)|f”((1 —t)a+ tb)|th] i

<[ A+ pk ré
T2+ pk+2)

Q=

)\erk' " q "
x {[(8+2)()\+pk’+s+2)|f (a)|9+(B(2, s+1)~ B\ pk+2, 5+1)) | f(b)|1

Q= |—|

" q )‘+pk "
+ {(3(27s+1)—B(A+pk+2,s+1))f @'+ 3ot s O } }
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Combining the inequalities (2.10) and (2.11) we have

b 1
i 7 yialuo(b - ) 2 ; 0 e T @)+ (T DO
b—a i E)|w|®(b — a)r* { A+ pk ]1;
Z pk+)\+2) 20\ + pk +2)
Atk ’ weal?
x {[(SH)(WHM)U @17+ (B2.s 1)~ BOxtpk+2,541) 1 O)]
’ Atk woial?
(B s 1) - BO s 2 s D) @+ T )] }
b— 2 03, s
_ 2“) Fo (b — a)?).
Thus the proof is completed. O

Corollary 2.5. Taking s = 1 with p,A > 0 and w € R in Theorem 2.3, the
following inequality holds

Foanaluts - IO (T D@+ (e )O)]

b—a)? _, )
< ( 2 ) fp,3)1+2[\w|(b—a)p],

where
1—1
A+ pk } a
2A+ pk+2)

Abpk e A pR) APk +5)
{[B(A+pk+3)|f (@) 6(/\+pl<;+2)()\+pk+3)|f()|]

A+ pR)A+pk+5) ey Aok ]
[6(A+pk+2)(h+pk+3)f @+ sy (bw }

7a2(0) = (k)|

Remark 2.4. Setting A =a =1, 0(0) =1 and w = 0 in Theorem 2.3 the same
result as [11, Theorem §]

Remark 2.5. Setting s = 1, A = a, 0(0) = 1 and w = 0 in Theorem 2.3 the
same result as [8, Theorem 4]

Theorem 2.4. Let f: [a,b] — R be a twice differentiable function on (a,b)
(a < b). Also, p,\ > 0 and w € R. If |f"|? is s-concave in the second sense
and g > 1 with Il) + % =1, then the following inequality for generalized fractional
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integral operators holds

AN T (/AT RN A 10|
(b_a)2 04,5 p 17 a+b
< CS L rmtelo - a1 | (5.

1
where s € (0,1] and 04,4(k) = o (k)24 [M_pkB ()\pj;k,p + 1)} :

Proof. From Lemma 2.1 and Holder inequality with properties of modulus, we
have

(2.12)
Fipalw(b a1 ; 0 it [T D@ + (T O] |
—a)? [
Lo [ 67l - ) = Pl - o)

x | [f"(ta+ (1= t)b) + f"((1 — t)a + tb)] |dt
b—a)?® < o(k)|w|*(b—a)*

(
= T(pk + A+ 2)

- 2

M

k=0

X /1 [t — AP (ta + (1= )b)| + | f7((1 = t)a + tb)|] dt

1

o Lk 1 P

b—a 2 o(k)|w|*(b—a)? " {/ (t_t)\+pk+1)pdt:|
kZ:O I'(pk + )x +2) 0

X { UO | £ (ta + (1 —t)b)]thr+ [/01 |f”((1—t)a+tb)|thr }

. " . .
Since |f |7 is s-concave, we can write

L (a+b\ |7
()]

L, (a+b\ |7
(%)
On the other hand, by simple calculating we establish

1
1 p+1
2.14 t — AP G = B 1.
(2.14) /0< Pt =B (Lt

1
/ |£((1 = t)a+tb)|"dt < 227
0

(2.13) .
/ |/ (ta+ (1 —t)b)|"dt < 2°7*
0

Thus combining (2.13), (2.14) and (2.12) the requested result is obtained. O



b—a)? .,
< (T)*Fp,XJrszKb_a)p]
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Corollary 2.6. Taking s =1 in Theorem 2.4, the following inequality holds

Sl - PO - e (G @) + (T DO |

s {a+b
/ (2)

)

where p,A >0, w € R,

1 2 p+1 »
= 2!1 B 1 .
o4,1(k) = o(k) |:)\+pk <A+pk’p+ )}

Corollary 2.7. If we take A = «, 0(0) = 1 and w = 0 in Corollary 2.6, the

following inequality holds

’ﬂ@+ﬂwrm+
2 2(b—a

G )

;hﬁﬂ@+ﬁﬁ@ﬂ

s {a+b
/ (2)

)

which is more reasonable than [8, Theorem 5] under the same assumptions.

Remark 2.6. Setting s =1, A\=a =1, 0(0) =1 and w = 0 in Theorem 2.3 the

same result as [11, Theorem 9.

10.

11.

12.
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