ON THE RADICAL OF THE ANNIHILATORS OF LOCAL COHOMOLOGY MODULES

SH. REZAEI

ABSTRACT. Let R be a noetherian ring, M a non-zero finitely generated R-module of dimension d. Let \mathfrak{a} be an ideal of R and the cohomological dimension of M with respect to \mathfrak{a} equal to d. In this paper, we calculate the radical of the annihilator of the top local cohomology module $\mathrm{H}^{d}_{\mathfrak{a}}(M)$. In fact, we prove that there exists a submodule $S_{R}(\mathfrak{a}, M)$ of M such that the radical of the annihilator of $\mathrm{H}^{d}_{\mathfrak{a}}(M)$ equals the annihilator of the quotient $M/S_{R}(\mathfrak{a}, M)$. By using this result, for a complete local ring (R, \mathfrak{m}) , we determine the set of attached prime ideals of $\mathrm{H}^{d}_{\mathfrak{a}}(M)$.

1. INTRODUCTION

Throughout this paper, R is a commutative noetherian ring with identity, \mathfrak{a} is an ideal of R and M is an R-module. Recall that the *i*-th local cohomology module of M with respect to \mathfrak{a} is defined as

$$\mathrm{H}^{i}_{\mathfrak{a}}(M) := \lim_{n \geq 1} \mathrm{Ext}^{i}_{R}(R/\mathfrak{a}^{n}, M).$$

One of the important problems in local cohomology is to find the annihilator of the local cohomology module $\mathrm{H}^{i}_{\mathfrak{a}}(M)$. This problem has been studied by several authors, see for example, [1], [3], [4], and [8]. In [4], the authors proved that if (R, \mathfrak{m}) is a complete noetherian local ring and M is a finitely generated R-module, then $\mathrm{Ann}_{R}(\mathrm{H}^{\dim M}_{\mathfrak{m}}(M)) = \mathrm{Ann}_{R}(M/T_{R}(M))$, where $T_{R}(M)$ is the largest submodule of M such that $\dim T_{R}(M) < \dim M$. This result was later extended to non-complete noetherian local rings by Bahmanpour in [3]. Also, for an ideal \mathfrak{a} (not necessarily $\mathfrak{a} = \mathfrak{m}$) in an arbitrary noetherian ring R (not necessarily local), in [1], Atazadeh et al. proved that $\mathrm{Ann}_{R}(\mathrm{H}^{\dim M}_{\mathfrak{a}}(M)) = \mathrm{Ann}_{R}(M/T_{R}(\mathfrak{a}, M))$ where $T_{R}(\mathfrak{a}, M)$ is the largest submodule of M such that $\mathrm{cd}(\mathfrak{a}, T_{R}(\mathfrak{a}, M)) < \mathrm{cd}(\mathfrak{a}, M)$.

This is natural to ask about the radical of the annihilator of the top local cohomology modules. In this paper, we define a new notation $S_R(\mathfrak{a}, M)$ and determine the radical of the annihilator of the top local cohomology module $\mathrm{H}^{\dim M}_{\mathfrak{a}}(M)$ according to $S_R(\mathfrak{a}, M)$.

For an *R*-module *M* and an ideal \mathfrak{a} , the cohomological dimension of *M* with respect to \mathfrak{a} is defined as $cd(\mathfrak{a}, M) := max\{i \in \mathbb{Z} : H^i_\mathfrak{a}(M) \neq 0\}$. For more details,

Received February 8, 2018; revised May 22, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 13D45, 13C14.

Key words and phrases. attached primes; local cohomology; annihilator.

see [7]. For any ideal \mathfrak{a} of R, the radical of \mathfrak{a} , denoted by $\sqrt{\mathfrak{a}}$, is defined to be the set $\{x \in R : x^n \in \mathfrak{a} \text{ for some } n \in \mathbb{N}\}.$

The following is the main result of this paper.

