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QUANTITATIVE APPROXIMATION BY
KANTOROVICH-CHOQUET QUASI-INTERPOLATION
NEURAL NETWORK OPERATORS

G. A. ANASTASSIOU

ABSTRACT. In this article, we present univariate and multivariate basic approxi-
mation by Kantorovich-Choquet type quasi-interpolation neural network operators
with respect to supremum norm. This is done with rates using the first univariate
and multivariate moduli of continuity. We approximate continuous and bounded
functions on RV, N € N. When they are also uniformly continuous, we have point-
wise and uniform convergences.

1. INTRODUCTION

The author in [2] and [3], see Chapters 2-5, was the first to establish neural
network approximations to continuous functions with rates by very specifically
defined neural network operators of Cardaliagnet-FEuvrard and “Squashing” types,
by employing the modulus of continuity of the engaged function or its high order
derivative, and producing very tight Jackson type inequalities. He treats there
both the univariate and multivariate cases. Defining these operators “bell-shaped”
and “squashing” functions are assumed to be compact support. Also in [3], he gives
the Nth order asymptotic expansion for the error of weak approximation of these
two operators to a special natural class of smooth functions, see Chapters 4-5
there.

The author inspired by [12], continued his studies on neural networks approx-
imation by introducing and using the proper quasi-interpolation operators of sig-
moidal and hyperbolic tangent type which resulted into [4], [5], [6], [7], [8], by
treating both the univariate and multivariate cases. He did also the corresponding
fractional case [9].

The author here performs univariate and multivariate error function based neu-
ral network approximations to continuous functions over the whole RY, N € N,
then he extends his results to complex valued functions. He also finds similar
results when the activation function is induced by the sigmoidal and hyperbolic
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tangent function. All convergences here are with rates expressed via the modu-
lus of continuity of the involved function and given by very tight Jackson type
inequalities.

The author comes up with the “right” precisely defined flexible quasi-interpo-
lation, Baskakov-Choquet type integral coefficient neural networks operators as-
sociated with the error function, sigmoidal and hyperbolic tangent functions. In
preparation to prove our results, we establish important properties of the basic
density functions defining our operators. Feed-forward neural networks (FNNs)
with one hidden layer, the only type of networks we deal with in this article, are
mathematically expressed as

n
N,(z) :cho«aj -x) +bj) zeR’, seN,
§=0
where for 0 < j < n, b; € R are the thresholds, a; € R* are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and x, and
o is the activation function of the network. In many fundamental neural network
models, the activation functions are the error, sigmoidal and hyperbolic tangent
functions. About neural networks in general read [16], [17], [18]. We have been
greatly inspired by [15].

2. BACKGROUND

Next we present briefly about the Choquet integral.
We make the following definition.

Definition 1. Consider Q # @ and let C be a o-algebra of subsets in Q.

(i) (see, e.g., [19, p. 63]) The set function p: C — [0, +00] is called a monotone
set function (or capacity) if u(@) = 0 and u(A) < w(B) for all A,B € C,
with A C B. Also, p is called submodular if

(AU B) + (AN B) < u(A) + u(B) for all A,B €C.

p is called bounded if (€2) < 400 and normalized if ;(£2) = 1.

(ii) (see, e.g., [19, p. 233] or [13]) If x is a monotone set function on C and if
f: Q — R is C-measurable (that is, for any Borel subset B C R, it follows
f~1(B) € C), then for any A € C, the Choquet integral is defined by

“+o0 0
0

(©) /A fdp = / H(Fs(f) 0 A)dB + / (Fs(f) N A) — u(A)] d,

where we used the notation Fg(f) = {w e Q: f(w) > }. Notice that if
f >0 on A, then in the above formula, we get LOOO =0.
The integrals on the right-hand side are the usual Riemann integral.
The function f is called Choquet integrable on A if (C) fA fdp e R.
Next, we list some well known properties of the Choquet integral.

