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HERMITE-HADAMARD TYPE INEQUALITIES OBTAINED VIA
RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

M. V. MIHAI anp F-C. MITROI

ABSTRACT. We extend some inequalities obtained by M. A. Latif to the framework
of Riemann-Liouville fractional calculus.

1. INTRODUCTION

The Hermite-Hadamard inequality asserts that for every convex function f:
[a,b] — R, one has

f(a;b) = bla/abf(@ deM’

where a,b € I with a < b. One can easily prove that the left term is closer to the
integral mean value than the right one. Therefore,

1) bla/abﬂm)dxs;(f(“>;f(”)+f(“§b)).

See [5, p. 52].

A remarkable variety of refinements and generalizations of Hermite-Hadamard
inequality have been found; see, for example, [1], [3], [5] and the references cited
therein.

Our aim is to establish some new inequalities related to (1), using the Riemann-
Liouville fractional integration. We deal with functions whose derivatives in abso-
lute value are convex.

Let f € L*[a,b], where a > 0. The Riemann-Liouville integrals J¢, f and Jg* f
of order o > 0 are defined by

Jo f(x) = %oz) /j(x — 1) f(t)dt for x > a,

and

b
T f(x) = ﬁ/ (t— 2 f(@)dt  for @ < b,
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respectively. Here, I'(ar) = fooo e tt*~1dt is the Gamma function. We also make
the convention

Jap f(x) = J)_f(z) = f(2).
More details about the Riemann-Liouville fractional integrals may be found
in [2].
2. MAIN RESULTS

We assume throughout the present paper that [a,b] is a subinterval of [0, 00)
and f: [a,b] — R is a function differentiable on (a,b) such that f’ € Ll[a,b].
Throughout this section we define the Hermite-Hadamard a—gap by
(z—a)®+(b-2)") fl@)  (@—-a)*fla) +(b—2)*f(b)

b—a b—a

_2QII;(c_y;rl)[af<x+a> +f(z+a>

() s (1)

In the particular case where a = 1, this reduces to

— X Tr—a a b
H(w) = (o) + L DIO2 L2 OND 2 [ g

(e = (5 O 2

The value of H was estimated by M. A. Latif [4] and it is the purpose of the
present paper to generalize some of his results. For this we need a preparation.

Heo(x) :=

Thus

Lemma 1. We have

Ho(z)
@ «@ 1
:(x;_ct)a+1(/tf(1+t +2t>dt_/ f( —t —|—12+t>dt>
@ « _ 1
—(ng)aﬂ(/ t2f'<1—2|_t1:+12tb>dt+/ 5F (1 t +1+tb>dt),
- 0

for all x € [a, b].

Proof. We use the integration by parts and appropriate substitutions (such as

1+1¢ 1-t¢ 1-t 1+1¢
u= ;_:v—i— 50 V= x+ ;aetc.) to show that

Ly 1+t 1-—t fl) 2°T(a+1) +
‘/0 f( +2a>dt:x$a_(xa)a+1 f(x a>7
/1t2f’ (12_t:c+1+ta>dt:—f(a) ERACLY, a+f<x+a>,
0

2 z—a (r—a)ot!
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b—z  (b—x)t! 2
Vg /1—t 14t O f) 2°T(a+1) ,, ,(z+Db
/Oaf (2x+26)dtb—x(b—a:)a+1Jb_f< 2 >

The proof is complete. O

1.0 X
/tf/(mx+1tb)dt f@) 2 F(onrl)J;Jrf(erb)’
0o 2 2 9

We are now in a position to state and prove the following theorems.

Theorem 1. Assume |f’| is convex on [a,b]. Then

(@ —a)* '@+ ") , G—2)** @)+ |F®)]

< . .
Hal@)l < b—a 2(a+1) * b—a 2(a+1)
Proof. Using Lemma 1 and taking modulus, we infer from the convexity of | f’|
that
(x —a)*tt [l (141t , 1—t,
< = D e -
o) < 52— [ 5 S @l S @) ar
(xa)a+1/1t°‘ 1—t, 1+t
—_— — | — — de
+ [ S @l S @)
(bx)a“/lta 1+t 1—t,
—_— — | — —\f ()| d¢
s [ G @l )
(bx)a“/lta 1—t, 1+t
—_— — | — —\f(b)]] dt.
s [ G @l )
The result follows after a straightforward computation in the right hand side term.
This ends the proof. O

Our next result reads as

Theorem 2. Assume |f'|? is convex on [a,b] for some fized ¢ > 1. Then

1 1+2/q 1 1/p
< [ Z
o= (5 ()

T [ @+ 1@+ (@l sl @)

a
(b — x)att

+ S (B @+ 1O+ (1 @)+ 317 ) (’}}

for all x € [a, b] and%—i—%:l.