Theorem 1.1. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then $\sqrt{\operatorname{Ann}_{\mathfrak{a}} \operatorname{H}^{d}_{\mathfrak{a}}(M)} = \operatorname{Ann}_{R}(M/S_{R}(\mathfrak{a}, M))$, where $S_{R}(\mathfrak{a}, M)$ is the maximal element of the set

 $\Theta := \{N : N \leqslant M \text{ and } \{\mathfrak{p} \in \operatorname{Ass}_R M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} \subseteq \operatorname{Ass}_R(M/N)\}.$

A non-zero *R*-module *M* is called secondary if its multiplication map by any element *a* of *R*, is either surjective or nilpotent. A prime ideal \mathfrak{p} of *R* is said to be an attached prime of *M* if $\mathfrak{p} = (N :_R M)$ for some submodule *N* of *M*. If *M* admits a reduced secondary representation, $M = S_1 + S_2 + \cdots + S_n$, then the set of attached primes $\operatorname{Att}_R(M)$ of *M* is equal to $\{\sqrt{0}:_R S_i: i = 1, \ldots, n\}$, (see [9]).

We have the following well known result about the attached primes of local cohomology modules.

Theorem 1.2 ([6, Theorem A]). Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module. Then

$$\operatorname{Att}_{R}(\operatorname{H}_{\mathfrak{a}}^{\dim M}(M)) = \{\mathfrak{p} \in \operatorname{Ass}_{R} M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = \dim M\}.$$

Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $cd(\mathfrak{a}, M) = d$. Then, by using the above main result, we will show that:

- i) $r \in \sqrt{\operatorname{Ann}_R \operatorname{H}^d_{\mathfrak{a}}(M)}$ if and only if $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) \subseteq \operatorname{Ass}_R M/(rM + S_R(\mathfrak{a}, M))$, for every non-zero element r of R.
- ii) $\bigcap_{\mathfrak{p}\in\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M))}\mathfrak{p} = \operatorname{Ann}_R M/S_R(\mathfrak{a}, M)$
- iii) If R is a complete noetherian local ring, then

$$\operatorname{Att}_{R} \operatorname{H}_{\mathfrak{a}}^{\dim M}(M) = \operatorname{Min} \operatorname{Supp}_{R}(M/S_{R}(\mathfrak{a}, M)).$$

2. Annihilators of local cohomology modules

Let R be a noetherian ring, \mathfrak{a} an ideal of R and M be a non-zero finitely generated R-module of dimension d. Let $\operatorname{cd}(\mathfrak{a}, M) = d$. In this section we calculate the radical of the annihilator of the top local cohomology module $\operatorname{H}^d_{\mathfrak{a}}(M)$.

Recall that for an *R*-module *M* of finite dimension, the submodule $T_R(M)$ of *M* is defined as follows:

$$T_R(M) := \bigcup \{N : N \leq M \text{ and } \dim N < \dim M \}.$$

In [1], we see the following notation which is a generalization of $T_R(M)$ for an arbitrary ideal \mathfrak{a} and non-zero finitely generated *R*-module *M*

$$T_R(\mathfrak{a}, M) := \bigcup \{N : N \leq M \text{ and } \operatorname{cd}(\mathfrak{a}, N) < \operatorname{cd}(\mathfrak{a}, M) \}.$$

In fact, $T_R(\mathfrak{a}, M)$ is the largest submodule of M such that $cd(\mathfrak{a}, T_R(\mathfrak{a}, M)) <$ $cd(\mathfrak{a}, M)$. Clearly, for a local ring (R, \mathfrak{m}) , we have $T_R(\mathfrak{m}, M) = T_R(M)$.

It is known that $T_R(\mathfrak{a}, M)$ has the following properties. For the details, see [2, Lemma 3.1].

Proposition 2.1. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a non-zero finitely generated R-module such that $cd(\mathfrak{a}, M) = \dim M$. Then:

- i) $\operatorname{cd}(\mathfrak{a}, M/T_R(\mathfrak{a}, M)) = \dim M.$ ii) $\operatorname{H}_{\mathfrak{a}}^{\dim M}(M) \simeq \operatorname{H}_{\mathfrak{a}}^{\dim M}(M/T_R(\mathfrak{a}, M)).$ iii) $\{\mathfrak{p} \in \operatorname{Ass}_R M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = \dim M\} = \operatorname{Ass}_R M/T_R(\mathfrak{a}, M) = \operatorname{Att}_R \operatorname{H}_{\mathfrak{a}}^{\dim M}(M).$

The following theorem is main result in [1], on the annihilators of top local cohomology modules.

