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GORENSTEIN INJECTIVE, PROJECTIVE

AND FLAT (PRE)COVERS

E. ENOCHS, S. ESTRADA and A. IACOB

Abstract. We prove that if the ring R is left noetherian and if the class GI of

Gorenstein injective modules is closed under filtrations, then GI is precovering. We

extend this result to the category of complexes. We also prove that when R is
commutative noetherian and such that the character modules of Gorenstein injec-

tive modules are Gorenstein flat, the class of Gorenstein injective complexes is both
covering and enveloping. This is the case when the ring is commutative noetherian

with a dualizing complex. The second part of the paper deals with Gorenstein pro-

jective and flat complexes. We prove the existence of special Gorenstein projective
precovers over commutative noetherian rings of finite Krull dimension.

1. Introduction

The starting point of Gorenstein homological algebra was in 1966–1967 when in
a series of conferences Auslander introduced a class of finitely generated modules
that have a complete resolution. Auslander used these modules to define the notion
of the G-dimension of a finite module over a commutative noetherian local ring. In
1969, Auslander and Bridger extended the definition to two sided noetherian rings.
Calling the modules of G-dimension zero Gorenstein projective modules, in 1995
Enochs and Jenda, defined in [11] the Gorenstein projective modules (whether
finitely generated or not) and Gorenstein injective modules over arbitrary rings.
Another extension of the G-dimension is based on Gorenstein flat modules. These
modules were introduced by Enochs, Jenda and Torrecillas [14].

Gorenstein homological algebra is the relative version of homological algebra
that uses Gorenstein injective, Gorenstein projective and Gorenstein flat resolu-
tions instead of the classical injective, projective and flat resolutions. But while
the existence of the classical resolutions over arbitrary rings is well known, things
are a little different when it comes to Gorenstein homological algebra. The main
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open problems in this area concern the existence of the Gorenstein (injective, pro-
jective and flat) resolutions. This is the reason why the existence of the Gorenstein
(injective, projective, flat) precovers and preenvelopes both for modules and for
complexes of modules has been studied intensively in recent years.

In Section 2, we give a sufficient condition for the class GI of Gorenstein injective
modules being a precovering class. We prove that if R is left noetherian and if
the class of Gorenstein injective modules is closed under filtrations, then GI is
precovering in R-Mod. The converse is also true when we assume the existence of
special Gorenstein injective precovers. In particular, this is the case when the class
GI is covering. We extend our results to the category of complexes. We prove
that if the class of Gorenstein injective injective modules is closed under filtrations
then the class of Gorenstein injective complexes is precovering in Ch(R).

We also extend some of the results of [15] to the category of complexes. We
prove that when R is commutative noetherian and such that for every Gorenstein
injective module M , its character module M+ is Gorenstein flat, the class GI(C)
of Gorenstein injective complexes is covering. We also prove that over such rings
the class of Gorenstein injective complexes is enveloping. In particular, this is the
case when R is commutative noetherian with a dualizing complex.

In Section 3 we consider the existence of Gorenstein flat and Gorenstein pro-
jective (pre)covers. Enochs and López-Ramos [13] proved the existence of Goren-
stein flat covers over coherent rings. And Jørgensen [24] showed the existence
of Gorenstein projective precovers over commutative noetherian rings with dual-
izing complexes. More recently, Murfet and Salarian [26] extended his result to
commutative noetherian rings of finite Krull dimension. We extend some of the
results on the existence of Gorenstein projective and Gorenstein flat (pre)covers
to the category of complexes of R-modules over noetherian rings. We show the
existence of Gorenstein flat covers over two sided noetherian rings. And we prove
the existence of special Gorenstein projective precovers over commutative noether-
ian rings of finite Krull dimension. This apparently “slight” variation is crucial
from a homotopical point of view since it allows us to define Gorenstein projective
cofibrant replacements of modules in the category of unbounded complexes.

2. Gorenstein injective (pre)covers and envelopes

Throughout the paper, R denotes an associative ring with 1. By R-module, we
mean left R-module. And by R-Mod we mean, the category of left R-modules.

We recall that by [12, Definition 10.1.1], a module G is Gorenstein injective if
there is an exact complex . . .→ E1 → E0 → E−1 → . . . of injective modules which
remains exact under application of the functors Hom(Inj,−) , where Inj stands for
all injective modules, and such that G = Ker(E0 → E−1).

