SOME GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES INVOLVING FRACTIONAL INTEGRAL OPERATOR FOR FUNCTIONS WHOSE SECOND DERIVATIVES IN ABSOLUTE VALUE ARE S-CONVEX

E. SET, S. S. DRAGOMIR and A. GÖZPINAR

Abstract

In this article, a general integral identity for twice differentiable mapping involving fractional integral operators is derived. Secondly by using this identity we obtain some new generalized Hermite-Hadamards type inequalities for functions whose absolute values of second derivatives are s-convex and concave. The main results generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liouville fractional integral. Also we point out, some results in this study in some special cases such as setting $s=1, \lambda=\alpha, \sigma(0)=1$ and $w=0$, more reasonable than those obtained in [8].

1. Introduction and Preliminaries

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on an interval I in the set of real numbers \mathbb{R}. Then, for $a, b \in I$ with $a<b$, the following so-called Hermite-Hadamard inequality (see, e.g., [12])

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

holds true. Since its discovery in 1983, Hermite-Hadamard's inequality has been considered the most useful inequality in mathematical analysis. A number of the papers have been written on this inequality providing new proofs, noteworthy extensions, generalizations and numerous applications, see and references therein $[6,7,12,15]$.
Two definitions of s-convexity $(0<s \leq 1)$ of real-valued functions are well known in the literature.

Definition 1.1. Let $0<s \leq 1$. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is said to be s-Orlicz convex or s-convex in the first sense if for every $x, y \in[0, \infty)$ and $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$, we have

$$
\begin{equation*}
f(\alpha x+\beta y) \leq \alpha^{s} f(x)+\beta^{s} f(y) \tag{1.2}
\end{equation*}
$$

Received December 26, 2017; revised July 25, 2018.
2010 Mathematics Subject Classification. Primary 26A33, 26D10, 26D15, 33B20.
Key words and phrases. Hermite-Hadamard inequality, convex function, Hölder inequality, Riemann-Liouville fractional integral, fractional integral operator.

We denote the set of all s-convex functions in the first sense by K_{s}^{1}. This definition of s-convexity was introduced by Orlicz in [14] and was used in the theory of Orlicz spaces. Then, s-convex function in the second sense was introduced in Breckner's paper [4] and a number of properties and connections with s-convexity in the first sense are discussed in paper [10].

Definition 1.2. [4] A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is said to be s-convex in the second sense if

$$
f(\alpha x+\beta y) \leq \alpha^{s} f(x)+\beta^{s} f(y)
$$

for all $x, y \in \mathbb{R}_{+}$and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.
We denote this by K_{s}^{2}. It is obvious that the s-convexity means just the convexity when $s=1$.

In [6] Dragomir and Fitzpatrick proved a variant of Hadamard's inequality which holds for s-convex functions in the second sense as follows

Theorem 1.1. Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is an s-convex function in the second sense, where $s \in(0,1]$ and let $a, b \in[0, \infty), a<b$. If $f \in L_{1}[a, b]$ then the following inequality holds

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{s+1} \tag{1.3}
\end{equation*}
$$

The constant $k=\frac{1}{s+1}$ is the best possible in the second inequality in (1.3). For more study, see ($[\mathbf{2}, \mathbf{3}, \mathbf{6}, \mathbf{1 1}]$).

In the following, we give some necessary definitions and preliminary results which are used and referred to throughout this paper.

Definition 1.3. Let $f \in L_{1}[a, b]$. The Riemann-Liouville integrals $J_{a+}^{\alpha} f$ and $J_{b-}^{\alpha} f$ of order $\alpha>0$ with $a \geq 0$ are defined by

$$
J_{a^{+}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) \mathrm{d} t, \quad x>a
$$

and

$$
J_{b^{-}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) \mathrm{d} t, \quad x<b
$$

respectively, where $\Gamma(\alpha)=\int_{0}^{\infty} \mathrm{e}^{-u} u^{\alpha-1} d u$. Here $J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.
In the case of $\alpha=1$, the fractional integral reduces to the classical integral. Some recent results and properties concerning this operator can be found $[\mathbf{5}, \mathbf{9}$, $27,19,16,20,21]$.

The beta function is defined as follows:

$$
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t, \quad a, b>0
$$

where $\Gamma(\alpha)$ is Gamma function. In [27], Sarıkaya et al. gave a remarkable integral inequalities of Hermite-Hadamard type involving Riemann-Liouville fractional integrals as follows.

Theorem 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a positive function with $0 \leq a<b$ and $f \in$ $[a, b]$. If f is convex function on $[a, b]$, then the following inequality for fractional integrals holds.

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right] \leq \frac{f(a)+f(b)}{2} \tag{1.4}
\end{equation*}
$$

It is obviously seen that if we take $\alpha=1$ in Theorem 1.2 , then the inequality (1.4) reduces to well known Hermite-Hadamard's inequality as (1.1).

Hermite Hadamard type inequality for s-convex functions on Riemann-Liouville fractional integral is given in [19] as follows.

