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ENTROPY SOLUTIONS FOR STRONGLY NONLINEAR

PARABOLIC PROBLEMS WITH LOWER ORDER TERMS

IN MUSIELAK-ORLICZ SPACES

A. TALHA and M. S. B. ELEMINE VALL

Abstract. We give the existence of entropy solutions to a strongly nonlinear par-
abolic problem having two lowers order terms. We assume that the nonlinear term

is an integrable function on R satisfying the sign condition, while the right-hand

side is assumed to be in L1(Q) and the second order term is Leray-Lions operator
defined on the inhomogeneous Musielak-Orlicz space.

1. Introduction

In the present paper, we prove the existence of an entropy solution to the fol-
lowing nonlinear parabolic problem with homogeneous Dirichlet boundary value
conditions

(1.1)


∂u

∂t
+A(u)− div

(
Φ(u)

)
+ g(u)ϕ(x, |∇u|) = f in Q,

u = 0 on ∂Q,

u(x, 0) = u0 in Ω,

where Ω is a bounded subset of RN , T is a positive real number, Q = Ω× (0, T ).
The operator A(u) = −div

(
a(x, t, u,∇u)

)
is a LerayLions operator defined on a

subset of W 1
0Lϕ(Q), where ϕ is a Musielak-Orlicz function, the right-hand side

f ∈ L1(Q). We assume that g is an integrable function in R satisfying the sign
condition, while the function Φ is a continuous function on R.

When Problem (1.1) is investigated, a difficulty is due to the facts that the
datum f only belongs to L1 and the function Φ is not restricted by any growth
condition at infinity, so that proving existence of a weak solution (i.e., in the
distribution sense) seems to be an arduous task. Loosely speaking, it would require
an L1

loc(Q) a priori estimate on Φ(u) to be able to define the nonlinear term
div(Φ(u)) as a distribution on Q. In order to define the solution of (1.1), we use
the notion of renormalized solutions introduced by R.-J. DiPerna and P.-L. Lions
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([14]) for the study of the Boltzmann equation. It was adapted to the study of some
nonlinear elliptic or parabolic problems and evolution problems in fluid mechanics
([7, 9, 12]). Let us mention that in a joint work with F. Murat (see D. Blanchard,
F. Murat [7]), the first author obtained an existence and uniqueness result for
Problem (1.1) in the case Φ ≡ 0. The existence and uniqueness of renormalized
solution of (1.1) proved in [30, 31] in the case g ≡ 0. When g ≡ Φ ≡ 0 and f
is replaced by f + div(F ), the existence and uniqueness of renormalized solution
proved in [8, 29].

On Orlicz spaces, Elmahi and Meskine [17] proved existence of solutions for
(1.1), when Φ ≡ 0 where g(u)ϕ(x, |∇u|) ≡ g(x, t, u,∇u) in [18], without assuming
any restriction on the N -function M .

In the framework of variable exponent Sobolev spaces in [2] Azroul, Ben-
boubker, Redwane, and Yazough, the existence of renormalized solutions for the
problem (1.1) without sign condition involving nonstandard growth in the case
g(u)ϕ(x, |∇u|) ≡ g(x, t, u,∇u) and in the elliptic case (see [3]).

In the setting of Musielak-Orlicz spaces, Elemine Vall, Ahmed, Touzani, and
Benkirane [15] proved the existence of solutions for the problem (1.1), where
Φ ≡ Φ(x, t, u) and g ≡ 0. The problem (1.1) recently solved by Talha, Benkirane,
and Elemine Vall in [35] when the right-hand side is a measure data, Φ ≡ 0 and
g(u)ϕ(x, |∇u|) ≡ g(x, t, u,∇u). A large number of papers devoted to study the
existence of solutions to elliptic and parabolic problems under various assumptions
and in different contexts a review on classical results, see [16, 19, 24, 32, 34, 35].

The study of nonlinear partial differential equations in this type of spaces is
strongly motivated by numerous phenomena of physics, namely the problems re-
lated to non-Newtonian fluids of strongly inhomogeneous behavior with a high
ability of increasing their viscosity under a different stimuli, like the shear rate,
magnetic or electric field. The generalized Orlicz (Musielak-Orlicz) spaces are of
interest not only as the natural generalization of these important examples, but
also in their own right. They appeared in many problems in PDEs and the calculus
of variations [1, 20] and have applications to image processing [11, 25] and fluid
dynamics [23, 27].

In this paper, our purpose is to prove the existence of entropy solutions to a
strongly nonlinear parabolic equation with minimal restrictions for the Musielak-
Orlicz functions and Φ(u) 6= 0, while the right-hand side is an L1-datum. This
result can be applied, for example, for finding an entropy solution to the following
equation

∂u

∂t
− div

(m(x, |∇u|)
|∇u|

∇u+ u|u|σ
)

+
sign(u)

1 + u2
ϕ(x, |∇u|) = f ∈ L1(Q),

where m is the partial derivative of ϕ(x, t) with respect to t. A particular case is
ϕ(x, t) = 1

p(x) t
p(x).

The paper is organized as follows: In Section 2, we introduce some basic def-
initions and properties in inhomogeneous Musielak-Orlicz-Sobolev spaces as well
as an abstract theorem. In Section 3, we prepare some auxiliary results, to prove
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main result. Finally, in Section 4, we give basic assumptions on a,Φ, g, f , and we
state the main result and proofs.

2. Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-
Sobolev spaces. Standard reference is [4, 28].

2.1. Musielak-Orlicz function

Let Ω be an open set in RN and let ϕ be a real-valued function defined in Ω×R+,
satisfying the following conditions:
(a) ϕ(x, .) is an N -function for almost all x ∈ Ω (i.e., convex, strictly increasing,

continuous, ϕ(x, 0) = 0, ϕ(x, t) > 0 for all t > 0, lim
t→0

ess sup
x∈Ω

ϕ(x,t)
t = 0 and

lim
t→∞

ess inf
x∈Ω

ϕ(x,t)
t =∞),

(b) ϕ(·, t) is a measurable function for all t > 0.
The function ϕ is called a Musielak-Orlicz function.
For a Musielak-Orlicz function ϕ, we put ϕx(t) = ϕ(x, t) and associate its

nonnegative reciprocal function ϕ−1
x , with respect to t, that is

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t.

The Musielak-Orlicz function ϕ is said to satisfy the ∆2-condition if for some k > 0
and a non negative function h, integrable in Ω, we have

(2.1) ϕ(x, 2t) ≤ k ϕ(x, t) + h(x) for almost all x ∈ Ω and t ≥ 0.

When (2.1) holds only for t ≥ t0, for some t0 > 0, then ϕ is said to satisfy the
∆2-condition near infinity.

Let ϕ and γ be two Musielak-Orlicz functions, we say that ϕ dominates γ and
we write γ ≺ ϕ, near infinity (resp. globally) if there exist two positive constants
c and t0 such that for almost all x ∈ Ω

γ(x, t) ≤ ϕ(x, ct) for all t ≥ t0, (resp. for all t ≥ 0, i.e. t0 = 0).

We say that γ grows essentially less rapidly than ϕ at 0 (resp., near infinity)
and we write γ ≺≺ ϕ if for every positive constant c, we have

lim
t→0

(
ess sup

x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0 (resp., lim

t→∞

(
ess sup

x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0).

Remark 1 ([6]). If γ ≺≺ ϕ near infinity, then for all ε > 0 there exists t0 > 0
such that for almost all x ∈ Ω, we have

(2.2) γ(x, t) ≤ ϕ(x, εt) for all t ≥ t0.
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2.2. Musielak-Orlicz space:

For a Musielak-Orlicz function ϕ and a measurable function u : Ω→ R, we define
the functional

ρϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|) dx

The set Kϕ(Ω)=
{
u : Ω→ R measurable | ρϕ,Ω(u) <∞

}
is called the Musielak-

Orlicz class (or generalized Orlicz class). The Musielak-Orlicz space (the general-
ized Orlicz space) Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is, Lϕ(Ω)
is the smallest linear space containing the set Kϕ(Ω). Equivalently,

Lϕ(Ω) =
{
u : Ω→ R measurable

∣∣ρϕ,Ω(u
λ

)
<∞ for some λ > 0

}
.