Remark 1. If u: C — [0,+00] is a monotone set function, then the following
properties hold:
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(i) For all a > 0, we have (C) [, afdy = a-(C) [, fdu (if f > 0, then see,
e.g., [19, Theorem11.2, (5), p. 228], and if f is an arbitrary sign, then see,
e.g., [14, p. 64, Proposition 5.1, (ii)]).

(ii) For all ¢ € R and f of an arbitrary sign, we have (see, e.g., [19, pp. 232-
23], or [14, p. 65]) (C) [, (f + ) dpp = (C) [, fdu + - i (A).

If 4 is submodular too, then for all f,g of an arbitrary sign and lower
bounded, we have (see, e.g., [14, Theorem 6.3, p. 75])

(©) /A (f+9)du < (C) /A fdu+ (C) /A o

iii) If f < gon A then (C fdu < (C gdp (see, e.g., [19, Theorem 11.2(3),
A A
p. 228] if f,g > 0 and p. 232 if f, g are of an arbitrary sign).
iv) Let f > 0. If A C B, then (C fdp < (C fdp. In addition, if p is
AJAp pJap Iz
finitely aubadditive, then

© [ () [ rans© | ran

(v) (v) It is immediate that (C) [, 1-du(t) = u(A).

(vi) The formula p(A) = v(M(A)), where v: [0,1] — [0,1] is an increasing and
concave function with v(0) = 0, v(1) = 1 and M is a probability measure
(or only finitely additive) on a o-algebra on § (that is, M (0) = 0, M(2) =1
and M is countably additive), gives simple examples of normalized, mono-
tone, and submodular set functions (see, e.g., [14, Example 2.1, pp. 16-17]).
Such of set functions p are also called distortsions of countably normalized,
additive measures (or distorted measures). For a simple example, we can
take (1) = 25, 1(t) = VE.

If the above v function is increasing, concave and satisfies only v(0) = 0,
then for any bounded Borel measure m, pu(A) = y(m(A)) gives a simple
example of bounded, monotone and submodular set function.

(vii) If g is a countably additive bounded measure, then the Choquet integral
(C) [, fdu reduces to the usual Lebesgue type integral (see, e.g., [14, p. 62]
or [19, p. 226)].
(viii) If f >0, then (C) [, fdu > 0.
(ix) Let u = v/M, where M is the Lebesgue measure on [0, +00), then u is a
monotone and submodular set function, furthermore, u is strictly positive,
see [15].
(x) If @ = RV, N € N, we call y strictly positive if u(A4) > 0, for any open
subset A C RN,

3. RESuLTS-I
Now we consider the (Gauss) error special function ([1], [11])
2 T
(1) erf(z) = —/ e dt, z €R,
v Jo

which is a sigmoidal type function and a strictly increasing function.
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It has the basic properties
(2) erf(0) =0, erf(—z)=—erf(z), erf(+o00)=1, erf(—o0)=-1,

and
(3) (erf(z))’ = % e’ zeR,
(4) /erf(x)dz = zerf(z) + e:/; +C,

where C' is a constant.
The error function is related to the cumulative probability distribution function
of the standard normal distribution

O(x) = % + %erf (%)

We consider the activation function
(5) x(x) = i (erf(z + 1) —erf(z — 1)), z eR,
and we notice that

x(—z) = i (erf(—x + 1) —erf(—z — 1))

(6) — (e (~(z — 1)) — exf (~ (@ + 1))

=—(—erf(z—1)+erf(z+ 1)) = x(x),

NG

thus x is an even function.
Since z + 1 > x — 1, then erf(z + 1) > erf(z — 1), and x(x) > 0, all z € R.
We see that

(7) x(0) =

Let x > 0, we have

erf(1) 0.843
~ —— =(.4215.
5 > 0 )

1/ 2 2 2 2
/ _ (2 @+t _ 2 —(z-1)
X(@) =7 (ﬁ ¢ N )
®) 1 1 1 1 sel@=D? _glat))?
= Qﬁ(e(z+1)2 - e(z71)2> = 2\/7?< e(z+1)2 e(m,1)2 ) < Oa

proving x’(x) < 0 for z > 0.