Theorem 2.2. [1, Theorem 2.3] Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a non-zero finitely generated R-module such that $cd(\mathfrak{a}, M) = \dim M$. Then $\operatorname{Ann}_{\mathfrak{a}} \operatorname{H}_{\mathfrak{a}}^{\dim M}(M) = \operatorname{Ann}_{R}(M/T_{R}(\mathfrak{a}, M)).$

In the following, we give a new notation $S_R(\mathfrak{a}, M)$ which plays an essential role in our proofs.

Definition 2.3. Let \mathfrak{a} be an ideal of R and M be a non-zero finitely generated *R*-module of dimension *d*. By $S_R(\mathfrak{a}, M)$, we denote the maximal element of the set

 $\Theta := \{N : N \leq M \text{ and } \{\mathfrak{p} \in \operatorname{Ass}_R M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} \subseteq \operatorname{Ass}_R(M/N)\}.$

Note that by Proposition 2.1(iii), $T_R(\mathfrak{a}, M) \in \Theta$, and so Θ is non-empty. Since M is a noetherian R-module, it follows that Θ has a maximal element $S_R(\mathfrak{a}, M)$ with respect to inclusion.

Lemma 2.4. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension such that $cd(\mathfrak{a}, M) = \dim M$. Then $\dim(M/S_R(\mathfrak{a}, M)) = \operatorname{cd}(\mathfrak{a}, M/S_R(\mathfrak{a}, M)) = \dim M.$

Proof. Since $\operatorname{cd}(\mathfrak{a}, M) = \dim M$, thus $\operatorname{H}^{\dim M}_{\mathfrak{a}}(M) \neq 0$, and so $\operatorname{Att}_{R}(\operatorname{H}^{\dim M}_{\mathfrak{a}}(M)) =$ $\{\mathfrak{p} \in \operatorname{Ass}_R M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = \dim M\} \neq \emptyset$ by Theorem 1.2.

If $\mathfrak{p} \in {\mathfrak{p} \in \operatorname{Ass}_R M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = \dim M}$, then $\mathfrak{p} \in \operatorname{Ass}_R(M/S_R(\mathfrak{a}, M))$ by definition of $S_R(\mathfrak{a}, M)$. Thus $\operatorname{Supp}_R(R/\mathfrak{p}) \subseteq \operatorname{Supp}_R(M/S_R(\mathfrak{a}, M))$. Now by [7, Theorem 2.2], we have dim $M = \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) \leq \operatorname{cd}(\mathfrak{a}, M/S_R(\mathfrak{a}, M))$. But, $\operatorname{cd}(\mathfrak{a}, M/S_R(\mathfrak{a}, M)) \leq \dim(M/S_R(\mathfrak{a}, M)) \leq \dim M$. Therefore,

$$\dim M = \operatorname{cd}(\mathfrak{a}, M/S_R(\mathfrak{a}, M)) = \dim(M/S_R(\mathfrak{a}, M)),$$

as required.

Lemma 2.5. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $cd(\mathfrak{a}, M) = d$. Then $\operatorname{Att}_{R}\operatorname{H}^{d}_{\mathfrak{a}}(M) = \operatorname{Att}_{R}\operatorname{H}^{d}_{\mathfrak{a}}(M/S_{R}(\mathfrak{a},M)), and so$

$$\sqrt{\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M))} = \sqrt{\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M/S_{R}(\mathfrak{a},M)))}.$$

SH. REZAEI

Proof. Let $S := S_R(\mathfrak{a}, M)$. The short exact sequence

$$0 \to S \to M \to M/S \to 0$$

induces an exact sequence

$$\cdots \to \operatorname{H}^d_{\mathfrak{a}}(S) \to \operatorname{H}^d_{\mathfrak{a}}(M) \to \operatorname{H}^d_{\mathfrak{a}}(M/S) \to 0.$$

Thus, $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M/S)) \subseteq \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M))$. On the other hand, by definition of S

$$\operatorname{Att}_R(\operatorname{H}^a_{\mathfrak{a}}(M)) = \{\mathfrak{p} \in \operatorname{Ass}_R M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} \subseteq \operatorname{Ass}_R(M/S).$$

Hence, in view of Lemma 2.4 and Theorem 1.2, we have

$$\operatorname{Att}_{R} \operatorname{H}^{d}_{\mathfrak{a}}(M) \subseteq \{\mathfrak{p} \in \operatorname{Ass}_{R}(M/S) \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} = \operatorname{Att}_{R} \operatorname{H}^{d}_{\mathfrak{a}}(M/S).$$

Therefore, $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) = \operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M/S)$ and by [5, 7.2.11], we have

$$\sqrt{\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M))} = \sqrt{\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M/S))}$$

the proof is complete.