Theorem 1.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a positive function with $0 \leq a<b$ and $f \in L_{1}[a, b]$. If f is s-convex mapping in the second sense on $[a, b]$, then the following inequality for fractional integral with $\alpha>0$ and $s \in(0,1]$ hold

$$
\begin{align*}
2^{s-1} f\left(\frac{a+b}{2}\right) & \leq \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right] \tag{1.5}\\
& \leq \alpha\left[\frac{1}{\alpha+s}+B(\alpha, s+1)\right] \frac{f(a)+f(b)}{2}
\end{align*}
$$

where $B(a, b)$ is beta function.
In [8] Dragomir et al proved the following identity and by using this identity they established new results involving Riemann-Liouville fractional integrals for twice differentiable convex mappings.

Lemma 1.1. [8] Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I°, the interior of I. Assume that $a, b \in I^{\circ}$ with $a<b$ and $f^{\prime \prime} \in L[a, b]$, then the following identity for fractional integral with $\alpha>0$ holds

$$
\begin{align*}
& \frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{b^{-}}^{\alpha} f(a)+J_{a^{+}}^{\alpha} f(b)\right] \\
& =\frac{(b-a)^{2}}{2(\alpha+1)} \int_{0}^{1} t\left(1-t^{\alpha}\right)\left[f^{\prime \prime}(t a+(1-t) b)+f^{\prime \prime}(t b+(1-t) a)\right] \mathrm{d} t \tag{1.6}
\end{align*}
$$

In [25], Raina introduced a class of functions defined formally by

$$
\begin{equation*}
\mathcal{F}_{\rho, \lambda}^{\sigma}(x)=\mathcal{F}_{\rho, \lambda}^{\sigma(0), \sigma(1), \ldots}(x)=\sum_{k=0}^{\infty} \frac{\sigma(k)}{\Gamma(\rho k+\lambda)} x^{k} \quad(\rho, \lambda>0 ; x \in \mathbb{R}) \tag{1.7}
\end{equation*}
$$

where the coefficients $\sigma(k)(k \in \mathbb{N}=\mathbb{N} \cup\{0\})$ are a bounded sequence of positive real numbers and \mathbb{R} is the set of real numbers. With the help of (1.7), Raina [25] and Agarwal et al. [1] defined the following left-sided and right-sided fractional integral operators respectively, as follows

$$
\begin{array}{ll}
\left(\mathcal{J}_{\rho, \lambda, a+; w}^{\sigma} \varphi\right)(x)=\int_{a}^{x}(x-t)^{\lambda-1} \mathcal{F}_{\rho, \lambda}^{\sigma}\left[w(x-t)^{\rho}\right] \varphi(t) \mathrm{d} t & (x>a>0), \\
\left(\mathcal{J}_{\rho, \lambda, b-; w}^{\sigma} \varphi\right)(x)=\int_{x}^{b}(t-x)^{\lambda-1} \mathcal{F}_{\rho, \lambda}^{\sigma}\left[w(t-x)^{\rho}\right] \varphi(t) \mathrm{d} t & (0<x<b), \tag{1.9}
\end{array}
$$

where $\lambda, \rho>0, w \in \mathbb{R}$ and $\varphi(t)$ is such that the integral on the right side exits. Recently some new integral inequalities this operator have appeared in the literature (see, e.g., $[\mathbf{2 3}, \mathbf{2 2}, \mathbf{2 4}, \mathbf{1}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{2 9}]$).

It is easy to verify that $\mathcal{J}_{\rho, \lambda, a+; w}^{\sigma} \varphi(x)$ and $\mathcal{J}_{\rho, \lambda, b-; w}^{\sigma} \varphi(x)$ are bounded integral operators on $L(a, b)$, if

$$
\begin{equation*}
\mathfrak{M}:=\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right]<\infty . \tag{1.10}
\end{equation*}
$$

In fact, for $\varphi \in L(a, b)$, we have

$$
\begin{equation*}
\left\|\mathcal{J}_{\rho, \lambda, a+; w}^{\sigma} \varphi(x)\right\|_{1} \leq \mathfrak{M}(b-a)^{\lambda}\|\varphi\|_{1} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathcal{J}_{\rho, \lambda, b-; w}^{\sigma} \varphi(x)\right\|_{1} \leq \mathfrak{M}(b-a)^{\lambda}\|\varphi\|_{1} \tag{1.12}
\end{equation*}
$$

where

$$
\|\varphi\|_{p}:=\left(\int_{a}^{b}|\varphi(t)|^{p} \mathrm{~d} t\right)^{\frac{1}{p}}
$$

Here, many useful fractional integral operators can be obtained by specializing the coefficient $\sigma(k)$. For intance the classical Riemann-Liouville fractiona integrals J_{a+}^{α} and J_{b-}^{α} of order α follow easily by setting $\lambda=\alpha, \sigma(0)=1$ and $w=0$ in (1.8) and (1.9).

In [26] generalized Hermite-Hadamard's inequality for s-convex mapping fractional integral operators as follows.