That is, x is strictly decreasing on [0, 00), and is strictly increasing on (—oo, 0],
and x’(0) = 0.

Clearly the x-axis is the horizontal asymptote on .

Conclusion, x is a bell symmetric function with maximum x(0) ~ 0.4215.

We further need the following theorems.
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Theorem 2 ([10]). We have that

9) Z xx—1i)=1 for all x € R.
Thus
(10) Z x(nx —1i)=1 forallme N, zeR.

Furthermore, we get:
&)
Since y is even, it holds > x (i —z) =1 for any = € R.

i=—00

Hence >0 x(i+x)=1and > = _ x(z+i)=1forallzeR.

Theorem 3 ([10]). It holds
(11) / x(z)dx = 1.
So x(z) is a density function on R.
Theorem 4 ([10]). Let 0 < a < 1, and n € N with n'=* > 3. It holds
. 1

(12) > xna—k)< NN

We give next definition.

117

Definition 2. Let £ be the Lebesgue o-algebra on R, and the set function
w: L — [0,+00), which is assumed to be monotone, submodular, and strictly
positive. Let f € C% (R) (the set of continuous and bounded functions from
R — R;). We define the univariate Kantorovich-Choquet type neural network

operator
(13)
> O) [ f (t+ ) du(t
CE(f,x) = Z <( ) Jo I —’—1") al )> x(nx —k) foralxeR, neN.
b b0 w ([0, 3])

Clearly here p ([O7 %]) > 0 for all n € N.

‘We notice above that
(14) 1CH (N lse < 11l >

so that C¥(f, ) is well-defined.
Remark 5. Let t € [0, ﬂ and x € R, then

P+ 5 = f (04 5) = s+ £ <[5 (14 2) = 1) + 7@,
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hence

<C>/jf(t+7’j)du<t><<c>/f}f(t 7| dutr) + /f Ju(t)
<c>/jyf<t+n s |antt -+ s 0. 2).

That is,

(15) (C) / ’ 7(t+ D) autt) - s (o, 1]) < (©) / ; 7 (t+ 5) — @) |auto)
Similarly, we have

f@) = 5@~ e+ D (64 D) < r (04 2) - @) 41 (e D),

hence

/f dt < ( / ‘f t+ )‘du(t)—}—(C)/oif(t+§),u(dt).

That is,

0.4]) < (0)/0’11 7(t+ )~ p@)fant + (m/f £+ 2 ugan

and

a6) fa([o.1])-© | ’ f(t+2)uan < ©) | (04 5) — r@]anto).

By (15) and (16), we derive that

<c>/ff(t+k) (dt) - < / (14 5) = ) |auto)

In particular, it holds

((c) Jo f(t+ jj)p(dt)) < (

(17)

(18) )y’ \f(H%) *f(fﬂ)‘du(t).

n([0,7]) N p([0.7])
We define
wilfoh) = sup |f(z) = fW)l,  h>0,
Ixiy\Sh

the first modulus of continuity of f € C} (R).
We present the following theorem.

Theorem 6. Let f € CL (R),0<a <1,z €R, n €N withn'=® > 3. Then

)
1,1 1] _
(19) sup|C () = F@)] S wr(f 3+ 05) + e g = i

(if) (20) SllipHC#(f) —fllee < pra-
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For f € (Cf (R)NCF (R)), we get li_>m CE(f) = f pointwise and uniformly.

Here CF (R) is the set of functions that are uniformly continuous from R into
R,.