Proposition 2.6. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) \subseteq \operatorname{Ass}_R M/U$ for every submodule U of $S_R(\mathfrak{a}, M)$.

Proof. Let $S := S_R(\mathfrak{a}, M)$. First note that by Lemma 2.4, we have

$$\dim M = \dim(M/S) \le \dim(M/U) \le \dim M,$$

$$\dim M = \operatorname{cd}(\mathfrak{a}, M/S) \le \operatorname{cd}(\mathfrak{a}, M/U) \le \dim M,$$

Thus cd(M/U) = dim(M/U) = dim M. Now, the short exact sequence

$$0 \to S/U \to M/U \to M/S \to 0$$

implies that $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M/S)) \subseteq \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M/U))$. By Lemma 2.5, we conclude that $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M)) \subseteq \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M/U)) \subseteq \operatorname{Ass}_R M/U$, as required \Box

Lemma 2.7. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then $\sqrt{\operatorname{Ann}_R(M/S_R(\mathfrak{a}, M))} = \operatorname{Ann}_R(M/S_R(\mathfrak{a}, M))$.

Proof. Let $S := S_R(\mathfrak{a}, M)$. Let $x \in \sqrt{\operatorname{Ann}_R(M/S)}$. There exists an integer n such that $x^n M \subseteq S$. Thus Lemma 2.5 implies that

$$\operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M)) = \operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M/S)) = \operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M/x^{n}M + S)).$$

Since $\operatorname{Supp}_{R}(M/x^{n}M + S) = \operatorname{Supp}_{R}(M/xM + S)$, [6, Corollary 3] implies that

$$\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M/x^nM+S)) = \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M/xM+S)).$$

Hence, $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M/xM+S))$. Thus

$$\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M)) = \{\mathfrak{p} \in \operatorname{Ass}_R M \mid \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} \subseteq \operatorname{Ass}_R(M/xM + S).$$

By maximality of S, we conclude that $xM + S \subseteq S$. Therefore, $xM \subseteq S$, and so $x \in \operatorname{Ann}_R(M/S)$, the proof is complete. \Box

The following theorem is the main result of this paper.

Theorem 2.8. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then $\sqrt{\operatorname{Ann}_{\mathfrak{a}} \operatorname{H}^{d}_{\mathfrak{a}}(M)} = \operatorname{Ann}_{R}(M/S_{R}(\mathfrak{a}, M)).$

Proof. Let $S := S_R(\mathfrak{a}, M)$ and $T := T_R(\mathfrak{a}, M)$. At first, we show that $T_R(\mathfrak{a}, M/S) = 0$. It suffices to show that for any non-zero submodule L/S of M/S we have $cd(\mathfrak{a}, L/S) = cd(\mathfrak{a}, M/S)$. It is easy to see that

$$\{\mathfrak{p} \in \operatorname{Ass} M : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} \subseteq \operatorname{Ass}_R(M/S) \subseteq \operatorname{Ass}_R L/S \cup \operatorname{Ass}_R M/L.$$

If $\{\mathfrak{p} \in \operatorname{Ass} M : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\} \subseteq \operatorname{Ass}_R(M/L)$ then since $S \subsetneq L$ from the maximality of S, we get a contradiction. Thus there exists a prime ideal $\mathfrak{p} \in \{\mathfrak{p} \in \operatorname{Ass} M : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = d\}$ such that $\mathfrak{p} \in \operatorname{Ass}_R L/S$. Hence $d = \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) \leq \operatorname{cd}(\mathfrak{a}, L/S) \leq \operatorname{cd}(\mathfrak{a}, M/S) \leq \operatorname{cd}(\mathfrak{a}, M) = d$. It follows that $\operatorname{cd}(\mathfrak{a}, L/S) = \operatorname{cd}(\mathfrak{a}, M/S)$ and so $T_R(\mathfrak{a}, M/S) = 0$. On the other hand, by Lemma 2.5 and Theorem 2.2, we have

$$\sqrt{\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M))} = \sqrt{\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M/S))} = \sqrt{(\operatorname{Ann}_{R}(M/S)/T_{R}(\mathfrak{a},M/S))}.$$

Since $T_R(\mathfrak{a}, M/S) = 0$, by Lemma 2.7, we get

$$\sqrt{\operatorname{Ann}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M))} = \sqrt{\operatorname{Ann}_{R}(M/S)} = \operatorname{Ann}_{R}(M/S),$$

as required.