For a Musielak-Orlicz function ϕ, we put: ψ(x, s) = supt≥0 {st− ϕ(x, t)}, ψ is the
Musielak-Orlicz function complementary to ϕ (or conjugate of ϕ) in the sense of
Young with respect to the variable s.

In the space Lϕ(Ω), we define the following two norms:

‖u‖ϕ,Ω = inf
{
λ > 0/

∫
Ω

ϕ
(
x,
|u(x)|
λ

)
dx ≤ 1

}
.

1. the Luxemburg norm 2. the so–called Orlicz norm

‖|u|‖ϕ,Ω = sup
‖v‖ψ,Ω≤1

∫
Ω

|u(x)v(x)| dx,

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms
are equivalent [28].

The closure in Lϕ(Ω) of the bounded measurable functions with compact sup-

port in Ω is denoted by Eϕ(Ω).
The Musielak function ϕ is called locally integrable on Ω if ρϕ(tχE) < ∞ for

all t > 0 and all measurable E ⊂ Ω with meas(E) <∞.
Let ϕ be a locally integrable Musielak function. Then Eϕ(Ω) is separable [13].
We say that a sequence of functions (un) ⊂ Lϕ(Ω) is modular convergent to

u ∈ Lϕ(Ω) if there exists a constant λ > 0 such that

lim
n→∞

ρϕ,Ω

(un − u
λ

)
= 0.

For any fixed nonnegative integer m, we define

WmLϕ(Ω) =
{
u ∈ Lϕ(Ω) : for all |α| ≤ m, Dαu ∈ Lϕ(Ω)

}
and

WmEϕ(Ω) =
{
u ∈ Eϕ(Ω) : for all |α| ≤ m, Dαu ∈ Eϕ(Ω)

}
,

where α = (α1, . . . , αn) with nonnegative integers αi, |α| = α1 + · · · + αn and
Dαu denote the distributional derivatives. The space WmLϕ(Ω) is called the
Musielak-Orlicz Sobolev space.

Let

ρϕ,Ω(u) =
∑
|α|≤m

ρϕ,Ω
(
Dαu

)
and ‖u‖mϕ,Ω = inf

{
λ > 0 : ρϕ,Ω

(u
λ

)
≤ 1
}
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for u ∈ WmLϕ(Ω), then these functionals are a convex modular and a norm on
WmLϕ(Ω), respectively, and the pair

(
WmLϕ(Ω), ‖‖mϕ,Ω

)
is a Banach space if ϕ

satisfies the following condition [28]:

(2.3) there exists a constant c0 > 0 such that ess inf
x∈Ω

ϕ(x, 1) ≥ c0.

The space WmLϕ(Ω) is always identified to a subspace of the product∏
|α|≤m Lϕ(Ω) = ΠLϕ, this subspace is σ(ΠLϕ,ΠEψ) closed.

The spaceWm
0 Lϕ(Ω) is defined as the σ(ΠLϕ,ΠEψ) closure ofD(Ω) inWmLϕ(Ω)

and the space Wm
0 Eϕ(Ω) as the (norm) closure of the Schwartz space D(Ω) in

WmLϕ(Ω).
The following spaces of distributions are also used:

W−mLψ(Ω) =
{
f ∈ D′(Ω); f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Lψ(Ω)
}

and

W−mEψ(Ω) =
{
f ∈ D′(Ω); f =

∑
|α|≤m

(−1)|α|Dαfα with fα ∈ Eψ(Ω)
}
.

We say that a sequence of functions (un) ⊂ WmLϕ(Ω) is modular convergent
to u ∈WmLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

ρϕ,Ω

(un − u
k

)
= 0.

For ϕ and her complementary function ψ, the following inequality is called the
Young inequality [28]:

(2.4) ts ≤ ϕ(x, t) + ψ(x, s) for all t, s ≥ 0 and almost all x ∈ Ω.

This inequality implies that

(2.5) ‖|u|‖ϕ,Ω ≤ ρϕ,Ω(u) + 1.

In Lϕ(Ω), we have the relation between the norm and the modular

‖u‖ϕ,Ω ≤ ρϕ,Ω(u) if ‖u‖ϕ,Ω > 1,(2.6)

‖u‖ϕ,Ω ≥ ρϕ,Ω(u) if ‖u‖ϕ,Ω ≤ 1.(2.7)

For two complementary Musielak-Orlicz functions ϕ and ψ, let u ∈ Lϕ(Ω) and
v ∈ Lψ(Ω), then, we have the Hölder inequality [28]

(2.8)

∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ ‖u‖ϕ,Ω‖|v|‖ψ,Ω.
2.3. Inhomogeneous Musielak-Orlicz-Sobolev spaces

Let Ω be a bounded open subset of RN and let Q = Ω×]0, T [ with some given
T > 0. Let ϕ be a Musielak function, denote a real-valued function defined in
Q × R+. For each a α ∈ NN , denote by Dα

x a the distributional derivative on Q
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of order α with respect to the variable x ∈ RN . The inhomogeneous Musielak-
Orlicz-Sobolev space of order 1 is defined as follows

W 1,xLϕ(Q) = {u ∈ Lϕ(Q) : for all |α| ≤ 1 Dα
xu ∈ Lϕ(Q)}

and

W 1,xEϕ(Q) = {u ∈ Eϕ(Q) : for all |α| ≤ 1 Dα
xu ∈ Eϕ(Q)}.

The last space is a subspace of the first one and both are Banach spaces under the
norm

‖u‖ =
∑
|α|≤m

‖Dα
xu‖ϕ,Q.

We can easily show that they form a complementary system when Ω is a Lipschitz
domain [6]. These spaces are considered as subspaces of the product space ΠLϕ(Q)
which has (N + 1) copies. We also consider the weak topologies σ(ΠLϕ,ΠEψ)
and σ(ΠLϕ,ΠLψ). If u ∈ W 1,xLϕ(Q), then the function t 7→ u(t) = u(t, .) is
defined on [0, T ] with values in W 1Lϕ(Ω). Further, if u ∈ W 1,xEϕ(Q), then this
function is W 1Eϕ(Ω) valued and strongly measurable. Furthermore, the following
imbedding holds: W 1,xEϕ(Q) ⊂ L1(0, T ;W 1Eϕ(Ω)). In general, W 1,xLϕ(Q) is
not a separable space u ∈W 1,xLϕ(Q), we can not conclude that the function u(t)
is measurable on [0, T ]. However, the scalar function t 7→ ‖u(t)‖ϕ,Ω is in L1(0, T ).

The space W 1,x
0 Eϕ(Q) is defined as the (norm) closure in W 1,xEϕ(Q) of D(Q).

We can easily show as in [6] that when Ω a is Lipschitz domain, then each element
u of the closure of D(Q) with respect of the weak-* topology σ(ΠLϕ,ΠEψ) is limit
of some sequence (ui) ⊂ D(Q) in W 1,xLϕ(Q), for the modular convergence, i.e.,
there exists λ > 0 such that for all |α| ≤ 1,∫

Q

ϕ(x,
(Dα

xui −Dα
xu

λ

)
) dx dt→ 0 as i→∞,

this implies that (ui) converges to u for the weak topology σ(ΠLM ,ΠLψ) in
W 1,xLϕ(Q). Consequently

D(Q)
σ(ΠLϕ,ΠEψ)

= D(Q)
σ(ΠLϕ,ΠLψ)

.

This space is denoted by W 1,x
0 Lϕ(Q). Furthermore, W 1,x

0 Eϕ(Q) =

W 1,x
0 Lϕ(Q) ∩ΠEϕ.
We have the following complementary system(

W 1,x
0 Lϕ(Q) F

W 1,x
0 Eϕ(Q) F0

)
,

F being the dual space of W 1,x
0 Eϕ(Q). Except for an isomorphism, it is also the

quotient of ΠLψ by the polar set W 1,x
0 Eϕ(Q)⊥, denoted by F = W−1,xLψ(Q)

where

W−1,xLψ(Q) =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ Lψ(Q)

}
.
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This space is equipped with the usual quotient norm

‖f‖ = inf
∑
|α|≤1

‖fα‖ψ,Q,

where the infimum is taken on all possible decompositions

f =
∑
|α|≤1

Dα
xfα, fα ∈ Lψ(Q).