Proof. We observe that

X () [ f (E+ E) dp(t)

CL(f,2) — f(a)| = ﬂk_z_joo (( ) ) — 7)) x(nz )
o~ [((©) g [ (t+ %) du(t) vine
<2 gy ) o
1) =S ((C)fo"lf(;+[§)l)f(w)|du(t))x(nx b)
k=—00 n
< () i |F (4 E) = fa)] du)
- X T m Jxn =)
00 % k) _ -
(22) + Z ((C)fo ’f (Z—(’—[él)l )f( )|du(t))x(nx—k)
(0w (f [+ & — a]) du()
< X (T ma) )xne =)

o0

220l (X xno-th)

k=—o0,
|ne—k|>nl—a

2 S () fy e () udny
< X U qpry e
[nw—k|<nl—a

Il
Jr(nl—a —2)e(ni=a-2)2

(23) <w (f, % + nla) < i x(na — k))

k=—o0,
lnz—k|<nl—a

+

1/ lloo

T e )i oD

[/ oo

(1<0) f 1 n 1 >+
= Wl( y nia ﬁ(nl—“ — 2) o(ni—a—2)2°

n

proving the claim. O
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Additionally, we give the following definition.

Definition 3. Here i = \/—1. Denote Cf (R,C) = {f: R = C|f = fi +1if2,
where fi1, fo € C} (R)}. For f € C% (R, C), we set

(24) CE(f,x):=CH(f1,2) +iCl (fa,2), foralln e Nz e R.

Theorem 7. Let f € C% (R,C), f=fi+ifs, 0<a<1l,neN,n"2>3
z €R. Then

suplt(f,2) — f@)l < (wn (Frr -+ =)+ (o + -0

@) " " "
Ja(ni—e —2)en 27 —Fen

and

(ii) (26) Sup ICH(S) = flloo < P2n-

Proof. We have that

ICR(f.x) — f(2)| = |CL (f1,2) +1CL (f2,2) — fi(z) —ifa(2)]
=[(Ch(f1,2) = f1(2)) +1(CR(f2, ) — fa(z))]
<|CR(f1.2) = fi(@)| + [CF (f2,2) — fa(@)]

(27) (19)

11 £l
< - _ >
- (wl (fl’ n + na) + Vr(nl-o —2) e("lfa*Q)Q)
1.1 /2]l
* (‘”1 (fz’ nt 77!) * e —2) e<n1*“—2>2)’
proving the claim. O
Remark 8. We introduce
N
(28) Z(z1,...,xN) = Z(z) = Hx(xi), z=(21,...,75) ERY, N€N.
i=1
It has the following properties:
(i) (29) Z(x) >0  forallz € RV,
(i) (30) Y Zw—k):= > > - > Zlwr—ky,...,an—ky) =1,
k=—oc0 ki=—00 ko=—00 kn=—0c0

where k := (ki,...,k,) € ZV for all z € RV. Hence
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(iii) (31)

oo

Z Z(nx — k) = i i i Z(nxy —ky,...,neny —kny) =1

k=—o0 ki=—00 kg=—o00 kn=—00

for all z € RN, n € N, and

(iv) (32) /]RN Z(x)dx =1,

that is, Z is a multivariate density function.

Here ||z = max {|z1],...,|zn|}, z € RV, also set o0 := (00,...,00), —00 =
(—o0,...,—00) upon the multivariate context.

It is also clear that (see (12))

oo

1
(v) (33) Y 2w RS o

k=—o0,

I —lloo>
0<B<1 neN:n'"# >3 zecRV.

For f € C} (RN ) (continuous and bounded functions from RY into R), we
define the first modulus of continuity
(34) wi(f,h) == sup [f(z)—f(y),  h>0.

z,yERN
lz=ylloc <h

Given that f € C(RY) (uniformly continuous from RY into R, ), we have
(35) Limew: (f,h) = 0.
We make next definition.

Definition 4. Let £* be the Lebesgue o-algebra on RV, N € N, and the
set function p*: L* — [0,400), which is assumed to be monotone, submodular
and strictly positive. For f € Cg (RN), we define the multivariate Kantorovich-
Choquet type neural network operator for any 2 € RV
(36)

N s ((C) fioay F(t+ ) du ()
O (fa) = O (famreon) = S ( 0] )
N* '

k=—o00

o <(C) forlb...fovlbf(t1—|—’j11,t2—|—’jf,...,tN—|—kaV)dM*(t1,...,tN)>

:Z :Zoo-- Z M*<[07%]N>

>Z(nx—k)

k1=—00 ko=— kn=—

. <HZ(TLI‘¢—I€¢)),

where 2 = (71,...,2n5) € RN k= (ki,...,ky), t = (t1,...,tn), n € N.
Clearly here p* ([0, 4]7) > 0 for all n € N.