Corollary 2.9. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then $\sqrt{\operatorname{Ann}_{\mathfrak{a}} \operatorname{H}^{d}_{\mathfrak{a}}(M)} = 0$ if and only if $\operatorname{Att}_{R} \operatorname{H}^{d}_{\mathfrak{a}}(M) \nsubseteq \operatorname{Ass}_{R} M/(rM + S_{R}(\mathfrak{a}, M))$ for every non-zero element r of R.

Proof. Set $S := S_R(\mathfrak{a}, M)$ and let $0 \neq r \in R$. If $r \in \sqrt{\operatorname{Ann}_R \operatorname{H}^d_{\mathfrak{a}}(M)}$, then $r \in \operatorname{Ann}_R M/S$ by Theorem 2.8. Thus $rM \subseteq S$, and so $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) \subseteq \operatorname{Ass}_R M/(rM+S)$ by Proposition 2.6. Conversely, if $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) \subseteq \operatorname{Ass}_R M/(rM+S)$, then $rM \subseteq S$ by maximality of S. Thus $r \in \operatorname{Ann}_R M/S = \sqrt{\operatorname{Ann}_R \operatorname{H}^d_{\mathfrak{a}}(M)}$ and the proof is complete. \Box

Corollary 2.10. Let R be a noetherian ring and M a finitely generated R-module of dimension d such that $cd(\mathfrak{a}, M) = d$. Then

$$\bigcap_{\in \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M))} \mathfrak{p} = \operatorname{Ann}_R M / S_R(\mathfrak{a}, M).$$

Proof. By [5, 7.2.11] and Theorem 2.8, we have

p

$$\bigcap_{\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M))} \mathfrak{p} = \sqrt{\operatorname{Ann}_R \operatorname{H}^d_{\mathfrak{a}}(M)} = \operatorname{Ann}_R(M/S_R(\mathfrak{a}, M)),$$

as required.

 $\mathfrak{p} \in A$

SH. REZAEI

Corollary 2.11. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then $\sqrt{\operatorname{Ann}_R(M/T_R(\mathfrak{a}, M))} = \operatorname{Ann}_R(M/S_R(\mathfrak{a}, M))$.

Proof. It follows from Theorems 2.2 and 2.8.

In the next result, we determine $V(\operatorname{Ann}_R \operatorname{H}^d_{\mathfrak{a}}(M))$, the set of prime ideals of R containing ideal $\operatorname{Ann}_R \operatorname{H}^d_{\mathfrak{a}}(M)$.

Corollary 2.12. Let R be a noetherian ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then

$$V(\operatorname{Ann}_{R} \operatorname{H}^{d}_{\mathfrak{a}}(M)) = \operatorname{Supp}_{R}(M/T_{R}(\mathfrak{a}, M)) = \operatorname{Supp}_{R}(M/S_{R}(\mathfrak{a}, M))$$

Proof. By Theorem 2.2, we have

$$V(\operatorname{Ann}_{\mathfrak{a}} \operatorname{H}^{d}_{\mathfrak{a}}(M)) = V(\operatorname{Ann}_{R}(M/T_{R}(\mathfrak{a}, M))) = \operatorname{Supp}_{R}(M/T_{R}(\mathfrak{a}, M))$$

and by Corollary 2.11,

$$V(\sqrt{(\operatorname{Ann}_R(M/T_R(\mathfrak{a},M)))}) = V(\operatorname{Ann}_R(M/S_R(\mathfrak{a},M))).$$

Thus $\operatorname{Supp}_R(M/T_R(\mathfrak{a}, M)) = \operatorname{Supp}_R(M/S_R(\mathfrak{a}, M))$, the proof is complete. \Box

In the following Corollary, for a complete noetherian local ring (R, \mathfrak{m}) , we show that the set $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M)$ is equal to the minimal elements of the set $\operatorname{Supp}_R(M/S_R(\mathfrak{a}, M))$.