The space F0 is then given by

F0 =
{
f =

∑
|α|≤1

Dα
xfα : fα ∈ Eψ(Q)

}
,

and is denoted by F0 = W−1,xEψ(Q).

3. Auxiliary results

In this section, we give some preliminaries lemmas.

Lemma 3.1 ([6]). Let Ω be a bounded Lipschitz domain in RN , and let ϕ
and ψ be two complementary Musielak-Orlicz functions which satisfy the following
conditions:

i) There exists a constant c0 > 0 such that ess infx∈Ω ϕ(x, 1) ≥ c0,

ii) There exists a constant A > 0 such that for almost all x, y ∈ Ω with |x−y| ≤ 1
2 ,

we have

(3.1)
ϕ(x, t)

ϕ(y, t)
≤ t

(
A

log( 1
|x−y|

)
for all t ≥ 1.

iii)

(3.2)

∫
Ω

ϕ(x, λ) dx <∞ for all λ > 0.

iv) There exists a constant c2 > 0 such that ψ(x, 1) ≤ c2, a.e in Ω.
Under these assumptions, D(Ω) is dense in Lϕ(Ω) with respect to the modular

topology, D(Ω) is dense in W 1
0Lϕ(Ω) for the modular convergence and D(Ω) is

dense in W 1Lϕ(Ω) for the modular convergence.

Consequently, the action of a distribution S in W−1Lψ(Ω) on an element u of
W 1

0Lϕ(Ω) is well defined. It is denoted by 〈S, u〉.

Lemma 3.2. Let F : R → R be uniformly Lipschitzian with F (0) = 0. Let ϕ
be a Musielak-Orlicz function and let u ∈ W 1

0Lϕ(Ω). Then F (u) ∈ W 1
0Lϕ(Ω).

Moreover, if the set D of discontinuity points of F ′ is finite, we have

∂

∂xi
F (u) =

 F ′(u)
∂u

∂xi
, a.e. in {x ∈ Ω : u(x) 6∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.
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Lemma 3.3 (Poincaré’s inequality [34]). Let ϕ a Musielak-Orlicz function
which satisfies the assumptions of Lemma 3.1. Suppose that ϕ(x, t) decreases with
respect to one coordinate of x. Then, there exists a constant c > 0 which depends
only on Ω such that

(3.3)

∫
Ω

ϕ(x, |u(x)|)dx ≤
∫

Ω

ϕ(x, c|∇u(x)|)dx for all u ∈W 1
0Lϕ(Ω).

Lemma 3.4 (The Nemytskii Operator). Let Ω be an open subset of RN with
finite measure and let ϕ and ψ be two Musielak-Orlicz functions. Let f : Ω×Rp →
Rq be a Carathéodory function such that for a.e. x ∈ Ω and all s ∈ Rp,

(3.4) |f(x, s)| ≤ c(x) + k1ψ
−1
x ϕ(x, k2|s|)

where k1 and k2 are real positives constants, and c(.) ∈ Eψ(Ω). Then the Nemytskii
Operator Nf defined by Nf (u)(x) = f(x, u(x)) is strongly continuous from(
P
(
Eϕ(Ω), 1

k2

))p
=
∏{

u ∈ Lϕ(Ω) : d(u,Eϕ(Ω)) < 1
k2

}
into (Lψ(Ω))q for the

modular convergence. Furthermore, if c(·) ∈ Eγ(Ω) and γ ≺≺ ψ, then Nf is

strongly continuous from
(
P(Eϕ(Ω), 1

k2
)
)p

to (Eγ(Ω))q.

Lemma 3.5 ([35]). Let a < b ∈ R and let Ω be a bounded Lipschitz domain in
RN . Then{

u ∈W 1,x
0 Lϕ(Ω×]a, b[) :

∂u

∂t
∈W−1,xLψ(Ω×]a, b[) + L1(Ω×]a, b[)

}
is a subset of C([a, b];L1(Ω)).

Proposition 3.6 ([35]). Let ϕ be a Musielak function and let (un) be a sequence
of W 1,xLϕ(Q) such that

un ⇀ u weakly in W 1,xLϕ(Q) for σ(ΠLϕ,ΠLψ),

and
∂un
∂t

= hn + kn in D′(Q),

with (hn) bounded in W−1,xLψ(Q) and (kn) bounded in the space M(Q) of mea-

sures on Q. Then un → u strongly in L1
loc(Q). Further, if (un) ⊂ W 1,x

0 Lϕ(Q)
then un → u strongly in L1(Q).

4. Assumptions and main results

Let Q be the cylinder Ω × (0, T ), +∞ > T > 0, Ω be a bounded domain of RN
with the segment property, and let be ϕ and ψ two complementary Musielak-Orlicz
functions. We assume that ϕ(x, t) decreases with respect to one coordinate of x.

Let A : D(A) ⊂W 1,x
0 Lϕ(Q)→W−1,xLψ(Q) be a mapping given by

A(u) = −div(a(x, t, u,∇u)),

where a(x, t, s, ξ) : Ω× [0, T ]× R× RN → RN is a Carathéodory function. There
exist two Musielak-Orlicz functions ϕ and γ such that γ ≺≺ ϕ, a positive function
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c(x, t) ∈ Eψ(Q), and two positive constants ν, β such that for a.e. (x, t) ∈ Q and
for all s ∈ R, ξ, ξ′ ∈ RN , ξ 6= ξ′,

|a(x, t, s, ξ)| ≤ β
(
c(x, t) + ψ−1

x γ(x, ν|s|) + ψ−1
x ϕ(x, ν|ξ|)

)
,(4.1) (

a(x, t, s, ξ)− a(x, t, s, ξ′)
)

(ξ − ξ′) > 0,(4.2)

a(x, t, s, ξ)ξ ≥ αϕ(x, |ξ|),(4.3)

Φ: R→ RN is a continuous function,(4.4)

g : R→ R is an integrable function on R and g(u)u ≥ 0,(4.5)

f ∈ L1(Q),(4.6)

u0 is an element of L1(Ω).(4.7)

We consider the following boundary value problem:

(P)


∂u

∂t
− div

(
a(x, t, u,∇u) + Φ(u)

)
+ g(u)ϕ(x, |∇u|) = f in Q,

u = 0 on ∂Q,

u(x, 0) = u0 in Ω.

Remark 2. As already mentioned in the introduction, problem (P) does not ad-
mit a weak solution under assumptions (4.1)–(4.7) since the growths of a(x, t, u,∇u)
and Φ(u) are not controlled with respect to u (so that these fields are not in general
defined as distributions, even when u belongs to W 1,xLϕ(Q).

Throughout this paper, 〈, 〉 means either the pairing between W 1,x
0 Lϕ(Q) ∩

L∞(Q) and W−1,xLψ(Q) +L1(Q), or between W 1,x
0 Lϕ(Q) and W−1,xLψ(Q). We

recall that for k > 1 and s in R, the truncation is defined as

T`(s) =

{
s if |s| ≤ `,
` s|s| if |s| > `.

Our main result is collected in the following theorem.

Theorem 4.1. Let Ω be a bounded Lipschitz domain in RN , ϕ and ψ be
two complementary Musielak-Orlicz functions satisfying the assumptions of Lem-
ma 3.1, and ϕ(x, t) decreases with respect to one coordinate of x. We assume
also that (4.1)–(4.6) and (4.7) hold true. Then, the problem (P) has at least one
entropy solution in the following sense
(4.8)

T`(u) ∈W 1,x
0 Lϕ(Q) for all ` > 0,〈∂u

∂t
, T`(u− v)

〉
+

∫
Q

a(x, t, u,∇u) · ∇T`(u− v) dx dt+

∫
Q

Φ(u) · ∇T`(u− v) dxdt

+

∫
Q

g(u)ϕ(x, |∇u|)T`(u− v) dxdt ≤
∫
Q

fT`(u− v) dxdt

u(x, 0) = u0(x) for a.e. x ∈ Ω,
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for all v ∈W 1,x
0 Lϕ(Q) ∩ L∞(Q) such that ∂v

∂t ∈W
−1,xLψ(Q) + L1(Q).