Theorem 1.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function with $0 \leq a<b$ and $f \in L_{1}[a, b]$. If f is an s-convex function on $[a, b]$ then we have the following inequalities for generalized fractional integral operators

$$
\begin{align*}
2^{s} f\left(\frac{a+b}{2}\right) & \leq \frac{1}{(b-a)^{\lambda} \mathcal{F}_{\rho, \lambda}^{\sigma}\left[w(b-a)^{\rho]}\right]}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right] \tag{1.13}\\
& \leq \frac{1}{\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right]}\left[A_{1}(\lambda, s)+\mathcal{F}_{\rho, \lambda}^{\sigma_{0, s}}\left[w(b-a)^{\rho}\right]\right][f(a)+f(b)]
\end{align*}
$$

where

$$
\begin{aligned}
\sigma_{0, s}(k) & =\frac{\sigma(k)}{\lambda+\rho k+s}, \quad k=0,1,2 \ldots \quad \text { and } \\
A_{1}(\lambda, s) & =\int_{0}^{1} t^{\lambda-1}(1-t)^{s} \mathcal{F}_{\rho, \lambda}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right] \mathrm{d} t
\end{aligned}
$$

In this paper, first aim is to establish a new integral identity for a twice differentiable function via fractional integral operators. Using this new identity, we present some Hermite-Hadamard type inequalities for functions whose secondorder derivatives absolute values are s-convex and concave in the second sense.

2. Main Results

Lemma 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on (a, b) $(a<b)$. Also, $\rho, \lambda>0$ and $w \in \mathbb{R}$. If $f^{\prime \prime} \in L[a, b]$, then the following equality for generalized fractional integrals holds

$$
\begin{align*}
& \mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right] \tag{2.1}\\
& =\frac{(b-a)^{2}}{2} \times \int_{0}^{1}\left\{t \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]\right. \\
& \left.-t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right]\left[f^{\prime \prime}(t a+(1-t) b)+f^{\prime \prime}((1-t) a+t b)\right]\right\} \mathrm{d} t .
\end{align*}
$$

Proof. Integrating by parts and changing variables with $x=(t a+(1-t) b)$ we get

$$
\begin{align*}
I_{1} & =\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right] \int_{0}^{1} t f^{\prime \prime}(t a+(1-t) b) \mathrm{d} t \tag{2.2}\\
& =\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]\left\{\left.\frac{1}{a-b} t f^{\prime}(t a+(1-t) b)\right|_{0} ^{1}-\frac{1}{a-b} \int_{0}^{1} f^{\prime}(t a+(1-t) b) \mathrm{d} t\right\} \\
& =\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]\left\{-\frac{f^{\prime}(a)}{b-a}-\frac{f(a)-f(b)}{(b-a)^{2}}\right\}
\end{align*}
$$

by using same method

$$
\begin{align*}
I_{2} & =\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right] \int_{0}^{1} t f^{\prime \prime}((1-t) a+t b) \mathrm{d} t \tag{2.3}\\
& =\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]\left\{\frac{f^{\prime}(b)}{b-a}-\frac{f(b)-f(a)}{(b-a)^{2}}\right\}
\end{align*}
$$

analogously
(2.4)

$$
\begin{aligned}
I_{3}= & \int_{0}^{1} t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right] f^{\prime \prime}(t a+(1-t) b) \mathrm{d} t \\
= & \left.t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right] \frac{f^{\prime}(t a+(1-t) b)}{a-b}\right|_{0} ^{1} \\
& -\int_{0}^{1} t^{\lambda} \mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right] \frac{f^{\prime}(t a+(1-t) b)}{a-b} \mathrm{~d} t \\
= & \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f^{\prime}(a)}{a-b}-\left.\frac{1}{a-b} t^{\lambda} \mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right] \frac{f(t a+(1-t) b)}{a-b}\right|_{0} ^{1} \\
& +\frac{1}{a-b} \int_{0}^{1} t^{\lambda-1} \mathcal{F}_{\rho, \lambda}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right] \frac{f(t a+(1-t) b)}{a-b} \mathrm{~d} t
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right] f^{\prime}(a)}{a-b}-\frac{\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] f(a)}{(b-a)^{2}} \\
& +\frac{1}{(b-a)^{2}} \int_{a}^{b}\left(\frac{b-x}{b-a}\right)^{\lambda-1} \mathcal{F}_{\rho, \lambda}^{\sigma}\left[w(b-a)^{\rho}\left(\frac{b-x}{b-a}\right)^{\rho}\right] \frac{f(x)}{b-a} \mathrm{~d} x \\
= & \frac{\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right] f^{\prime}(a)}{a-b}-\frac{\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] f(a)}{(b-a)^{2}}+\frac{\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)}{(b-a)^{\lambda+2}}
\end{aligned}
$$

and

$$
\begin{align*}
I_{4} & =\int_{0}^{1} t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right] f^{\prime \prime}((1-t) a+t b) \mathrm{d} t \\
& =\frac{\mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right] f^{\prime}(b)}{b-a}-\frac{\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] f(b)}{(b-a)^{2}}+\frac{\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)}{(b-a)^{\lambda+2}} \tag{2.5}
\end{align*}
$$

Thus combining (2.2), (2.3), (2.4) and (2.5) as $I_{1}+I_{2}-I_{3}-I_{4}$ and multiplying both sides of the obtained equality with $\frac{(b-a)^{2}}{2}$, which proof is completed.