Corollary 2.13. Let (R, \mathfrak{m}) be a complete noetherian local ring and \mathfrak{a} an ideal of R. Let M be a finitely generated R-module of finite dimension d such that $\operatorname{cd}(\mathfrak{a}, M) = d$. Then $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) = \operatorname{Min} \operatorname{Supp}_R(M/S_R(\mathfrak{a}, M))$.

Proof. By [10, Theorem 2.11 (i)], we have $\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) = \operatorname{Min} \operatorname{V}(\operatorname{Ann}_R \operatorname{H}^d_{\mathfrak{a}}(M))$. Now Corollary 2.12 completes the proof.

Corollary 2.14. Let R be a noetherian ring, \mathfrak{a} an ideal of R, M and N be two finitely generated R-modules of dimension d with $cd(\mathfrak{a}, M) = cd(\mathfrak{a}, N) = d$. Then

$$\operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(M) = \operatorname{Att}_R \operatorname{H}^d_{\mathfrak{a}}(N)$$

if and only if

$$\operatorname{Supp}_R(M/S_R(\mathfrak{a}, M)) = \operatorname{Supp}_R(N/S_R(\mathfrak{a}, N))$$

Proof. If

$$\operatorname{Att}_{R} \operatorname{H}^{d}_{\mathfrak{a}}(M) = \operatorname{Att}_{R} \operatorname{H}^{d}_{\mathfrak{a}}(N),$$

then

 $\operatorname{Ann}_R M/S_R(\mathfrak{a}, M) = \operatorname{Ann}_R N/S_R(\mathfrak{a}, N)$

by Corollary 2.10, and so

$$V(\operatorname{Ann}_R(M/S_R(\mathfrak{a}, M))) = V(\operatorname{Ann}_R(N/S_R(\mathfrak{a}, N))).$$

Thus

$$\operatorname{Supp}_R(M/S_R(\mathfrak{a}, M)) = \operatorname{Supp}_R(N/S_R(\mathfrak{a}, N)).$$

Conversly, if

$$\operatorname{Supp}_R(M/S_R(\mathfrak{a},M)) = \operatorname{Supp}_R(N/S_R(\mathfrak{a},N)),$$

then [6, Corollary 3] implies that

$$\operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(M/S_{R}(\mathfrak{a},M))) = \operatorname{Att}_{R}(\operatorname{H}^{d}_{\mathfrak{a}}(N/S_{R}(\mathfrak{a},N))).$$

Thus

$$\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(N))$$

by Lemma 2.5, as required.

Acknowledgment. The author would like to thank the referee for his/her useful suggestions.

References

- Atazadeh A., Sedghi M. and Naghipour R., On the annihilators and attached primes of top local cohomology modules, Arch. Math. 102 (2014) 225–236.
- Atazadeh A., Sedghi M. and Naghipour R., Cohomological dimension filtration and annihilators of top local cohomology modules, Colloq. Math. 139 (2015), 25–35.
- Bahmanpour K., Annihilators of local cohomology modules, Comm. Algebra 43 (2015), 2509–2515.
- Bahmanpour K., Azami J. and Ghasemi G., On the annihilators of local cohomology modules, J. Algebra 363 (2012), 8–13.
- Brodmann M. and Sharp R. Y., Local cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press 1998.
- Dibaei M. T. and Yassemi S., Attached primes of the top local cohomology modules with respect to an ideal, Arch. Math. 84 (2005), 292–297.
- Divaani-Aazar K., Naghipour R. and Tousi M., Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), 3537–3544.
- 8. Lynch L. R., Annihilators of top local cohomology, Comm. Algebra 40 (2012), 542–551.
- MacDonald I. G., Secondary representations of modules over a commutative ring, In Symposia Mat. 11, Istituto Nazionale di alta Matematica, Roma, 1973, 23–43.
- Rezaei Sh., Some results on top local cohomolgy and top formal local cohomology modules, Comm. Algebra 45(2) (2017), 1935–1940.
- Sh. Rezaei, Payame Noor University(PNU), Tehran, Iran., e-mail: Sha.Rezaei@gmail.com

 \Box