Proof. According to Lemma 1 and Holder’s inequality, we have

Ha ()] < % (/01 <t;)pdt>l/p ()7 + (1))

+ (bgi“);”l (/01 (’:)pdty/p ((Is)

Q=

+(I4)1/q)
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for all = € [a,b]. Here

L5

1+t g, 1-1 /)| 3| (@)| 7+ | f (a)]?
< [ (Fhrers |f<>|)dt— ek

q

dt

1 q q
e [l (5 1—;) < L @
0
_ 1+¢  1-t 3£ ()| + |f(b)|?
I3—/(J f ( b) dt < 1 ,
and
Y1t 1+t |f(@)]7 4 3] ()]?
I4—/0 f ( 3 +b> dt < 1 .

These last inequalities hold due to the convexity of |f’|? on [a,b]. The proof is
complete. O

Theorem 3. Assume |f’|? is convex on [a,b] for some fized ¢ > 1. Then the
following inequality

Hale)] < me " eET) N

; {<w;_>* [(2a+3)1F @) + 1 (@)

+(f @+ 20+ 3)[ 1 (@)])7]
(b _ Z‘)(‘H_l

(1 @I+ 2o+ 3) 7O ] }

holds for all x € [a, b].

Proof. Using Lemma 1, the convexity of |f’|? on [a,b] and the power-mean
inequality, we have

atol < CT 50 ( /0 i@@lﬂ/q () + (2)119)

() )
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where
1 q / /
], (1+t 1—t (2a +3)|f" ()| + | f'(a)]?
_ [ = L P . <
i /O 2 f< y T a) di < Aot Dla+2)
1 q / /
o (1=t 14t |f' ()] + (20 + 3)f'(a) |
- i - i dt <
I /0 2 f( 7 T a) = Ha+tD@t+2)
1 q / /
], (14t 1—t 2a+3)[f' (@)1 + [ f(b)]7
_ [ = L P . <
& /O 2 f( y T b) R CF e R
and
1 1 /
|, (1—t 1+t /()] + (2a + 3)[f'(b)]
& /0 2 f( g Ut ) = 4(a+1)(a+2)
Hence the proof of the theorem is complete. O

Theorem 4. Assume |f’|? is concave on [a,b] for some fized ¢ > 1. Then

e < ; (apil)l/z){(x b_j):H {f’ <3x2—a> N /<x—23a>}
)

for all x € [a, b] and%—i—%:l

Proof. From Lemma 1 and Hélder’s integral inequality for ¢ > 1 and p = qz

we have 71’
ot < 0 ([(5) )1/,, k)
Tf‘f ([ (5) )"
[ ()
b (] (5 )

w\”‘

w\“‘
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for all z € [a,b]. Here,

1
1+t 1-—t¢
KF/O f’<2“2“>

1+t 1t
f(/o <2x+ 5 a)dt)

q
dt <

q
dt

q q

<

, (3r+a
r(45)

and similarly,

! 1—t¢ 1+t
Ky = "
2 /Of(QQT—‘y-Qa)
1+t 1—¢ 3x+0b
K3 = [ . 12X T
o= [ Gt i) sl (257

538 e ()

We used the concavity of |f’|? on [a, b] and Jensen’s integral inequality in order to
obtain the last four inequalities. This completes the proof of the theorem. O

q q

dt <

—

)

q q

dt <

—_

Our final result is the following theorem.

Theorem 5. Suppose |f'| is concave on [a,b]. Then

et 1:?(::) G b>]+ e H

for all z € [a,b].

Proof. Using Lemma 1 and taking modulus, we infer from the concavity of | f/|

that
Ha(2)] < “;_C‘)SH/; I (1‘2”“1;%) Car
+ ‘(I ;_CL):H /01 f (12tx+ 12Ha) gdt
+ 7(b;f):+l /01 ! (1Q+tm+ 12_tb) %dt
+ 7(b;f):+l /01 f (12_tx+ Tb) %dt
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11+t 1—-1t t

< ‘(xb_a)aﬂ </1 t;dt) f 7
- 0 fol Edt
1t (11—t 1+1¢
(x —a)ot! Lo fO 2 (233 * 2 a) dt
Ml S =
- 0 fol jdt
1t (14t 1-—-t
(b— z)aﬂ 1o fo 5 (2 T+ — b) dt
el (AL BT -
- 0 fol ?dt
1t% (1—1 14+t
(b — z)o+? 1 4a fO D) (2 T+ 5 b) dt
t . S dt I @
—a
0 IN S dt

for all = € [a,b], which is equivalent to the inequality in the statement of Theo-

rem 5.

O

The case where =1 in our Theorems 2-5 was previously noted by M. A. Latif [4].
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