Remark 2.1. Setting $\lambda=\alpha, \sigma(0)=1$ and $w=0$ in Lemma 2.1, we find the same identity as [8, Lemma 1].

Using this lemma, we can get the following results via generalized fractional integral operator for twice differentiable function whose absolute value is s-convex and s-concave.

Theorem 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b) $(a<b)$. Also, $\rho, \lambda>0$ and $w \in \mathbb{R}$. If $\left|f^{\prime \prime}\right|$ is s-convex in the seconde sense on (a, b) then the following inequality for generalized fractional integral operators holds

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{1, s}}\left[|w|(b-a)^{\rho}\right]\left[\left|f^{\prime \prime}(a)\right|+\left|f^{\prime \prime}(b)\right|\right]
\end{aligned}
$$

where $s \in(0,1], B(. ., .$.$) is Euler beta function and$

$$
\sigma_{1, s}(k)=\sigma(k)\left[\frac{(\lambda+\rho k)}{(2+s)(\lambda+\rho k+s+2)}+B(2, s+1)-B(\lambda+\rho k+2, s+1)\right]
$$

Proof. From Lemma 2.1 with properties of modulus, we get

$$
\begin{align*}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \tag{2.6}\\
& \leq \frac{(b-a)^{2}}{2} \int_{0}^{1}\left\{\left|t \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]-t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right]\right|\right. \\
& \left.\quad \times\left|\left[f^{\prime \prime}(t a+(1-t) b)+f^{\prime \prime}((1-t) a+t b)\right]\right|\right\} \mathrm{d} t \\
& \leq \frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \int_{0}^{1}\left|t-t^{\lambda+\rho k+1}\right|\left|f^{\prime \prime}(t a+(1-t) b)\right| \mathrm{d} t \\
& \quad+\frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \int_{0}^{1}\left|t-t^{\lambda+\rho k+1}\right|\left|f^{\prime \prime}((1-t) a+t b)\right| \mathrm{d} t .
\end{align*}
$$

Since $\left|f^{\prime \prime}\right|$ is s-convex, we have
(2.7)

$$
\begin{aligned}
& \int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right)\left|f^{\prime \prime}(t a+(1-t) b)\right| \mathrm{d} t+\int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right)\left|f^{\prime \prime}((1-t) a+t b)\right| \mathrm{d} t \\
& \leq\left[\int_{0}^{1} t^{1+s}\left(1-t^{\lambda+\rho k}\right) \mathrm{d} t+\int_{0}^{1} t(1-t)^{s}\left(1-t^{\lambda+\rho k}\right) \mathrm{d} t\right]\left[\left|f^{\prime \prime}(a)\right|+\left|f^{\prime \prime}(b)\right|\right] \\
& =\left[\frac{(\lambda+\rho k)}{(2+s)(\lambda+\rho k+s+2)}+B(2, s+1)-B(\lambda+\rho k+2, s+1)\right]\left[\left|f^{\prime \prime}(a)\right|+\left|f^{\prime \prime}(b)\right|\right]
\end{aligned}
$$

Thus combining the inequalities (2.6) and (2.7), the requested result is obtained.

Corollary 2.1. If we take $s=1$ in Theorem 2.1, we get the following inequality

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{1,1}}\left[|w|(b-a)^{\rho}\right]\left[\left|f^{\prime \prime}(a)\right|+\left|f^{\prime \prime}(b)\right|\right]
\end{aligned}
$$

where

$$
\sigma_{1,1}(k)=\sigma(k)\left[\frac{(\lambda+\rho k)}{2(\lambda+\rho k+2)}\right], \quad \rho, \lambda>0, \quad w \in \mathbb{R}
$$

Corollary 2.2. If we take $\lambda=\alpha, \sigma(0)=1$ and $w=0$ in Corollary 2.1, we get the following inequality

$$
\begin{aligned}
& \left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{b^{-}}^{\alpha} f(a)+J_{a^{+}}^{\alpha} f(b)\right]\right| \\
& \leq \frac{(b-a)^{2} \alpha}{4(\alpha+1)(\alpha+2)}\left[\left|f^{\prime \prime}(a)\right|+\left|f^{\prime \prime}(b)\right|\right]
\end{aligned}
$$

which is more reasonable than the result obtained $[\mathbf{8}$, Theorem 2] under the same assumptions.

Remark 2.2. Setting $s=1, \lambda=\alpha=1, \sigma(0)=1$ and $w=0$ in Theorem 2.1 we come to the same result as [28, Proposition 2].