The following remarks are concerned with a few comments on Theorem 4.1.

Remark 3. Equation (4.8) is formally obtained through pointwise multiplication
of the problem (P) by T`(u − v). Note that each term in (4.8) has a meaning

since T`(u − v) ∈ W 1,x
0 Lϕ(Q) ∩ L∞(Q). In addition, by Lemma 3.5, we have

v ∈ C([0, T ], L1(Ω)), and then the first and last terms of Eq. (4.8) are well defined.

The proof of this theorem is done in six steps.

Step 1: Approximate problem

Let us introduce the following regularization of the data:

(4.9) Φn(x, t, r) = Φ(x, t, Tn(r)) a.e, (x, t) ∈ Q, for all r ∈ R,

(4.10)
fn ∈ C∞0 (Q) : ‖fn‖L1 ≤ ‖f‖L1 and fn → f in L1(Q) as n tends to +∞,

(4.11)
u0n ∈ C∞0 (Ω) : ‖u0n‖L1 ≤ ‖u‖L1 and u0n → u0 in L1(Ω) as n tends to +∞.

Let consider the following approximate problem:

(4.12)


∂un
∂t
− div

(
a(x, t, un,∇un) + Φn(un)

)
,

+g(un)ϕ(x, | ∇un |) = fn fn in Q,

un(x, 0) = u0n(x) u0n(x) in Ω,

where Φn is a Lipschitz continuous bounded function from R into RN , (fn) ⊂ D(Q)
such that fn → f strongly in L1(Q), and (u0n) ⊂ D(Ω) such that u0n → u0

strongly in L1(Ω) (||un0||L1(Ω) ≤ ‖u0‖L1(Ω)). As a consequence, proving existence

of a weak solution un ∈W 1,x
0 Lϕ(Q) of (4.12) is an easy task (see, e.g, [26]).

Step 2: A priori estimates

The estimates derived in this step rely on usual techniques for problems of the
type (4.12).

Proposition 4.2. Assume that (4.1)–(4.7) are satisfied and let un be a solution
of the approximate problem (4.12). Then for all `, n > 0, we have

i) ‖T`(un)‖W 1,x
0 Lϕ(Q) ≤ C`,

ii) lim
`→∞

meas{(x, t) ∈ Q : |un| > `} = 0 uniformly with respect to n.

iii)

∫
Q

g(un)ϕ(x, |∇un|) dxdt ≤ Cg, where Cg is a positive constant not de-

pending on n.
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Proof. We take T`(un)χ(0,τ) as a test function in (4.12). For every τ ∈ (0, T ),
we get 〈∂un

∂t
, T`(un)χ(0,τ)

〉
+

∫
Qτ

a(x, t, T`(un),∇T`(un))∇T`(un)dxdt

+

∫
Qτ

Φn(un)∇T`(un)dxdt+

∫
Qτ

g(un)ϕ(x, |∇un|)T`(un)dx dt

=

∫
Qτ

fnT`(un)dxdt,

(4.13)

which implies that∫
Ω

S`(un(τ)) dx+

∫
Qτ

a(x, t, T`(un),∇T`(un))∇T`(un) dxdt

+

∫
Qτ

Φn(un)∇T`(un)dx dt

=

∫
Qτ

fnT`(un) dxdt−
∫
Qτ

g(un)ϕ(x, |∇un|)T`(un) dxdt+

∫
Ω

S`(u0n) dx,

where

(4.14) S`(r) =

∫ r

0

T`(σ) dσ =


r2

2
if |r| ≤ `,

`|r| − r2

2
if |r| > `.

The Lipschitz character of Φn, and Stokes formula together with the boundary
condition un = 0 on (0, T )× ∂Ω, make it possible to obtain

(4.15)

∫
Qτ

Φn(un)∇T`(un) dxdt = 0.

Due to the definition of S` and (4.11), we have

(4.16) 0 ≤
∫

Ω

S`(u0n) dx ≤ `
∫

Ω

|u0n| dx ≤ `‖u0‖L1(Ω).

For θ, ε > 0, now consider a function %εθ ∈ C1(R) such that

(4.17) %εθ(s) =

{
0 if |s| ≤ θ,

sign(s) if |s| > θ + ε,

and

(%εθ)
′(s) ≥ 0 for all s ∈ R.

Then, by using %εθ(un) as a test function in (4.12) and following [33], we can see
that
(4.18)∫
{|un|>θ}

|g(un)ϕ(x, |∇un|)|dxdt ≤
∫
{|un|>θ}

|fn|dxdt+

∫
{|un|>θ}

|u0n|dxdt,
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and so by letting θ → 0 and using Fatou’s lemma, we deduce that g(un)ϕ(x, |∇un|)
is a bounded sequence in L1(Qτ ), then, we obtain iii). By using (4.15), (4.16), iii),
and (4.5), it yields

∫
Ω

S`(un(τ)) dx+

∫
Qτ

a(x, t, T`(un),∇T`(un))∇T`(un) dx dt

=

∫
Qτ

fnT`(un) dx dt−
∫
Qτ

g(un)ϕ(x, |∇un|)T`(un) dx dt+

∫
Ω

S`(u0n) dx

=

∫
Qτ

fnT`(un) dx dt−
∫
Qτ

|g(un)ϕ(x, |∇un|)T`(un)|dx dt+

∫
Ω

S`(u0n) dx

≤ `||fn||L1(Qτ ) + `Cg + `||u0||L1(Ω)

≤ `(||fn||L1(Qτ ) + `Cg + ||u0||L1(Ω))

≤ `C0,

(4.19)

where here and below Ci denote positive constants not depending on n and `.
Using (4.19) and the fact that S`(un) ≥ 0 allows us to deduce that

(4.20)

∫
Qτ

a(x, t, T`(un),∇T`(un))∇T`(un) dx dt ≤ `C0,

which implies by virtue of (4.3), that

(4.21)

∫
Qτ

ϕ(x, |∇T`(un)|) dxdt ≤ `C1.

From the that above inequality (4.19), we deduce that

(4.22)

∫
Ω

S`(un(τ)) dx ≤ `C0, for any τ in [0, T ].

On the other hand, thanks to Lemma 3.3, there exists a constant λ > 0 de-
pending only on Ω such that

(4.23)

∫
Qτ

ϕ(x, |v(x)|) dx dt ≤
∫
Qτ

ϕ(x, λ|∇v(x)|) dxdt, ∀v ∈W 1
0Lϕ(Ω).

Taking v = T`(un)
λ in (4.23) and using (4.21), one has

(4.24)

∫
Qτ

ϕ(x,
|T`(un)|

λ
) dx dt ≤ `C1.
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On the other hand, one has

meas{|un| > `} ≤ 1

ess inf
x∈Ω

ϕ
(
x, `λ

) ∫
{|un|>`}

ϕ
(
x,
`

λ

)
dx dt

≤ 1

ess inf
x∈Ω

ϕ(x, `λ )

∫
Ω

ϕ(x,
1

λ
|T`(un)|) dxdt

≤ C1`

ess inf
x∈Ω

ϕ(x, `λ )
for all n, and ` ≥ 0.

(4.25)

For any β > 0, we have

meas{|un − um| > β} ≤ meas{|un| > `}+ meas{|um| > `}
+ meas{|T`(un)− T`(um)| > β},

and so that

meas{|un − um| > β} ≤ 2C1`

ess inf
x∈Ω

ϕ(x, `λ )
+ meas{|T`(un)− T`(um)| > β}.(4.26)

By using (4.24) and Poincaré’s inequality in Musielak-Orlicz spaces, we deduce

that (T`(un))n is bounded in W 1,x
0 Lϕ(Q), and then there exists ω` ∈ W 1,x

0 Lϕ(Q)

such that T`(un) ⇀ ω` weakly in W 1,x
0 Lϕ(Q) for σ(ΠLϕ,ΠEψ), strongly in L1(Q)

and a.e. in Q.
Consequently, we can assume that (T`(un))n is a Cauchy sequence in measure

in Q.
Let ε > 0, then by (4.26) and the fact that 2C1`

ess inf
x∈Ω

ϕ(x, `λ )
→ 0 as `→ +∞, there

exists some ` = `(ε) > 0 such that

meas{|un − um| > λ} < ε for all n,m ≥ h0(`(ε), λ).