The notions of precover and cover, preenvelope and envelope with respect to a
class of modules C were introduced by Enochs [7]. The definitions carry to more
general categories than module categories. In this paper, we also consider covers
and envelopes in Ch(R), the category of chain complexes of left R-modules.
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Definition 1. ([18, Definition 1.2.3]) If A is an abelian category and F a class
of objects of A, then an F-precover of an object X of A is a morphism φ : F → X,
where F ∈ F and such that Hom(G,F )→ Hom(G,X) is surjective for all G ∈ F .
If furthermore any f : F → F with φ ◦ f = φ is an automorphism of F , then φ is
said to be an F-cover of X (clearly an F-cover of X is unique if it exists). If every
M in A has an F-(pre)cover, the class F is said to be (pre)covering.

The dual notions are that of an F-preenvelope β : X → F and of an F-envelope.
And so we have the notion of (pre)enveloping class.

When the class F is known, the notions of F-(pre)covers and F-(pre)envelopes
take the name of F . Thus, in case F is the class of Gorenstein injective modules,
an F-(pre)cover is called a Gorenstein injective (pre)cover.

For a class F of objects of A, F⊥ denotes the class of objects C of A such that
Ext1(F,C) = 0 for all F ∈ F . Similarly, ⊥F denotes the class of objects D such
that Ext1(D,F ) = 0 for all F ∈ F .

A pair of classes (F , C) of objects of A is said to be a cotorsion pair on A if
F⊥ = C and ⊥C = F .

Definition 2. A cotorsion pair (F , C) on A is said to be perfect if every object
X of A has an F-cover and a C-envelope.

An F-precover φ : F → X is said to be a special F-precover if Ker(φ) ∈ F⊥.
An F-preenvelope β : X → F is special if Coker(β) ∈ ⊥F .

By [18, Proposition 1.2.3], any F cover is a special F precover, and any F
envelope is a special F preenvelope.

A cotorsion pair (F , C) on A is said to be complete if every object has a special
epic F-precover and a special monic C-preenvelope.

Definition 3. ([18, Definition 1.2.10]) Let A be an abelian category with
enough projectives and injectives. A cotorsion pair (F , C) in A is called hereditary
if one of the following equivalent statements holds:

1. F is resolving, that is, F is closed under taking kernels of epimorphisms.
2. C is coresolving, that is, C is closed under taking cokernels of monomor-

phisms.
3. Exti(F,C) = 0 for any F ∈ F , C ∈ C and i ≥ 1.

Over Gorenstein rings the existence of Gorenstein injective covers is known (see
for instance, [12, Theorem 11.1.3]). We give sufficient conditions for the existence
of Gorenstein injective precovers and covers over noetherian rings.

We recall the following definitions.

Definition 4. A direct system of modules (Xα|α ≤ λ) is said to be continuous
if X0 = 0 and if for each limit ordinal β ≤ λ, we have Xβ = lim−→ Xα with the

limit over the α < β. The direct system (Xα|α ≤ λ) is said to be a system of
monomorphisms if all the morphisms in the system are monomorphisms.

If (Xα|α ≤ λ) is a continuous direct system of R-modules then for this to
be a system of monomorphisms, it suffices that Xα → Xα+1 is monomorphism
whenever α+ 1 ≤ λ.
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Definition 5. Let L be a class of R-modules. An R-module X of A is said to
be a direct transfinite extension of objects of L if X = lim−→ Xα for a continuous

direct system (Xα|α ≤ λ) of monomorphisms such that Coker(Xα → Xα+1) is in
L whenever α+ 1 ≤ λ.

Definition 6. By a filtration of a module M we mean that for an ordinal
number λ, we have a continuous well-ordered chain (Mα|α ≤ λ) of submodules of
M with M0 = 0 and with Mλ = M . We say that λ is the length of the filtration.
If C is any class of modules, this filtration is said to be a C-filtration if for every
α+ 1 ≤ λ we have that Mα+1/Mα is isomorphic to some C ∈ C.

The class of all C-filtered modules is denoted Filt(C).
Roughly speaking, Filt(C) is the class of all transfinite extensions of modules in

C. It is known ([8, Theorem 5.5] and [27], Theorem in the Introduction) that if C
is a set of modules, then Filt(C) is precovering.

Our first result is a sufficient condition for the existence of Gorenstein injective
precovers. It is known ([16]) that when R is left noetherian, the class of Gorenstein
injective left R-modules is a Kaplansky class.