Theorem 2.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b) $(a<b)$. Also, $\rho, \lambda>0$ and $w \in \mathbb{R}$. If $\left|f^{\prime \prime}\right|^{q}$ is s-convex in the second sense and $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then the following inequality for generalized fractional integral operators holds

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \quad \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{2}}\left[|w|(b-a)^{\rho}\right]\left[\frac{\left|f^{\prime \prime}(a)\right|^{q}+\left|f^{\prime \prime}(b)\right|^{q}}{s+1}\right]^{\frac{1}{q}}
\end{aligned}
$$

where $s \in(0,1]$ and $B(. ., .$.$) is Euler beta function and$

$$
\sigma_{2}(k)=2 \sigma(k)\left[\frac{1}{\lambda+\rho k} B\left(\frac{p+1}{\lambda+\rho k}, p+1\right)\right]^{\frac{1}{p}}
$$

Proof. From Lemma 2.1 have

$$
\begin{align*}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \tag{2.8}\\
& \leq \frac{(b-a)^{2}}{2} \int_{0}^{1}\left|t \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]-t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right]\right| \\
& \left|\left[f^{\prime \prime}(t a+(1-t) b)+f^{\prime \prime}((1-t) a+t b)\right]\right| \mathrm{d} t \\
& \leq \frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \int_{0}^{1}\left|t-t^{\lambda+\rho k+1}\right|\left|f^{\prime \prime}(t a+(1-t) b)\right| \mathrm{d} t \\
& +\frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \int_{0}^{1}\left|t-t^{\lambda+\rho k+1}\right|\left|f^{\prime \prime}((1-t) a+t b)\right| \mathrm{d} t
\end{align*}
$$

Using Hölder Inequality and the s-convexity of $\left|f^{\prime \prime}\right|^{q}$ we get the following inequality (2.9)

$$
\begin{aligned}
& \int_{0}^{1} t\left(1-t^{\lambda+\rho k}\right)\left[\left|f^{\prime \prime}(t a+(1-t) b)\right|+\left|f^{\prime \prime}((1-t) a+t b)\right|\right] \mathrm{d} t \\
& \leq\left[\int_{0}^{1}\left(t\left(1-t^{\lambda+\rho k}\right)\right)^{p} \mathrm{~d} t\right]^{\frac{1}{p}}\left\{\left[\int_{0}^{1}\left|f^{\prime \prime}(t a+(1-t) b)\right|^{q} \mathrm{~d} t\right]^{\frac{1}{q}}+\left[\int_{0}^{1}\left|f^{\prime \prime}((1-t) a+t b)\right|^{q} \mathrm{~d} t\right]^{\frac{1}{q}}\right\} \\
& \leq\left[\int_{0}^{1} t^{p}\left(1-t^{(\lambda+\rho k)}\right)^{p} \mathrm{~d} t\right]^{\frac{1}{p}}\left(\frac{1}{s+1}\right)^{\frac{1}{q}}\left[\left|f^{\prime \prime}(a)\right|^{q}+\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}} \\
& =2\left[\frac{1}{\lambda+\rho k} B\left(\frac{p+1}{\lambda+\rho k}, p+1\right)\right]^{\frac{1}{p}}\left(\frac{1}{s+1}\right)^{\frac{1}{q}}\left[\left|f^{\prime \prime}(a)\right|^{q}+\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}
\end{aligned}
$$

By changing $x=t^{\lambda+\rho k}$ and simple calculating we get

$$
\int_{0}^{1} t^{p}\left(1-t^{(\lambda+\rho k)}\right)^{p} \mathrm{~d} t=\frac{1}{\lambda+\rho k} B\left(\frac{p+1}{\lambda+\rho k}, p+1\right)
$$

Thus combining (2.8) and (2.9), the desired result is obtained.

Remark 2.3. Setting $\lambda=\alpha=1, \sigma(0)=1$ and $w=0$ in Theorem 2.2 the same result as in [11, Theorem 10].

Corollary 2.3. Taking $s=1$ in Theorem 2.2, the following inequality holds

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a+; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{2}}\left[|w|(b-a)^{\rho}\right]\left[\frac{\left|f^{\prime \prime}(a)\right|^{q}+\left|f^{\prime \prime}(b)\right|^{q}}{2}\right]^{\frac{1}{q}},
\end{aligned}
$$

where $\rho, \lambda>0, w \in \mathbb{R}, B(. ., .$.$) is Euler beta function and$

$$
\sigma_{2}(k)=2 \sigma(k)\left[\frac{1}{(\lambda+\rho k)} B\left(\frac{p+1}{\lambda+\rho k}, p+1\right)\right]^{\frac{1}{p}}
$$

Corollary 2.4. Taking $\lambda=\alpha, \sigma(0)=1$ and $w=0$ in Corollary 2.3, the following inequality holds

$$
\begin{aligned}
& \left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{b^{-}}^{\alpha} f(a)+J_{a^{+}}^{\alpha} f(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{(\alpha+1)}\left[\frac{1}{\alpha} B\left(\frac{p+1}{\alpha}, p+1\right)\right]^{\frac{1}{p}}\left[\frac{\left|f^{\prime \prime}(a)\right|^{q}+\left|f^{\prime \prime}(b)\right|^{q}}{2}\right]^{\frac{1}{q}}
\end{aligned}
$$

which is more reasonable than obtained $[8$, Theorem 3] under the same assumptions.