This proves that (un) is a Cauchy sequence in measure, thus, (un) converges almost
everywhere to some measurable function u. �

Step 3: Boundedness of a(x, t, T`(un),∇T`(un)) in (Lψ(Q))N

Proposition 4.3. Let un be a solution of the approximate problem (4.12), then
we have the following properties:

un → u a.e. in Q.(4.27)

a(x, t, T`(un),∇T`(un)) ⇀ φ` weakly in (Lψ(Q))N for σ(ΠLϕ,ΠEψ),(4.28)

for some φ` ∈ (Lψ(Q))N .

Proof. From (4.21), we have that (T`(un)) is bounded in W 1,x
0 Lϕ(Q) for every

` > 0. Consider now C2(R) nondecreasing function ζ`(s) = s for |s| ≤ `
2 and

ζ`(s) = ` sign (s) for |s| ≥ 0. Multiplying the approximating equation by ζ ′`(un),
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we obtain

∂(ζ`(un))

∂t
= div

(
a(x, t, un,∇un)ζ ′`(un)

)
− a(x, t, un,∇un)ζ ′′` (un)∇un

+ div (Φn(un)ζ ′`(un)
)
− Φn(un)ζ ′′` (un)∇un

− g(un)ϕ(x, |∇un|)ζ ′`(un) + fnζ
′
`(un)

(4.29)

in the sense of distributions. This implies, thanks to (4.24) and the fact that ζ ′` has

compact support, that ζ ′`(un) is bounded in W 1,x
0 Lϕ(Q), while its time derivative

∂(ζ`(un))
∂t is bounded in W−1,x

0 Lϕ(Q) + L1(Q), hence Proposition 3.6 allows us to

conclude that ζ`(un) is compact in L1(Q). Due to the choice of ζ`, we conclude
that for each `, the sequence (T`(un)) converges almost everywhere in Q, which
implies that (un) converges almost everywhere to some measurable function u in
Q. Therefore, following [7], we can see that there exists a measurable function
u ∈ L∞(0, T ;L1(Ω)) such that for every ` > 0 and a subsequence, not relabeled,

un → u a.e. in Q,

and

(4.30)
T`(un) ⇀ T`(u) weakly in W 1,x

0 Lϕ(Q) for σ(ΠLϕ,ΠEψ),

strongly in L1(Q) and a.e. in Q.

We prove that a(x, t, T`(un),∇T`(un)) is bounded sequence in (Lψ(Q))N .
Let w ∈ (Eϕ(Q)N with ‖w‖ϕ,Q ≤ 1. By using (4.2), we have(

a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),
w

ν
)
)(
∇T`(un)− w

ν

)
> 0,

hence ∫
Q

a(x, t, T`(un),∇T`(un))
w

ν
dx dt

≤
∫
Q

a(x, t, T`(un),∇T`(un))∇T`(un) dx dt

−
∫
Q

a
(
x, t, T`(un),

w

ν

)(
∇T`(un)− w

ν

)
dx dt.

(4.31)

Thanks to (4.20), we have

(4.32)

∫
Q

a(x, t, T`(un),∇T`(un))∇T`(un) dxdt ≤ C2,

where C2 is a positive constant which is independent of n.
On the other hand, by using (4.1) for λ large enough (λ > β), we have∫

Q

ψx

(a(x, t, T`(un), wν )

3λ

)
dx dt

≤
∫
Q

ψx

(β(c(x, t) + ψ−1
x (γ(x, |T`(un)|)) + ψ−1

x (ϕ(x, |w|))
)

3λ

)
dxdt
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≤ β

λ

∫
Q

ψx

(c(x, t) + ψ−1
x (γ(x, |T`(un)|)) + ψ−1

x (ϕ(x, |w|))
3

)
dx dt

≤ β

3λ

(∫
Q

ψx(c(x, t)) dxdt+

∫
Q

γ(x, |T`(un)|) dxdt+

∫
Q

ϕ(x, |w|) dx dt

)
≤ β

3λ

(∫
Q

ψx(c(x, t)) dxdt+

∫
Q

γ(x, |T`(un)|) dxdt+

∫
Q

ϕ(x, |w|) dx dt

)
≤ C3.

Now, since γ grows essentially less rapidly than ϕ near infinity and by using
the Remark 1, for all ε > 0 such that γ(x, |T`(un)|) ≤ ϕ(x, ε|T`(un)|), we have∫
Q

ψx

(a(x, t, T`(un), wν )

3λ

)
dxdt ≤ β

3λ

(∫
Q

ψx(c(x, t)) dxdt

+

∫
Q

ϕ(x, ε|T`(un)|) dxdt+

∫
Q

ϕ(x, |w|) dxdt

)
,

hence a(x, t, T`(un), wν ) is bounded in (Lψ(Q))N . Which implies that second term
of the right hand side of (4.31) is bounded, consequently, we obtain∫
Q

a(x, t, T`(un),∇T`(un))w dxdt ≤ C3 for all w ∈ (Eϕ(Q)N with ‖w‖ϕ,Q ≤ 1,

where C3 is a positive constant which is independent of n.
Hence, thanks the Banach-Steinhaus Theorem, the sequence (a(x, t, T`(un),

∇T`(un)))n is a bounded sequence in (Lψ(Q))N , thus up to a subsequence
(4.33)

a(x, t, T`(un),∇T`(un)) ⇀ φk weakly stars in (Lψ(Q))N for σ(ΠLψ,ΠEϕ)

for some φk ∈ (Lψ(Q))N . �

Step 4: Almost everywhere convergence of the gradients

Let ρm be a truncation defined by

(4.34) ρm(s) =

 1 if |s| ≤ m,
m+ 1− |s| if |s| ≤ m+ 1,
0 if |s| ≥ m+ 1

where m > `. We set

T ∗` (s) =
(∫ T`(s)

0

exp
(∫ t

0

g(s)ds
)

dt
)(

exp
(
−
∫ ∞

0

g(s)ds
))
,

Rm(s) =
(∫ s

0

ρm(t) exp
(∫ t

0

g(s)ds
)

dt,

ωiµ,j = T`(vj)µ + exp(−µt)T`(wi).

Let (vj) ∈ D(Q) be a sequence such that

(4.35) vj → T ∗` (u) in W 1,x
0 Lϕ(Q) for the modular convergence,
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and let (ωj) ⊂ D(Q) be a sequence such that vj ≥ T ∗` (ωj) and ωj converges
strongly to T ∗` (u0) in L2(Ω).

Also T`(vj)µ is the mollification with respect to time of T`(vj), see [5]. Note
that ωiµ,j is a smooth function having the following properties:

(4.36)
∂

∂t
(ωiµ,j) = µ(T`(vj)− ωiµ,j), ωiµ,j(0) = T`(ωi), |ωiµ,j | ≤ `,

(4.37) ωiµ,j → T ∗` (u)µ + exp(−µt)T`(wi) in W 1,x
0 Lϕ(Q)

for the modular convergence as j →∞,

(4.38) T ∗` (u)µ + exp(−µt)T`(wi)→ T ∗` (u) in W 1,x
0 Lϕ(Q)

for the modular convergence as µ→∞.

Using the admissible test function Zµ,mi,j,n = (T ∗` (un)−ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

as a test function in (4.12), leads to

〈∂un
∂t

, Zµ,mi,j,n

〉
+

∫
Q

a(x, t, un,∇un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dxdt (1)

+

∫
{m≤un≤m+1}

a(x, t, un,∇un)(T ∗` (un)− ωiµ,j)∇unρ′m(un) exp
(∫ un

0

g(s)ds
)

dxdt (2)

+

∫
{m≤un≤m+1}

Φn(un)(T ∗` (un(un)− ωiµ,j)∇unρ′m(un) exp
(∫ un

0

g(s)ds
)

dx dt (3)

+

∫
Q

Φn(un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dxdt (4)

=

∫
Q

fnZ
µ,m
i,j,n dx dt−

∫
Q

g(un)ϕ(x, |∇un|)Zµ,mi,j,n dx dt = (5) + (6).