Since we use this property in our proof, we recall the following definition.

Definition 7. ([16, Definition 2.1]) Let R be a ring and say F be a class of
R-modules. Then F is said to be a Kaplansky class if there exists a cardinal κ
such that for every M ∈ F and for each x ∈M , there exists a submodule F of M
such that x ∈ F ⊆M , F ∈ F , M/F ∈ F and Card(F ) ≤ κ.

Lemma 1. Let R be a left noetherian ring. There exists an infinite cardinal
κ such that the class GI of Gorenstein injective left R-modules is a κ-Kaplansky
class.

Proof. This is [16, Proposition 2.6]. �

Proposition 1. Let R be a left noetherian ring, κ an infinite cardinal as in
Lemma 1, and let X denote a set of representatives of isomorphism classes of
Gorenstein injective modules M such that |M | ≤ κ. The following assertions are
equivalent:

(1) GI is closed under X–filtrations.
(2) GI = Filt(X ).

Proof. (2)⇒ (1) Clear.
(1) ⇒ (2) By (1), it is clear that Filt(X ) ⊆ GI. Conversely, let G 6= 0 be a

Gorenstein injective module and let {gα, α < λ} be a generating set for G. Let
G0 = 0 and let G1 ∈ GI such that g1 ∈ G1 and G/G1 ∈ GI – this is possible as GI
is κ-Kaplansky. Assume that Gα is defined such that Gα ∈ GI,

∑
β<αRgβ ⊂ Gα,

and such that G/Gα is Gorenstein injective.
Consider another ordinal, say γ. If γ is a successor ordinal, say γ = α+ 1, then

by the Kaplansky property, there is Gα+1 such that gα ∈ Gα+1/Gα ⊂ G/Gα and
such that G/Gα, Gα+1/Gα are Gorenstein injective. Then

∑
β≤αRgβ ⊂ Gα+1.

Further, the exact sequence 0 → Gα → Gα+1 → Gα+1/Gα → 0 with both Gα
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and Gα+1/Gα in GI gives that Gα+1 ∈ GI (since the class GI is closed under
extensions).

If γ ≤ λ is a limit ordinal, then we set Gγ =
⋃
α<γ Gα. From (1), we have that

Gγ ∈ GI. Now, since the sequence 0 → Gγ → G → G/Gγ → 0 is exact with
Gγ and G Gorenstein injectives, and GI is closed under cokernels of monomor-
phisms ([22, Theorem 2.6]), it follows that G/Gγ is Gorenstein injective, so we can
continue the induction. The process clearly terminates. Thus G ∈ Filt(X ). �

Theorem 1. Under the assumptions of Proposition 1, the class of Gorenstein
injective modules is precovering.

Proof. By [8, Theorem 5.5], or by [27], Theorem in the Introduction, Filt(X )
is precovering. �

If moreover every R-module has a special GI-precover, then the converse is also
true, that is, R is left noetherian and GI is closed under X -filtrations. The first
claim follows from [4, Proposition 3.15] because the class GI being precovering
requires R to be left noetherian. The second statement follows from the next
proposition.

Proposition 2. Let R be a left noetherian ring. If every R-module has a special
Gorenstein injective precover then the class GI of Gorenstein injective modules is
closed under direct transfinite extensions.

Proof. Let (Gα|α ≤ λ) be a direct system of monomorphisms, with each Gα ∈
GI, and let G = lim−→ Gα. Since for each α, we have Gα ∈⊥ (GI⊥), it follows that

G = lim−→Gα ∈
⊥ (GI⊥) (by [5, Theorem 1.2]).

For each α, consider ⊕E∈XE(Hom(E,Gα)) → Gα, where the map is the evalu-
ation map and X is a representative set of indecomposable injective modules
E. This is an injective precover of Gα, and since Gα is Gorenstein injective,
⊕E∈XE(Hom(E,Gα)) → Gα is surjective. Also this way of constructing a precover
is functorial. The map Gα → Gβ gives rise to a map Eα → Eβ . Since Eα → Gα
was constructed in a functorial manner, we have that when α ≤ β ≤ γ the map
Eα → Eγ is the composition of the two maps Eα → Eβ and Eβ → Eγ .