Theorem 2.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b) $(a<b)$. Also, $\rho, \lambda>0$ and $w \in \mathbb{R}$. If $\left|f^{\prime \prime}\right|^{q}$ is s-convex in the second sense and $q \geq 1$, then the following inequality for generalized fractional integral operators holds

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \quad \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{3, s}}\left[|w|(b-a)^{\rho}\right]
\end{aligned}
$$

where $s \in(0,1], B(. ., .$.$) is Euler beta function and$

$$
\begin{aligned}
& \sigma_{3, s}(k)=\sigma(k)\left[\frac{\lambda+\rho k}{2(\lambda+\rho k+2)}\right]^{1-\frac{1}{q}} \\
& \times\left\{\left[\frac{\lambda+\rho k}{(s+2)(\lambda+\rho k+s+2)}\left|f^{\prime \prime}(a)\right|^{q}+(B(2, s+1)-B(\lambda+\rho k+2, s+1))\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right. \\
& \left.+\left[(B(2, s+1)-B(\lambda+\rho k+2, s+1))\left|f^{\prime \prime}(a)\right|^{q}+\frac{\lambda+\rho k}{(s+2)(\lambda+\rho k+s+2)}\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right\}
\end{aligned}
$$

Proof. From Lemma 2.1 with properties of modulus we get

$$
\begin{align*}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right]\left(\frac{f(a)+f(b)}{2}\right)-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a+; w}^{\sigma} f\right)(b)\right]\right| \tag{2.10}\\
& \leq \\
& \quad \frac{(b-a)^{2}}{2} \int_{0}^{1}\left|t \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]-t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right]\right| \\
& \quad \times\left|\left[f^{\prime \prime}(t a+(1-t) b)+f^{\prime \prime}((1-t) a+t b)\right]\right| \mathrm{d} t \\
& \leq \\
& \quad \frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \int_{0}^{1}\left|t-t^{\lambda+\rho k+1}\right|\left|f^{\prime \prime}(t a+(1-t) b)\right| \mathrm{d} t \\
& \quad+\frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \int_{0}^{1}\left|t-t^{\lambda+\rho k+1}\right|\left|f^{\prime \prime}((1-t) a+t b)\right| \mathrm{d} t
\end{align*}
$$

Using Power-mean Inequality and s-convexity of $\left|f^{\prime \prime}\right|^{q}$, we obtain the following inequality

$$
\begin{aligned}
& \int_{0}^{1} t\left(1-t^{\lambda+\rho k}\right)\left[\left|f^{\prime \prime}(t a+(1-t) b)\right|+\left|f^{\prime \prime}((1-t) a+t b)\right|\right] \mathrm{d} t \\
& \leq\left[\int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right) \mathrm{d} t\right]^{1-\frac{1}{q}}\left[\int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right)\left|f^{\prime \prime}(t a+(1-t) b)\right|^{q} \mathrm{~d} t\right]^{\frac{1}{q}} \\
& \quad+\left[\int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right) \mathrm{d} t\right]^{1-\frac{1}{q}}\left[\int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right)\left|f^{\prime \prime}((1-t) a+t b)\right|^{q} \mathrm{~d} t\right]^{\frac{1}{q}} \\
& \leq\left[\frac{\lambda+\rho k}{2(\lambda+\rho k+2)}\right]^{1-\frac{1}{q}} \\
& \quad \times\left\{\left[\frac{\lambda+\rho k}{(s+2)(\lambda+\rho k+s+2)}\left|f^{\prime \prime}(a)\right|^{q}+(B(2, s+1)-B(\lambda+\rho k+2, s+1))\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right. \\
& \left.\quad+\left[(B(2, s+1)-B(\lambda+\rho k+2, s+1))\left|f^{\prime \prime}(a)\right|^{q}+\frac{\lambda+\rho k}{(s+2)(\lambda+\rho k+s+2)}\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right\} .
\end{aligned}
$$

Combining the inequalities (2.10) and (2.11) we have

$$
\begin{aligned}
&\left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)}\left[\frac{\lambda+\rho k}{2(\lambda+\rho k+2)}\right]^{1-\frac{1}{q}} \\
& \times\left\{\left[\frac{\lambda+\rho k}{(s+2)(\lambda+\rho k+s+2)}\left|f^{\prime \prime}(a)\right|^{q}+(B(2, s+1)-B(\lambda+\rho k+2, s+1))\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right. \\
&\left.+\left[(B(2, s+1)-B(\lambda+\rho k+2, s+1))\left|f^{\prime \prime}(a)\right|^{q}+\frac{\lambda+\rho k}{(s+2)(\lambda+\rho k+s+2)}\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right\} \\
&= \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{3, s}}\left[w(b-a)^{\rho}\right] .
\end{aligned}
$$

Thus the proof is completed.