'
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‘We notice above that
(37) 1% (Dl < 11 flloos

so that éﬂ* (f,x) is well-defined.

Remark 9. Acting as in the proof of (18), we derive

8),
(C)f[o ( %)
( 517 >f(fv)
(©) fig sy 1 (14 5) = s (1)
< - N
N*([O,%] )

We present the following theorem.

(38)

Theorem 10. Let f € Cg (RN), 0<B<1, xRN, NneN wih
nl=8 > 3. Then

o 11 I1£1
7’1’* 00 .
S;?p ’Cn (f, 33) - f(l‘)| <w; (f, n + 775) + ﬁ(nkﬁ — 2)6(,”17/372)2 = P3n;
(i) (40) up [[C (1) = fll < psn

Given that f € (Cff (RY) N CE (RY)), we obtain lim, 6‘;* (f) = f uniformly.

Proof. We observe that

[ (f,2) - f(@)]

(]

() Jjpa I+ d“*(t)> £(@)|Z(nz — k)
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(42) = ( A0 - f(x)|du*(t)>z( k)
”L_; wr ([0.41Y)
( Joapr IF (t+3) —f(w)\du*(ﬂ)z( .
+ N nr —
s w ([0,41Y)
) < 1N @1 (Filltll o + || £ = 2| ) dpe (t)>Z( "
= . 1 N nr —
nif:\\;i K ([O’”] )
+2||f||oo< > (nwk|)>
Hﬁf:\\_oi —
@ 11 1/l
(43) < UJl( -+ ﬁ) + \/7?(711*5 — 2) e(n17572)27
proving the claim. O

Additionally, we give further definition.

Definition 5. Denote by Cf; (RY,C) = {f: RN — C|f = f1 +if2, where
fi,f2€C} (]RN), N € N}. We set for f € Cf, (RN,(C) that

(44) 65(]”,:1:) = éﬁ*(fl,x)—i-iéz*(f%x) for all n € N, 2 € RV,

Theorem 11. LethCE(RN,(C), f=fi+ifo, NeN,0<p <1, 2€RY,
n € N with n'=# > 3. Then

o 11 11
SBP|Cn (f,x)*f(x)| < (wl(fl’n+715’) +w1(f2’n+nﬁ))

i) (45

() (45) (Wil +Ifall)
V(0P —2) o2 e

and

(i1) (46) wp[C (1) = fllc < pin

Proof. Similar to Theorem 7, by applying (ii) (39) twice. O
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4. REsuLts - 11

Remark 12. We consider here the sigmoidal function of logarithmic type

1 .
Si(l‘i):m, miG]K2:17...,N,x::(xl,...7xN)€RN7
each has the properties lim s;(z;) =1and lim s;(z;) =0,i=1,...,N.
x; ——400 XTi;—r—00

These functions play the role of activation functions in the hidden layer of neural
networks, also have applications in biology, demography, etc.
As in [12], we consider

(47) Di(x;) == (si(ri+1)—si(x;—1)), 2, €R,a=1,...,N.

N | —

We notice the following properties:
i) ®;(x;) >0 for all z; € R,

i) Y. B (z;— ki) =1forall z; € R,

k‘i:—OO

i) > @;(nax;—k;) =1forall z; e R, neN,

k?i:—OO

7 ®i(xi)dw; =1,

®; is a density function,

®; is even: ®; (—x;) = ®;(x;), z; >0, for i =1,...,N.
see that ([8])

—-

v

~—

v

~—

vi

W

~—

@

e? — 1

1
®;(x;) = , i=1,...,N.
(m) ( 262 ) (1+ezi*1) (1+efxi71) ¢

vii) ®; is decreasing on R, and increasingon R_, i =1,..., N.
Let 0 < 8 <1, n € N. Then as in [8], we get
viii)
g gl i g o
<3.1992¢ "7 i=1,... N