Then we have an exact sequence E → G → 0 with E = lim−→Eα an injective

module. It follows that G has a surjective injective cover and therefore, a surjective
special Gorenstein injective precover. So there is an exact sequence

0→ A→ G→ G→ 0

with A ∈ GI⊥ and G Gorenstein injective. But by the above, we have that
Ext1(G,A) = 0. So G is a direct summand of G ∈ GI. �

Corollary 1. Let R be a left noetherian ring. If the class GI of Gorenstein
injective modules, is covering, then GI is closed under transfinite extensions.

Proposition 3. When the ring R is left noetherian and the class of Gorenstein
injective modules is closed under direct limits, the class GI is covering.
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Proof. Since R is left noetherian, the class of Gorenstein injective modules
is Kaplansky. Since GI is also closed under direct limits, it is precovering (by
Theorem 1). A precovering class that is also closed under direct limits is covering
([12, Corollary, 5.2.7]) �

Corollary 2. ([12, Theorem 11.1.3]) Over a Gorenstein ring, the class of
Gorenstein injective modules is covering.

Corollary 3. ([23, Theorem 3.3]) If R is commutative noetherian with a du-
alizing complex, then the class of Gorenstein injective modules is covering.

Proof. By [3, Theorem 6.9], GI is closed under direct limits. By Proposition 3,
it is covering. �

We extend our results to the category of complexes of R-modules over a two
sided noetherian ring R. We use the notation GI(C) for the class of Gorenstein
injective complexes.

It is known that when R is a left noetherian ring, a complex of left R-modules
is Gorenstein injective if and only if each component is a Gorenstein injective
R-module ([25], Theorem 8). Using this result we prove the following proposition.

Proposition 4. Let R be a left noetherian ring. If the class of Gorenstein in-
jective R-modules is closed under filtrations, then the class of Gorenstein injective
complexes is precovering in Ch(R).

Proof. Again, let κ be an infinite regular cardinal as in Lemma 1, and let X de-
note a set of representatives of isomorphism classes of Gorenstein injective modules
M such that |M | ≤ κ. Then GI = Filt(X ). Since GI is closed under filtrations, it
follows that each complex of Gorenstein injective modules is filtered by bounded
below complexes with components in X ([27], Proposition 4.3). In particular,
the class of complexes of Gorenstein injective modules is deconstructible. By [25,
Theorem 8], this is the class of Gorenstein injective complexes. By [27, Theorem
page 195], the class of Gorenstein injective complexes is precovering. �

Proposition 5. Let R be left noetherian. If the class of Gorenstein injective
modules is closed under direct limits, then the class of Gorenstein injective com-
plexes is covering in Ch(R).

Proof. By Proposition 3, the class of Gorenstein injective modules is covering.
Also, the class of Gorenstein injective modules is closed under extensions, direct
products, and by our assumptions, closed under direct limits. By [10, Theorem
3.13], the class of complexes of Gorenstein injective modules is covering. By [25,
Theorem 8], these are the Gorenstein injective complexes. �

We give a sufficient condition for the class of Gorenstein injective complexes
being covering. Since it involves Gorenstein flat modules, we recall the following

Definition 8. ([12, Definition 10.3.1]) A module N is Gorenstein flat if there
is an exact and Inj⊗-exact sequence . . . → F1 → F0 → F−1 → F−2 → . . . of flat
modules such that N = Ker(F0 → F−1).
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In [15, Theorem 1], we proved the following result: when the ring R is com-
mutative noetherian and with the property that the character modules of the
Gorenstein injective modules are Gorenstein flat, the class of Gorenstein injective
modules is closed under direct limits, and so it is covering in R-Mod.

By Proposition 5 and [15, Theorem 1], we have the following theorem.

Theorem 2. Let R be a commutative noetherian ring. Assume that the char-
acter modules of Gorenstein injective modules are Gorenstein flat. Then the class
of Gorenstein injective complexes is covering.

Example 1. If the ring R is commutative noetherian with a dualizing complex,
then the class of Gorenstin injective complexes is covering.

Gorenstein injective envelopes of complexes

In [15], we proved that the class of Gorenstein injective modules is enveloping
over a commutative noetherian ring with the property that the character modules
of Gorenstein injective modules are Gorenstein flat. In particular, this shows the
existence of Gorenstein injective envelopes over commutative noetherian rings with
dualizing complexes.

We extend this result to the category of complexes. By GI(C), we denote the
class of Gorenstein injective complexes.