We denote ε(n, j, µ, i) any quantity such that

lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j, µ, i) = 0.

Let us recall that for un ∈W 1,x
0 Lϕ(Q), there exists a smooth function unσ such

that

unσ → un for the modular convergence in W 1,x
0 Lϕ(Q) ∩ L2(Q),

∂unσ
∂t
→ ∂un

∂t
for the modular convergence in W−1,xLψ(Q) + L2(Q),
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∂t

, Zµ,mi,j,n

〉
= lim
σ→0+

∫
Q

(unσ)′(T ∗` (unσ)− ωiµ,j)ρm(un) exp
(∫ unσ

0

g(s)ds
)

dx dt

= lim
σ→0+

(∫
Q

(Rm(unσ)− T ∗` (unσ))′(T ∗` (unσ)− ωiµ,j) dxdt

+

∫
Q

T ∗` (unσ)′(T ∗` (unσ)− ωiµ,j) dx dt
)

= lim
σ→0+

∫
Ω

[
(Rm(unσ)− T ∗` (unσ))(T ∗` (unσ)− ωiµ,j)dx

]T
0

−
∫
Q

(Rm(unσ)− T ∗` (unσ))(T ∗` (unσ)− ωiµ,j)′ dxdt

+

∫
Q

T ∗` (unσ)′(T ∗` (unσ)− ωiµ,j) dx dt = I1 + I2 + I3.

Remark also that

Rm(unσ) ≥ T ∗` (unσ) if unσ < ` and Rm(unσ) > ` = T ∗` (unσ) ≥ |ωiµ,j)| if unσ ≥ `,

I1 =

∫
Ω

(Rm(unσ)(T )− T ∗` (unσ)(T ))(T ∗` (unσ)(T )− ωiµ,j(T ))dx,

−
∫

Ω

(Rm(unσ)(0)− T ∗` (unσ)(0))(T ∗` (unσ)(0)− ωiµ,j(0))dx = I1
1 + I2

1 ,

I1
1 ≥

∫{
unσ(T )≤`

}(Rm(unσ)(T )− T ∗` (unσ)(T ))(T ∗` (unσ)(T )− ωiµ,j(T ))dx,

and it is easy to see that,

lim sup
σ→0+

I1
1 ≥ ε(n, j, µ),

I2
1 = −

∫{
unσ(0)≤`

}(Rm(unσ)(0)− T ∗` (unσ)(0))(T ∗` (unσ)(0)− T`(ωi))dx

−
∫{

unσ(0)>`
}(Rm(unσ)(0)− T ∗` (unσ)(0))(T ∗` (unσ)(0)− T`(ωi))dx.

For the first part, it is the same as I1
1 and for the second part, we have

I2
1 ≥ ε(n, j, µ)−

∫{
unσ(0)≥`

}(Rm(unσ)(0)− T ∗` (unσ)(0))(T ∗` (unσ)(0)− T`(ωi))dx.

lim sup
σ→0+

I1 ≥ ε(n, j, µ)−
∫{

u0n≥`
}(Rm(u0n)− T ∗` (u0n)(T ∗` (u0n)− T`(ωi))dx = J1.

Now letting n→∞, we have

lim
n→+∞

J1 =

∫{
u0≥`

}(Rm(u0)− T ∗` (u0)(T ∗` (u0)− T`(ωi))dx

and by letting i→∞, we obtain

lim sup
σ→0+

I1 ≥ ε(n, j, i, µ).



218 A. TALHA and M. S. B. ELEMINE VALL

Concerning I2, we remark that T ∗` (unσ)′ = 0 if unσ > `, then

I2 = −
∫{

unσ≤`
}(Rm(unσ)− T ∗` (unσ))(T ∗` (unσ)− ωiµ,j)′ dxdt

+

∫{
unσ>`

}(Rm(unσ)− T ∗` (unσ))(ωiµ,j)
′ dx dt = I1

2 + I2
2 .

As in I1, I
2
1 ≥ ε(n, j, µ) and

I2
2 =

∫{
unσ>`

}(Rm(unσ)− T ∗` (unσ))(ωiµ,j)
′ dxdt

≥ µ
∫{

unσ>`
}(Rm(unσ)− T ∗` (unσ))(T`(vj)− T ∗` (unσ))′ dxdt

by using the fact that

(Rm(unσ)− T ∗` (unσ))(T ∗` (unσ − ωiµ,j)χ{unσ>`} ≥ 0.

So

lim sup
σ→0+

I2
2 ≥ µ

∫{
unσ>`

}(Rm(unσ)− T ∗` (unσ))(T`(vj)− T ∗` (unσ))′ dx dt

= ε(n, j).

About I3,

I3 =

∫
Q

T ∗` (unσ)′(T ∗` (unσ)− ωiµ,j) dxdt

=

∫
Q

(T ∗` (unσ)−ωiµ,j)′(T ∗` (unσ)−ωiµ,j) dx dt+

∫
Q

(ωiµ,j)
′(T ∗` (unσ)− ωiµ,j) dx dt.

Set φ(r) = r2

2 , φ ≥ 0, then

I3 =
[ ∫

Ω

φ(T ∗` (unσ)− ωiµ,j)dx
]T

0
+ µ

∫
Q

(T`(vj)− ωiµ,j)(T ∗` (unσ)− ωiµ,j) dx dt.

≥ ε(n, j, µ)−
∫

Ω

φ(T ∗` (unσ)(0)− T`(ωi))dx

+ µ

∫
Q

(T`(vj)− ωiµ,j)(T ∗` (unσ)− ωiµ,j) dx dt( as in I2).

So,

lim sup
σ→0+

I3 ≥ ε(n, j, µ)−
∫

Ω

φ(T ∗` (u0n)− T`(ωi))dx

+ µ

∫
Q

(T`(vj)− T ∗` (un))(T ∗` (unσ)− ωiµ,j) dx dt

= −
∫

Ω

φ(T ∗` (u0n)− ωi)dx+ µ

∫
Q

(T`(vj)− ωiµ,j)(T ∗` (unσ)− ωiµ,j) dx dt

+ ε(n, j, µ)

and, we easily deduce
lim sup
σ→0+

I3 ≥ ε(n, j, i, µ).
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Finally, we conclude that

(4.39)
〈∂un
∂t

, (T ∗` (un)− ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)〉
≥ ε(n, j, i, µ).

We are interested now in the terms of (1), (2), (4), and (5). Let us remark that

(4.40)
∇T ∗` (u) =

(
exp

(
−
∫ ∞

0

g(s)ds
))

exp
(∫ T`(un)

0

g(s)ds
)
∇T`(u)

=: λ(u)∇T`(u).

About (1),∫
Q

a(x, t, un,∇un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dx dt

=

∫{
un≤`

} a(x, t, un,∇un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dxdt

+

∫{
un>`

} a(x, t, un,∇un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dx dt

=

∫
Q

a(x, t, T`(un),∇un)(∇T ∗` (un)−∇ωiµ,j) exp
(∫ un

0

g(s)ds
)

dxdt

+

∫{
un>`

} a(x, t, un,∇un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)
, dx dt

recall that ρm(un) = 1 on |un| ≤ `.
Let s > 0, Qs = {(x, t) ∈ Q : |∇T`(u)| ≤ s}, Qjs = {(x, t) ∈ Q : |∇T`(vj)| ≤ s}.∫
Q

a(x, t, un,∇un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dxdt

=

∫
Q

(a(x, t, T`(un),∇un)− a(x, t, T`(un),∇T`(vj)χjs)(∇T ∗` (un)−∇T`(vj)χjs)

× exp
(∫ un

0

g(s)ds
)

dx dt+

∫
Q

a(x, t, T`(un),∇T`(vj)χjs)(∇T ∗` (un)−∇T`(vj)χjs)

× exp
(∫ un

0

g(s)ds
)

dx dt

+

∫
Q

a(x, t, T`(un),∇T`(un))∇T`(vj)χjs exp
(∫ un

0

g(s)ds
)

dxdt

−
∫
Q

a(x, t, un,∇un)∇ωiµ,jρm(un) exp
(∫ un

0

g(s)ds
)

dxdt

= J1 + J2 + J3 + J4.