Now, we use the complete multivariate activation function ([7])

(48) O(xy,...,an) = 0(x) == [[®i(2:), xRV
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It has the property ([7]): ®(z) > 0 for all x € RY. We see that

Gy
Z Z Z (I)(q;l—k'hxz—k‘g,...,.%‘]v—k‘N)
ki=—o00 kg=—00 kn=—o00
e} oo 0o N 0o
= Z Z Z H‘bi(Ii—ki):H< Z (I)i(xi_ki>>:1~
k1=—00 ka=—00 kn=—o01t=1 =1 “k;=—o00
That is,
i O(x — k)
@y 0y ¢ .
= Z Z Z (I)(j'l—kl,‘fCQ*kQ,...,xN*kN):la
ki=—oo ka=—00  ky=—o00

k:= (ki,...,ky) for all z € RV,

(iii)’ (51)
Z O(nx — k)
k=—oc0
= Z Z Z ® (nxy — ky1,nxe — ko, ...,ney —ky) =1
klzfoo ]{?2:700 szfoo

for all z e RN, n e N.

(iv)! (52) /R 0@)de =1,

that is, ® is a multivariate density function.

Here ||z, := max {|z1],..., |za|}, 2 € RV, also set 00 := (00, ...,00), —0c0 1=
(—00,...,—00) upon the multivariate context.

For 0 < 8 < 1and n €N, fixed z € RV, we have proved ([7])

(v) (53) i D(nz — k) < 3.1992e "~

k=—o0,

B)

k 1
E alloos L
14 —elo >

We give the following definition.

Definition 6. Let £* be the Lebesgue c-algebra on RV, N € N, and the
set function p*: L* — [0,400), which is assumed to be monotone, submodular
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and strictly positive. For f € Cg (RN ), we define the multivariate Kantorovich-

Choquet type neural network operator for any 2 € RV
(54)
Ky (f,z) =Ky (f,21,...,2N)

o (D £ (3 ) an” 0
2 (e

_ 0o o) 00 (C)IO% fO%f(t1+%,t2+%7,tN+kTN)dM*(t1a7tN)
2 2 Z( wr ([0.4]") )

ki1=—00 koa=—00kny=—00

N
: (H ®; (m?z - kz)) s

where x = (z1,...,2n5) €ERN, k= (ky,...,ky), t=(t1,...,tn), n €N.
Clearly here p* ([0, %]N> > 0, for all n € N.

‘We notice above that

(55) K5 (oo < 1£llso
so that K* (f,x) is well-defined.

Remark 13. We also consider the hyperbolic tangent function tanhz, x € R
(see also [5]),

e —e™®

e? te T
It has the properties tanh0 = 0, —1 < tanhz < 1 for all x € R, and tanh(—x) =
— tanh z. Furthermore, tanhz — 1 as * — oo, and tanhz — —1 as * — —o0, and
it is strictly increasing on R.

This function plays the role of an activation function in the hidden layer of

neural networks.
We further consider ([5])

(56) tanh x :=

(57) U(x) = i (tanh(x 4+ 1) — tanh(z — 1)) > 0 for all z € R.
We easily see that U(—z) = W¥(x), that is, ¥ is even on R. Obviously ¥ is
differentiable, thus continuous.

It follows

Proposition 7 ([5]). ¥ (z) for x >0, is strictly decreasing.

Obviously ¥(x) is strictly increasing for < 0. Also it holds xErEloo\II(x) =0=
lim ¥(z).

T—r00

In fact ¥ has the bell shape with horizontal asymptote the z-axis. So the
maximum of ¥ is zero, ¥(0) = 0.3809297.
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Theorem 14 ([5]). We have that Y .0V (z—1i) =1 for all v € R.