First we prove that if the ring R is noetherian then the class of Gorenstein
injective complexes is enveloping if and only if its left orthogonal class ⊥GI(C) is
covering.

We start with the following result.

Proposition 6. Let R be a left noetherian ring. Then (⊥GI(C),GI(C)) is a
complete hereditary cotorsion pair in the category Ch(R) of complexes ofR-modules.

Proof. By [20], (⊥GI(C),GI(C)) is a complete cotorsion pair whenever R is
any left noetherian ring.

Since the class of Gorenstein injective modules is coresolving in R-Mod, it fol-
lows (by [25, Theorem 8]) that GI(C) is coresolving in Ch(R). By [17, Lemma
2.10], the cotorsion pair (⊥GI(C),GI(C)) is hereditary. �

The following result is proved for modules in [13, Theorem 1.4]. The argument
carries to the category of complexes

Theorem 3. ([13, Theorem 1.4]) Let (L, C) be a hereditary cotorsion pair in
Ch(R). Then the following statements are equivalent:

(1) (L, C) is perfect.
(2) Every complex of R-modules has a C envelope and every C ∈ C has an
L-cover.

(3) Every complex of R-modules has an L-cover and every L ∈ L has a
C-envelope.

Using Theorem 3 and the argument of [15, Proposition 2], we obtain the fol-
lowing theorem.
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Theorem 4. Let R be a left noetherian ring. The following statements are
equivalent:

(1) The cotorsion pair (⊥GI(C),GI(C)) is perfect.
(2) The class GI(C) is enveloping.
(3) The class ⊥GI(C) is covering.

For the following result we recall some definitions from [18].
Given two complexes C and D, let Hom(C,D) = Z(Hom(C,D)). Hom(C,D))

can be made into a complex with Hom(C,D)m the abelian group of morphisms
from C to D[m] and with a boundary operator given by the following: if f ∈
Hom(C,D)m then δm(f) : C → D[m + 1] with δm(f)n = (−1)mδDf

n for any
n ∈ Z.

The right derived functors of Hom(C,D) are denoted Exti(C,D).
We also recall that if C is a complex of right R-modules and D is a complex of

left R-modules then the usual tensor product complex of C and D is the complex
of Z-modules C ⊗. D with (C ⊗. D)n = ⊕t∈Z(Ct ⊗R Dn−t) and differentials

δ(x⊗ y) = δCt (x)⊗ y + (−1)tx⊗ δDn−t(y)

for x ∈ Ct and y ∈ Dn−t.
In [18], Garćıa Rozas introduced another tensor product by the following: if C

is again a complex of right R-modules and D is a complex of left R-modules, then
C ⊗D is defined to be C⊗.D

B(C⊗.D) . Then with the maps

(C ⊗. D)n
Bn(C ⊗. D)

→ (C ⊗. D)n−1
Bn−1(C ⊗. D)

x⊗ y → δC(x)⊗ y, where x⊗ y is used to denote the coset in C⊗.D
B(C⊗.D) , we get a

complex. The right derived functors of the tensor product −⊗− are denoted by
Tori(−,−).

By GF(C), we will denote the class of Gorenstein flat complexes. It is known
that over a two-sided noetherian ring these are the complexes of Gorenstein flat
modules ([10]).

Proposition 7. Let R be a commutative noetherian ring with the property that
the character modules of Gorenstein injective modules are Gorenstein flat. Then
a complex K is in ⊥GI(C) if and only if K+ ∈ GF(C)⊥.

Proof. Given the canonical isomorphism for Ext and Tor ([18, Proposition 2.4.1
and Lemma 5.4.2]) the proof of [15, Lemma 5] applies. �

Now we can prove the following proposition.

Proposition 8. Let R be commutative noetherian and such that the charac-
ter modules of Gorenstein injective modules are Gorenstein flat. Then the class
⊥GI(C) is closed under pure quotients.

Proof. Let 0 → A → B → C → 0 be a pure exact sequence of complexes with
B ∈⊥ GI(C). Then the sequence 0 → C+ → B+ → A+ → 0 is split exact. So
B+ ' A+⊕C+. By Proposition 7, the complex B+ is in GF(C)⊥. It follows that
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both A+ and C+ are in GF(C)⊥. By Proposition 7 again, A and C are both in
⊥GI(C). �

Theorem 5. Let R be a commutative noetherian ring such that the character
modules of Gorenstein injective modules are Gorenstein flat. Then the class of
Gorenstein injective complexes is enveloping in Ch(R).