We go to the limit as n, j, m, and s→∞ in the last three integrals of the last
side.

As for the inequality (4.21), we can prove that

(4.41)
T ∗` (un) ⇀ T ∗` (u) in W 1,x

0 Lϕ(Q) for σ(ΠLϕ,ΠEψ),

strongly in L1(Q), and a.e. in Q.



220 A. TALHA and M. S. B. ELEMINE VALL

Now, starting with J2, by letting n→∞, we have

J2 =

∫
Q

a(x, t, T`(u),∇T`(vj)χjs)(∇T ∗` (u)

−∇T`(vj)χjs) exp
(∫ u

0

g(s)ds
)

dx dt+ ε(n).

Since

a(x, t, T`(un),∇T`(vj)χjs)→ a(x, t, T`(u),∇T`(vj)χjs) strongly in(Eψ(Q))N ,

a(x, t, T`(un),∇T`(vj)χjs)→ a(x, t, T`(u),∇T`(u)χs) strongly in (Eψ(Q))N ,

and

∇T`(vj)χjs → ∇T ∗` (u)χs strongly in (Lϕ(Q))N ,

then

(4.42) J2 = ε(n, j).

Following the same way as in J2 and using (4.14), one has

(4.43) J3 =

∫
Q

φ`∇T ∗` (u) exp
(∫ u

0

g(s)ds
)

dxdt+ ε(n, j, µ, s).

Concerning the terms J4

J4 = −
∫
Q

a(x, t, Tm+1(un),∇Tm+1(un))∇ωiµ,jρm(un) exp
(∫ un

0

g(s)ds
)

dxdt

= −
∫{
|un|≤`

} a(x, t, Tm+1(un),∇Tm+1(un))∇ωiµ,jρm(un) exp
(∫ un

0

g(s)ds
)

dxdt

−
∫{

`<|un|≤m+1
}a(x, t, Tm+1(un),∇Tm+1(un))∇ωiµ,jρm(un) exp

(∫ un

0

g(s)ds
)

dx dt.

By letting first n then j and finally µ go to infinity

(4.44) J4 = −
∫
Q

φ`∇T ∗` (u) exp
(∫ u

0

g(s)ds
)

dxdt+ ε(n, j, µ).

We conclude then that∫
Q

a(x, t, un,∇un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dxdt

=

∫
Q

(a(x, t, T`(un),∇un)− a(x, t, T`(un),∇T`(vj)χjs)

× (∇T ∗` (un)−∇T`(vj)χjs) exp
(∫ un

0

g(s)ds
)

dxdt+ ε(n, j, µ, s).

(4.45)

About (2),∣∣∣ ∫
{m≤|un|≤m+1}

a(x, t, un,∇un)(T ∗` (un)− ωiµ,j)∇unρ′m(un) exp
(∫ un

0

g(s)ds
)

dx dt
∣∣∣

≤ C(k)

∫
{m≤|un|≤m+1}

a(x, t, un,∇un)∇un exp
(∫ un

0

g(s)ds
)

dx dt.
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Then by (4.32), we deduce that∣∣∣ ∫
{m≤|un|≤m+1}

a(x, t, un,∇un)(T ∗` (un)− ωiµ,j)∇unρ′m(un) exp
(∫ un

0

g(s)ds
)

dxdt
∣∣∣

≤ ε(n, µ,m).

About (3) and (4),
using Lebesgue’s convergence theorem shows that

Φn(un)ρm(un)→ Φ(u)ρm(u) strongly in (Eψ(Q)N ) as n→∞,

and

Φn(un)χ{m≤|un|≤m+1}(∇T ∗` (un)−∇ωµi,j)ρm(un)

→ Phi(u)χ{m≤|un|≤m+1}(∇T ∗` (u)−∇ωµi,j)ρm(u), strongly in (Eψ(Q)N ) as n→∞

Then by virtue of ∇T ∗` (un) ⇀ ∇T ∗` (u) weakly in (Lϕ(Q)N ),
and

∇unχ{m≤|un|≤m+1} = ∇T ∗m+1(un)χ{m≤|un|≤m+1} a.e. in Q,

one has∫
Q

Φn(un)(∇T ∗` (un)−∇ωµi,j)ρm(un) dx dt→
∫
Q

Φ(u)(∇T ∗` (u)−∇ωµi,j)ρm(u) dx dt

as n→∞, and∫
{m≤|un|≤m+1}

Φn(un)(T ∗` (un)− ωµi,j)∇unρ
′
m(un) dx dt

→
∫
{m≤|un|≤m+1}

Φ(u)(T ∗` (u)− ωµi,j)∇uρ
′
m(u) dxdt as n→ +∞.

On the other hand, by using the modular convergence of (ωµi,j) as j → +∞ and
letting µ tend to infinity, we deduce that

(4.46)

∫
Q

Φn(un)(∇T ∗` (un)−∇ωiµ,j)ρm(un) exp
(∫ un

0

g(s)ds
)

dx dt = ε(n, j, µ)

and ∫
{m≤|un|≤m+1}

Φn(un)(T ∗` (un(un)− ωiµ,j)∇unρ′m(un) exp
(∫ un

0

g(s)ds
)

dxdt

= ε(n, j, µ).

(4.47)

About (3).
Similarly, by the almost everywhere convergence of un, we have (T ∗` (un) −

ωiµ,j)ρm(un) exp(
∫ un

0
g(s)ds converges to (T ∗` (u) − ωiµ,j)ρm(u) exp(

∫ u
0
g(s)ds in

L1(Q) weakly, * and then∫
Q

fn(T ∗` (un)− ωµi,j)ρm(un) dx dt→
∫
Q

fn(T ∗` (u)− ωµi,j)ρm(u) dxdt.
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So,

(T ∗` (u)− ωµi,j)ρm(u)→ (T ∗` (u)− T ∗` (u)µ − exp(−µt)T ∗` (wi)

in L∞(Q) weakly * as j →∞, and also

(T ∗` (u)− T ∗` (u))µ − exp(−µt)T ∗` (wi)→ 0 in L∞(Q) weak * as µ→∞.

Then, we deduce that

(4.48)

∫
Q

fn(T ∗` (un)− ωµi,j)ρm(un) dx dt = ε(n, j, µ).

Now taking into account the estimation of (1), (2), (3), (4), and (5), we obtain∫
Q

(a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),∇T`(vj)χjs)(∇T ∗` (un)−∇T`(vj)χjs)

× exp
(∫ un

0

g(s)ds
)

dx dt = ε(n, j, µ, i, s,m).

On the other hand, we get∫
Q

(a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),∇T ∗` (u)χs)

× (∇T ∗` (un)−∇T ∗` (u)χs) exp
(∫ un

0

g(s)ds
)

dx dt

−
∫
Q

(a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),∇T`(vj)χjs)

× (∇T ∗` (un)−∇T`(vj)χjs) exp
(∫ un

0

g(s)ds
)

dxdt

=

∫
Q

(a(x, t, T`(un),∇T`(un))(∇T`(vj)χjs −∇T ∗` (u)χs) exp
(∫ un

0

g(s)ds
)

dxdt

−
∫
Q

(a(x, t, T`(un),∇T ∗` (un)χs)(∇T`(vj)χjs −∇T`∗(u)χs) exp
(∫ un

0

g(s)ds
)

dxdt

+

∫
Q

(a(x, t, T`(un),∇T ∗` (vj)χ
j
s)(∇T ∗` (un)−∇T`(vj)χjs) exp

(∫ un

0

g(s)ds
)

dxdt.

Each term of the last right hand side is of the form ε(n, j, s), which gives∫
Q

(a(x, t, T`(un),∇T`(un))− a(x, t, T ∗` (un),∇T ∗` (u)χs)

× (∇T ∗` (un)−∇T ∗` (u)χs) exp
(∫ un

0

g(s)ds
)

dx dt

=

∫
Q

(a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),∇T`(vj)χjs)

× (∇T ∗` (un)−∇T`(vj)χjs) exp
(∫ un

0

g(s)ds
)

dxdt+ ε(n, j, s).