Thus -
Z\Il(nx—i):l forallme N, z €R.
Also it holds -
> U(r+i)=1 forallz R,

Theorem 15 ([5]). It holds [~ ¥(z)dz = 1.
So ¥(x) is a density function on R.

Theorem 16 ([5]). Let 0 < o <1 and n € N. It holds

Z U(nx —k) < et o2

k=—o0,
Ine—k|>nl—a

Remark 17. In this article, we also use the complete multivariate activation
function

N
(58) O(x1,...,an) = 0O(z) = [[¥(x:), @=(x1,...,2n) €RY, NN,

i=1
It has the properties (see [6]):
(i) ©(x) > 0 for all z € RV,
(ii) (59)
dO@w—k)y=> > .Y O —kxy—ky....an —ky) =1,
k=—o0 ki=—00 kg=—00 ky=—00
where k := (ki,...,ky) for all x € RV,
> O(na—k)
(i) (60) T .
= Z Z Z @(nxl—khnxQ—kg,...,an—k:N):1
ki=—00 kg=—00 kn=—00
for all z €e RY: n e N.
(iv) (61) O(z)dz =1,
RN
that is, © is a multivariate density function.
By [6], we get
(v) (62) S e —k)<et e

k=—o0,

IE —2lloe> 1y

0<B<1 neN, zeRN.
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Definition 8. Let £* be the Lebesgue o-algebra on RN, N € N, and the
set function p*: £* — [0,+00), which is assumed to be monotone, submodular
and strictly positive. For f € C%(RY), we define the multivariate Kantorovich-

Choquet type neural network operator for any z € R
(63)
Ly (f,z) =Ly (f,21,...,2n)

5 (e
N ([0 A)Y)
(C)foi"'fo’l‘f(t1+];1,t2+];2,...,tzv+2v)du*(tl,...,tN)>

ENREA (0 7)

)@(m; —k)

where x = (z1,...,2n5) €ERN, k= (ky,...,ky), t = (t1,...,ty), n € N.
Clearly here p* ([0, %]N> > 0 for all n € N.
‘We notice above that

(64) 125 (D)l < 1llec -
so that L* (f, ) is well-defined.
We present the following theorems.

Theorem 18. Let f € CL(RY), 0< B <1, x € RN; n,N € N. Then

() 65) sup K5 (7.2) = F(0)| < (£ b5 ) + (63050 [

(1-8)
n .
- >\1n7

(if) (66) sup|| K4 (f) = f]| o < Aun-
P
Given that f € (C(RN) N CL(RN)) ¢, we obtain lim K (f) = f uniformly.
n—oo
Proof. As similar to Theorem 10, is omitted. O

Theorem 19. Let f € CL(RYN), 0< <1, x € RN; n,N € N. Then

() (67) sup 1

(1-8)
= )\2n7

Lﬁ(f,x)—f(m)’ §w1<f,%+n7) +1fll. 2e*e™®

(ii) (68) supl| L (f) = £l < Aon-
P
Given that f € (Cfi(RN) N CL(RY)), we obtain ILm L (f) = f uniformly.
Proof. As similar to Theorem 10, is omitted. (]

‘We need next definition.
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Definition 9. For f € C(RY,C) we set
Ky (f2) = KI(fr2) + 1K) (f, ),
Ly (f.2) = L (fr.2) +1 L (f2,2)
for alln € N, z € RV,
We finish with the theorem.

Theorem 20. Let f € CE(RN,(C), f=fitifo, 0<pB <1, zeRN,
n, N € N. Then

. 1 1 1 1
Kﬁ fa 7f S fa*‘i“i + f7*+7
0 (7o) sup (f,x) = f(2)] (m( Lo nﬁ) wl( 2 Z’Bz))
+ ([filloo + 1 f2lloo) (6.:3984) e™™ 7 =: Az,
supl L (£,2) = $@)] < (w1 (for =5 ) +en (o))

(iii) (72)  #*
_op(1—8)
+ (11l + I foll ) 26 ™2 = An,

(iv) (73) sup|| L5 (f) = £, < A
n*
Proof. Similar to Theorem 7. O
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