Proof. By Theorem 4, it suffices to prove that the class ⊥GI(C) is covering. By
Proposition 6, the class ⊥GI(C) is precovering, so it is closed under direct sums.
Since the direct limit of an inductive family is a pure quotient of the direct sum,
by Proposition 8, every direct limit of complexes in ⊥GI(C) is still in ⊥GI(C). It
follows that ⊥GI(C) is covering in Ch(R). �

Corollary 4. If R is a commutative noetherian ring with a dualizing complex,
then every complex of R-modules has a Gorenstein injective envelope.

3. Gorenstein flat and Gorenstein projective
precovers for complexes

We recall the following definition.

Definition 9. ([12, Definition 10.2.1]) A module M is Gorenstein projective
if there is an exact and Hom(−,Proj) exact complex . . . → P1 → P0 → P−1 →
P−2 → . . . of projective modules such that M = Ker(P0 → P−1).

The Gorenstein projective complexes are defined in a similar manner, but work-
ing with resolutions of complexes.

We recall that for two complexes X and Y , Hom(X,Y ) denotes the group of
morphisms of complexes from X to Y .

We also recall that a complex P is projective if the functor Hom(P,−) is exact.
Equivalently, P is projective if and only if P is exact and for each n ∈ Z, Ker(Pn →
Pn−1) is a projective module. For example, if M is a projective module, then the
complex

. . .→ 0→M
Id−→M → 0→ . . .

is projective. In fact, any projective complex is uniquely up to isomorphism the
direct sum of such complexes (one such complex for each n ∈ Z).

By [18], a complex D is called Gorenstein projective if there exists an exact
sequence of complexes

. . .→ P1 → P0 → P−1 → P−2 → . . .

such that

1) for each i ∈ Z, Pi is a projective complex,
2) Ker(P0 → P−1) = D,
3) the sequence remains exact when Hom(−, P ) is applied to it for any pro-

jective complex P .
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In this section we prove the existence of Gorenstein flat covers of complexes
over two sided noetherian rings and the existence of special Gorenstein projective
precovers of complexes over commutative noetherian rings of finite Krull dimen-
sion. This result generalizes and improves [26, Theorem A1] in two directions: on
one side it is established for the category Ch(R) of unbounded complexes, and on
the other hand, we prove that our Gorenstein precover is special. This property
has been shown to be crucial in defining the cofibrant and fibrant replacements in
(abelian) model category structures on Ch(R) (see [21]). We would like to stress
that our methods are necessarily different from those of [26].

We begin by proving the existence of Gorenstein flat precovers and covers over
two sided noetherian rings. The following result improves [10, Theorem 4.3], where
the existence of Gorenstein flat covers is proved under the additional hypothesis
that GF is closed under products.

Proposition 9. Let R be a two sided noetherian ring. The class of Gorenstein
flat complexes is covering in Ch(R).

Proof. By [16, Proposition 2.10], the class of Gorenstein flat modules is Ka-
plansky and closed under direct limits. Then by [27], this class is deconstructible.
By [27, Proposition 4.3], the class of complexes of Gorenstein flat modules is de-
constructible, so it is precovering. But over a two sided noetherian ring a complex
is Gorenstein flat if and only if it is a complex of Gorenstein flat modules ([10,
Lemmas 4.1 and 4.2]). So the class of Gorenstein flat complexes is precovering.
This class of complexes is also closed under direct limits, so it is covering. �

Next, we consider the question of the existence of Gorenstein projective precov-
ers for complexes.

For modules, Enochs and Jenda showed that when R is a Gorenstein ring, the
class of Gorenstein projective modules is precovering. Then Jørgensen showed the
existence of Gorenstein projective precovers over commutative noetherian rings
with dualizing complexes. Recently, Murfet and Salarian extended his result to
commutative noetherian rings of finite Krull dimension.

Their goal in [26] was to introduce a triangulated category of totally acyclic
complexes of flat modules which plays the role of Ktac(ProjR) for any noetherian
ring R (in fact they work in a more general setting, that of complexes of flat
sheaves over noetherian schemes).