Corollary 2.5. Taking $s=1$ with $\rho, \lambda>0$ and $w \in \mathbb{R}$ in Theorem 2.3, the following inequality holds

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{3,1}}\left[|w|(b-a)^{\rho}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma_{3,1}(k)= & \sigma(k)\left[\frac{\lambda+\rho k}{2(\lambda+\rho k+2)}\right]^{1-\frac{1}{q}} \\
& \times\left\{\left[\frac{\lambda+\rho k}{3(\lambda+\rho k+3)}\left|f^{\prime \prime}(a)\right|^{q}+\frac{(\lambda+\rho k)(\lambda+\rho k+5)}{6(\lambda+\rho k+2)(\lambda+\rho k+3)}\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right. \\
& \left.+\left[\frac{(\lambda+\rho k)(\lambda+\rho k+5)}{6(\lambda+\rho k+2)(\lambda+\rho k+3)}\left|f^{\prime \prime}(a)\right|^{q}+\frac{\lambda+\rho k}{3(\lambda+\rho k+3)}\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}}\right\}
\end{aligned}
$$

Remark 2.4. Setting $\lambda=\alpha=1, \sigma(0)=1$ and $w=0$ in Theorem 2.3 the same result as [11, Theorem 8]

Remark 2.5. Setting $s=1, \lambda=\alpha, \sigma(0)=1$ and $w=0$ in Theorem 2.3 the same result as [8, Theorem 4]

Theorem 2.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable function on (a, b) $(a<b)$. Also, $\rho, \lambda>0$ and $w \in \mathbb{R}$. If $\left|f^{\prime \prime}\right|^{q}$ is s-concave in the second sense and $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then the following inequality for generalized fractional
integral operators holds

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{4, s}}\left[|w|(b-a)^{\rho}\right]\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|
\end{aligned}
$$

where $s \in(0,1]$ and $\sigma_{4, s}(k)=\sigma(k) 2^{\frac{s}{q}}\left[\frac{2}{\lambda+\rho k} B\left(\frac{p+1}{\lambda+\rho k}, p+1\right)\right]^{\frac{1}{p}}$.
Proof. From Lemma 2.1 and Hölder inequality with properties of modulus, we have

$$
\begin{aligned}
& \text { (2.12) } \\
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \int_{0}^{1}\left|t \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho}\right]-t^{\lambda+1} \mathcal{F}_{\rho, \lambda+2}^{\sigma}\left[w(b-a)^{\rho} t^{\rho}\right]\right| \\
& \times\left|\left[f^{\prime \prime}(t a+(1-t) b)+f^{\prime \prime}((1-t) a+t b)\right]\right| \mathrm{d} t \\
& \leq \frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \\
& \times \int_{0}^{1}\left|t-t^{\lambda+\rho k+1}\right|\left[\left|f^{\prime \prime}(t a+(1-t) b)\right|+\left|f^{\prime \prime}((1-t) a+t b)\right|\right] \mathrm{d} t \\
& \leq \frac{(b-a)^{2}}{2} \sum_{k=0}^{\infty} \frac{\sigma(k)|w|^{k}(b-a)^{\rho k}}{\Gamma(\rho k+\lambda+2)} \times\left[\int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right)^{p} \mathrm{~d} t\right]^{\frac{1}{p}} \\
& \times\left\{\left[\int_{0}^{1}\left|f^{\prime \prime}(t a+(1-t) b)\right|^{q} \mathrm{~d} t\right]^{\frac{1}{q}}+\left[\int_{0}^{1}\left|f^{\prime \prime}((1-t) a+t b)\right|^{q} \mathrm{~d} t\right]^{\frac{1}{q}}\right\} .
\end{aligned}
$$

Since $\left|f^{\prime \prime}\right|^{q}$ is s-concave, we can write

$$
\begin{align*}
& \int_{0}^{1}\left|f^{\prime \prime}((1-t) a+t b)\right|^{q} \mathrm{~d} t \leq 2^{s-1}\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q} \tag{2.13}\\
& \int_{0}^{1}\left|f^{\prime \prime}(t a+(1-t) b)\right|^{q} \mathrm{~d} t \leq 2^{s-1}\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}
\end{align*}
$$

On the other hand, by simple calculating we establish

$$
\begin{equation*}
\int_{0}^{1}\left(t-t^{\lambda+\rho k+1}\right)^{p} \mathrm{~d} t=\frac{1}{\lambda+\rho k} B\left(\frac{p+1}{\lambda+\rho k}, p+1\right) \tag{2.14}
\end{equation*}
$$

Thus combining (2.13), (2.14) and (2.12) the requested result is obtained.

Corollary 2.6. Taking $s=1$ in Theorem 2.4, the following inequality holds

$$
\begin{aligned}
& \left|\mathcal{F}_{\rho, \lambda+1}^{\sigma}\left[w(b-a)^{\rho}\right] \frac{f(a)+f(b)}{2}-\frac{1}{2(b-a)^{\lambda}}\left[\left(\mathcal{J}_{\rho, \lambda, b^{-} ; w}^{\sigma} f\right)(a)+\left(\mathcal{J}_{\rho, \lambda, a^{+} ; w}^{\sigma} f\right)(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{2} \mathcal{F}_{\rho, \lambda+2}^{\sigma_{4,1}}\left[|w|(b-a)^{\rho}\right]\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|
\end{aligned}
$$

where $\rho, \lambda>0, w \in \mathbb{R}$,

$$
\sigma_{4,1}(k)=\sigma(k) 2^{\frac{1}{q}}\left[\frac{2}{\lambda+\rho k} B\left(\frac{p+1}{\lambda+\rho k}, p+1\right)\right]^{\frac{1}{p}} .
$$