Following the same technique used in [17] for all r < s

(4.49)

∫
Q

(a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),∇T ∗` (u))(∇T ∗` (un)

−∇T ∗` (u)) dxdt→ 0.
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On the other hand, by using (4.40), we get

(λ(un)− λ(u))∇T`(u)χ{
|∇T`(u)|≤r

} → 0 strongly in (Eϕ(Q))N

and

a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),∇T`(u)) ⇀ φ` − a(x, t, T`(u),∇T`(u))

weakly in (Lψ(Q))N ,

which gives ∫
Q

(a(x, t, T`(un),∇T`(un))

− a(x, t, T`(un),∇T`(u)))∇T`(u)((λ(un)− λ(u)) dx dt→ 0.

(4.50)

By using:
– (4.41),
– the monotonicity condition,
– (4.40) and the decomposition

∇T ∗` (un)−∇T ∗` (u)

= λ(un)(∇T`(un)−∇T`(u)) + (λ(un)− λ(u))∇T`(u),

– (4.49) and (4.50),
we obtain

lim
n→∞

∫
Q

(a(x, t, T`(un),∇T`(un))− a(x, t, T`(un),∇T`(u))

× (∇T`(un)−∇T`(u)) dxdt = 0.

Thus, there exists a subsequence also denoted by un such that

(4.51) ∇T`(un)→ ∇T`(u) a.e. in Q.

We deduce then that

(4.52) a(x, t, T`(un),∇T`(un) ⇀ a(x, t, T`(u),∇T`(u) in (Lψ(Q))N

for σ(ΠLϕ,ΠEψ).

Step 5: Modular convergence of the truncations

We have proved that∫
Q

(a(x, t, T`(un),∇T`(un)− a(x, t, T`(un),∇T`(vj)χjs))

× (∇T ∗` (un)−∇T`(vj)χjs)× exp
(∫ un

0

g(s)ds
)

dxdt ≤ ε(n, j, µ, , i, s,m).

(4.53)
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And, we can also deduce that∫
Q

(a(x, t, T`(un),∇T`(un)− a(x, t, T`(un),∇T ∗` (u)χs))

× (∇T ∗` (un)−∇T ∗` (u)χs) exp
(∫ un

0

g(s)ds
)

dxdt

=

∫
Q

(a(x, t, T`(un),∇T`(un)− a(x, t, T`(un),∇T`(vj)χjs))

× (∇T ∗` (un)−∇T`(vj)χjs) exp
(∫ un

0

g(s)ds
)

dxdt+ ε(n, j, s).

Then∫
Q

(a(x, t, T`(un),∇T`(un)∇T ∗` (un) dxdt

≤
∫
Q

(a(x, t, T`(un),∇T`(un)∇T ∗` (u)χs dxdt

+

∫
Q

(a(x, t, T`(un),∇T ∗` (u)χs)(∇T ∗` (un)− T`(u)χs) dx dt+ ε(n, j, µ, , i, s,m)

and

lim sup
n

∫
Q

(a(x, t, T`(un),∇T`(un)∇T ∗` (un) dx dt

≤
∫
Q

(a(x, t, T`(un),∇T`(un)∇T ∗` (u)χs dxdt

+ lim
n
ε(n, j, µ, , i, s,m).

Then

lim sup
n

∫
Q

(a(x, t, T`(un),∇T`(un)∇T ∗` (un) dx dt

≤
∫
Q

(a(x, t, T`(un),∇T`(un)∇T ∗` (u) dx dt

≤ lim inf
n

∫
Q

(a(x, t, T`(un),∇T`(un)∇T ∗` (u) dxdt

as n→∞, we deduce

a(x, t, T`(un),∇T`(un)∇T ∗` (un)

→ a(x, t, T`(u),∇T`(u)∇T ∗` (u) in L1(Q).

Using the same argument as above, we obtain

a(x, t, T`(un),∇T`(un)∇T`(un)

→ a(x, t, T`(u),∇T`(u)∇T`(u) in L1(Q)

and Vitali’s theorem, and (4.2) gives

∇T`(un)→ ∇T`(u) for the modular convergence in (Lϕ(Q))N .
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Step 6: Passing to the limit

Let v ∈W 1,x
0 Lϕ(Q) such that ∂v

∂t ∈W
−1,xLψ(Q) + L1(Q). There exists a prolon-

gation v of v such that (see the proof of [35, Lemma 5.3])
v = v on Q,

v ∈W 1,x
0 Lϕ(Ω× R) ∩ L1(Ω× R) ∩ L∞(Ω× R),

and
∂v

∂t
∈W−1,xLψ(Ω× R) + L1(Ω× R).

By Lemma 3.5, there exists a sequence (wj)j in D(Ω × R) such that wj → v in

W 1,x
0 Lϕ(Ω×R) and

∂wj
∂t →

∂v
∂t in W−1,xLψ(Ω×R) + L1(Ω×R) for the modular

convergence and ‖wj‖∞,Q ≤ (N + 2)‖v‖∞,Q. Using T`(un − wj)χ[0,τ ] as a test
function in (Pn), for every τ ∈ [0, T ], one has

(4.54)

∫
Qτ

∂un
∂t

T`(un − wj) dxdt

+

∫
Qτ

a(x, t, un,∇un) · ∇T`(un − wj) dxdt

+

∫
Qτ

Φ(un) · ∇T`(un − wj) dxdt

×
∫
Qτ

g(un)ϕ(x, |∇un|)T`(un − wj) dxdt

≤
∫
Qτ

fnT`(un − wj) dxdt.

For the first term of (4.54), we get∫
Qτ

∂un
∂t

T`(un − wj) dx dt =

[∫
Ω

T`(un − wj) dx

]τ
0

+

∫
Qτ

∂wj
∂t

T`(un − wj) dxdt

=

[∫
Ω

T`(u− wj) dx

]τ
0

+

∫
Qτ

∂wj
∂t

T`(u− wj) dxdt+ ε(n)

=

∫
Qτ

∂u

∂t
T`(u− wj) dxdt.

For the second term of (4.54), we have if |un| > λ, then |un−wj | ≥ |un|−‖wj‖∞ >
k, therefore {|un − wj | ≤ k} ⊆ {|un| ≤ k + (N + 2)‖v‖∞}, which implies

(4.55)

lim inf
n→+∞

∫
Q

a(x, t, un,∇un)∇Tk(un − wj) dxdt

≥
∫
Q

a(x, t, Tk+(N+2)‖v‖∞(u),∇Tk+(N+2)‖v‖∞(u))

× (∇Tk+(N+2)‖v‖∞(u)−∇wj)χ{|u−v|≤k} dx dt,

=

∫
Q

a(x, t, u,∇u)(∇u−∇wj)χ{|u−wj |≤k} dxdt

=

∫
Q

a(x, t, u,∇u)∇Tk(u− wj) dxdt.
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By using 4.9 and the fact that ∇T`(un−wj) ⇀ ∇T`(u−wj) in Lϕ(Q) as n→ +∞,
we can see that∫

Qτ

Φ(un) · ∇T`(un − wj) dx dt→
∫
Qτ

Φ(u) · ∇T`(u− wj) dxdt.

Consequently, by using the strong convergence of (g(un)ϕ(x, |∇un|))n and ((fn))n,
one has

(4.56)

∫
Qτ

∂u

∂t
T`(u− wj) dx dt

+

∫
Qτ

a(x, t, u,∇u) · ∇T`(u− wj) dxdt

+

∫
Qτ

Φ(u) · ∇T`(u− wj)ddxdt

+

∫
Qτ

g(u)ϕ(x, |∇u|)T`(u− wj) dxdt

≤
∫
Qτ

fT`(u− wj) dxdt.

Thus, by using the modular convergence in j, we achieve this step.
As a conclusion of step 1 to step 6, the proof of Theorem 4.1 is complete.
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eralized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci. 33(2)
(2010), 125–137.
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