To accomplish this they started with a construction developed by Neeman who

defined N(Flat) as the Verdier quotient K(Flat)
Kpac(Flat)

with K(Flat) the homotopy

category of complexes of flat modules and Kpac(Flat) the full subcategory of pure
acyclic complexes in K(Flat) (it is known that a complex of flat modules is pure
acyclic if and only if it is a flat complex in the sense of Garćıa Rozas’ defini-
tion [21]). Then they considered the full subcategory of N(Flat), Ntac(Flat), of
N-totally acyclic complexes of flat modules (i.e., exact and Inj⊗-exact complexes
of flat modules). Their results in [26] indicate that this is the “correct” triangu-
lated category one can use in order to generalize aspects of Gorenstein homological
algebra to schemes.
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We show that when R is noetherian the class of N-totally acyclic complexes of
flat modules is precovering.

In the following we use G̃or Flat to denote, the class of exact complexes F with
Zn(F ) ∈ GF for each n. Since the class of Gorenstein flat modules is Kaplansky

and also closed under direct limits, extensions and retracts, the class G̃or Flat is
covering in Ch(R) (by [21, Theorem 4.12], or see also [16, Corollary 2.11] and

[9, Corollary 3.1]). By [21], its right orthogonal class G̃or Flat
⊥

consists of the

complexes X with each Xn ∈ GF⊥ and such that for any G ∈ G̃or Flat, every
u ∈ Hom(G,X) is homotopic to zero.

Proposition 10. Let R be a noetherian ring. Then the class of N-totally acyclic
complexes of flat modules is precovering in Ch(R).

Proof. Let P be a complex of flat R-modules. Since the class of G̃or Flat com-
plexes is covering, there is an exact sequence

0→ K → F → P → 0

with F ∈ G̃or Flat and with K ∈ G̃or Flat
⊥

. In particular, each module Kn is in
GF⊥.

For each n we have an exact sequence

0→ Kn → Fn → Pn → 0

Since Pn is flat and Kn ∈ GF⊥, the sequence is split exact. So Kn is a direct
summand of Fn, so it is Gorenstein flat. But then Kn ∈ GF

⋂GF⊥ gives that Kn

is flat for each n. Therefore, Fn is flat for each n. So the complex F is N-totally

acyclic. Also, for each N-totally acyclic complex D, we have that D is in G̃or Flat,
so Ext1(D,K) = 0.

Let X be any complex of R-modules. Since the class of exact complexes of flat
modules, dw(Flat)

⋂ E , is precovering ([2, Example 2]), there is an exact sequence

0→ H → P → X → 0

with P an exact complex of flat modules and with H in (dw(Flat)
⋂ E)⊥.

By the above there is an exact sequence

0→ K → F → P → 0

with F an N-totally acyclic complex of flat modules and K ∈ Ntac(Flat)⊥.
We form the commutative diagram
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K K

0 M F X 0

0 H P X 0

�� ��

//

��

//

��

// //

// // // //

So we have an exact sequence

0→M → F → X → 0

with F N-totally acyclic complex of flat modules. Both K and H are
in Ntac(Flat)

⊥, so M also satisfies Ext1(D,M) = 0 for any N-totally
acyclic complex D. �

We recall that over a commutative noetherian ring of finite Krull dimen-
sion d every Gorenstein flat module M has finite Gorenstein projective
dimension, and G.p.dR(M) ≤ d.

We prove now the existence of special Gorenstein projective precovers
in Ch(R) over a commutative noetherian ring R of finite Krull dimen-
sion.

The proof uses the fact that over such a ring R, a complex is Gorenstein
projective if and only if it is a complex of Gorenstein projective R-
modules ([10], Theorem 5.1).

Proposition 11. If R is commutative noetherian of finite Krull di-
mension, then every complex X of R-modules has a special Gorenstein
projective precover.

Proof. Let dim R = d.
- We show first that every Gorenstein flat complex G has a special
Gorenstein projective precover.

Let

0→ G→ Pd−1 → . . .→ P0 → G→ 0

be a partial projective resolution of G. Then for each j we have an
exact sequence of modules

0→ Gj → Pd−1,j → . . .→ P0,j → Gj → 0

So we have an exact sequence

0→M → F → X → 0

with an N-totally acyclic complex F of flat modules. Both K and H are in
Ntac(Flat)⊥, so M also satisfies Ext1(D,M) = 0 for any N-totally acyclic com-
plex D. �

We recall that over a commutative noetherian ring of finite Krull dimension d,
every Gorenstein flat module M has finite Gorenstein projective dimension and
G.p.dR(M) ≤ d.