Corollary 2.7. If we take $\lambda=\alpha, \sigma(0)=1$ and $w=0$ in Corollary 2.6, the following inequality holds

$$
\begin{aligned}
& \left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\lambda}}\left[J_{b^{-}}^{\alpha} f(a)+J_{a^{+}}^{\alpha} f(b)\right]\right| \\
& \leq \frac{(b-a)^{2}}{(\alpha+1)}\left[\frac{1}{\alpha} B\left(\frac{p+1}{\alpha}, p+1\right)\right]^{\frac{1}{p}}\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|,
\end{aligned}
$$

which is more reasonable than [8, Theorem 5] under the same assumptions.
Remark 2.6. Setting $s=1, \lambda=\alpha=1, \sigma(0)=1$ and $w=0$ in Theorem 2.3 the same result as [11, Theorem 9].

References

1. Agarwal R.P., Luo M.-J. and Raina R.K., On Ostrowski type inequalities, Fasc. Math. 204 (2016), 5-27.
2. Alomari M., Darus M., Dragomir S. S. and Cerone P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23(9), 1071-1076.
3. Avci M., Kavurmaci H. and Özdemir M. E., New inequalities of HermiteHadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput. 217 (2011), 5171-5176.
4. Breckner W. W., Stetigkeitsaussagen fr eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math. 23 (1978), 13-20.
5. Dahmani Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9(4) (2010), 493-497.
6. Dragomir S. S. and Fitzpatrik S., The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math. 32(4) (1999), 687-696.
7. Dragomir S. S. and Pearce C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
8. Dragomir S. S., Bhatti M. I., Iqbal M., Muddassar M., Some new Hermite-Hadamard's type inequalities J. Comput. Anal. Appl. 18(4) (2015), 655-660.
9. Gorenflo R. and Mainardi F., Fractional calculus: integral and differential equations of fractional order, Springer Verlag,
10. Hudzik H. and Maligranda L., Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111.
11. Hussain S., Bhatti M. I. and Iqbal M., Hadamard-type inequalities for s-convex functions I, Punjab Univ. J. Math. (Lahore) 41 (2009) 51-60.
12. Mitrinović D. S. and Lacković I. B., Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
13. Noor M. A. and Awan M. U., Some integral inequalities for two kinds of convexities via fractional integrals, Transylv. J. Math. Mech. 5(2) (2013), 129-136.
14. Orlicz W., A note on modular spaces, IX, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 16 (1968), 801-808. MR 39:3278.
15. Özdemir M.E., Set E. and Alomari M., Integral inequalities via several kinds of convexity, Creat. Math. Inform. 20(1) (2011), 62-73.
16. Set E., Sarıkaya M.Z., Özdemir M. E. and Yıldırım H., The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Statis. Inform., 10(2) (2014), 69-83.
17. Set E. and Çelik B. and Akdemir A. O., Some New Hermite-Hadamard Type Inequalities for Quasi-convex functions via fractional integral operator, In American Institute of Physics Conference Series, Vol. 1833, No. 2, (2017).
18. Set E., Akdemir A. O. and Çelik B., On Generalization of Fejér Type Inequalities via fractional integral operator, ResearchGate, https://www.researchgate.net/publication/311452467.
19. Set E., New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl. 63 (2012), 1147-1154.
20. Set E., Sarıkaya M. Z., Özdemir M. E. and Yıldırım H., The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Statis. Inform., 10(2) (2014), 69-83.
21. Set E., İşcan İ., Sarıkaya M. Z., Özdemir M. E., On new inequalities of Hermite-HadamardFejer type for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875-881.
22. E. Set, M. A. Noor, M. U. Awan and A. Gözpınar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl. 2017:169. (2017).
23. Set E. and Gözpınar A., Some New Inequalities Involving Generalized Fractional Intagral Operators for several class of Functions, AIP Conference Proceedings 1833(1) (2017): 020038-1-020038-5.
24. Set E. and Gözpınar A., Hermite-Hadamard Type Inequalities for convex functions via generalized fractional integral operators, Topological Algebra and Applications, 5 (2017), 55-62.
25. Raina R. K., On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2) (2005), 191-203.
26. Usta F., Budak H., Sarıkaya M. Z. and Set E., On generalization of trapezoid type inequalities for s-convex functions with generalized fractional integral operators, Filomat, in press.
27. Sarıkaya M. Z., Set E., Yaldız H. and Başak N., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57(9) (2013), 2403-2407.
28. Sarıkaya M. Z. and Aktan N., On the generalization of some integral inequalities and their applications, Math. Comput. Modelling 54(9) (2011), 2175-2182.
29. Yaldız H. and Sarıkaya M. Z., On the Hermite-Hadamard type inequalities for fractional integral operator, Available online at: https://www.researchgate.net/publication/309824275.
E. Set, Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey, e-mail: erhanset@yahoo.com
S. S. Dragomir, Mathematics, College of Engineering and Science, Victoria University, Melbourne City, Australia, e-mail: sever.dragomir@vu.edu.au
A. Gözpinar, Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey, e-mail: abdurrahmangozpinar79@gmail.com