Now, we prove the existence of special Gorenstein projective precovers in Ch(R)
over a commutative noetherian ring R of finite Krull dimension.

The proof uses the fact that over such a ring R, a complex is Gorenstein pro-
jective if and only if it is a complex of Gorenstein projective R-modules ([10,
Theorem 5.1]).

Proposition 11. If R is commutative noetherian of finite Krull dimension,
then every complex X of R-modules has a special Gorenstein projective precover.

Proof. Let dimR = d.
We show first that every Gorenstein flat complex G has a special Gorenstein

projective precover. Let

0→ G→ Pd−1 → . . .→ P0 → G→ 0

be a partial projective resolution of G. Then for each j, we have an exact sequence
of modules

0→ Gj → Pd−1,j → . . .→ P0,j → Gj → 0

Since Gpd Gj ≤ d it follows that each Gj is Gorenstein projective. Thus G is a

Gorenstein projective complex (by [10, Theorem 5.1]). So G has an exact and
Hom(−,Proj) exact complex of projective complexes

0→ G→ Td−1 → . . .→ T0 → . . .

Let T = Ker(T−1 → T−2). Then T is a Gorenstein projective complex, and we
have a commutative diagram
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Since Gpd Gj ≤ d it follows that each Gj is Gorenstein projective. Thus
G is a Gorenstein projective complex (by [10], Theorem 5.1). So G has
an exact and Hom(−, P roj) exact complex of projective complexes

0→ G→ Td−1 → . . .→ T0 → . . .

Let T = Ker(T−1 → T−2). Then T is a Gorenstein projective complex,
and we have a commutative diagram:

0 G Td−1 · · · T1 T0 T 0

0 G Pd−1 · · · P1 P0 G 0

// //

��

// //

��

//

��

//

��

//

// // // // // // //

Therefore we have an exact sequence:

0→ Td−1 → Pd−1 ⊕ Td−2 → . . .→ P1 ⊕ T0 → P0 ⊕ T δ−→ G→ 0

Let V = Kerδ. Then V has finite projective dimension, soExt1(W,V ) =
0 for any Gorenstein projective complex W .
We have an exact sequence 0 → V → P0 ⊕ T → G → 0 with P0 ⊕ T
Gorenstein projective and with V of finite projective dimension. Thus
P0 ⊕ T → G is a special Gorenstein projective precover.

- We prove now that every complex X has a special Gorenstein projec-
tive precover.

Let X be any complex of R-modules. By Proposition 9, there exists
an exact sequence

0→ Y → G→ X → 0

with G Gorenstein flat and with Ext1(U, Y ) = 0 for any Gorenstein
flat complex U .

By the above, there is an exact sequence

0→ L→ P → G→ 0

Therefore, we have an exact sequence

0→ Td−1 → Pd−1 ⊕ Td−2 → . . .→ P1 ⊕ T0 → P0 ⊕ T δ−→ G→ 0

Let V = Ker δ. Then V has finite projective dimension, so Ext1(W,V ) = 0 for
any Gorenstein projective complex W .

We have an exact sequence 0→ V → P0⊕T → G→ 0 with P0⊕T Gorenstein
projective and with V of finite projective dimension. Thus P0⊕T → G is a special
Gorenstein projective precover.

Now, we prove that every complex X has a special Gorenstein projective pre-
cover.

Let X be any complex of R-modules. By Proposition 9, there exists an exact
sequence

0→ Y → G→ X → 0

with Gorenstein flat G and with Ext1(U, Y ) = 0 for any Gorenstein flat complex U .
By the above, there is an exact sequence

0→ L→ P → G→ 0

with P Gorenstein projective and with the complex L of finite projective dimension.
Form the pullback diagram

GORENSTEIN INJECTIVE, PROJECTIVE AND FLAT (PRE)COVERS 17

with P Gorenstein projective and with L complex of finite projective
dimension.
Form the pullback diagram

L L

0 M P X 0

0 Y G X 0

�� ��

//

��

//

��

// //

// // // //

Since L ∈ GorProj⊥ and Y ∈ GorF lat⊥ and the sequence 0 → L →
M → Y → 0 is exact, it follows that M ∈ GorProj⊥.
So 0 → M → P → X → 0 is exact with P Gorenstein projective and
with M ∈ GorProj⊥

�
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