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EXISTENCE OF POSITIVE SOLUTIONS FOR A NONLINEAR

THREE-POINT BOUNDARY VALUE PROBLEM WITH

INTEGRAL BOUNDARY CONDITIONS

H. DJOURDEM and S. BENAICHA

Abstract. We investigate the existence of positive solutions to the nonlinear third-
order three-point integral boundary value problem

u′′′ (t) + a (t) f (t, u (t)) = 0, 0 < t < T,

u (0) = u′′ (0) = 0, u (T ) = α

∫ η

0
u (s) ds,

where 0 < η < T , 0 < α < 2T
η2

are given constants. We show the existence of

at least one positive solution if f is either superlinear or sublinear by applying
Krasnoselskii’s fixed point theorem in cones.

1. Introduction

Boundary value problems (BVP) of ordinary differential equations arise in kinds
of different areas of applied mathematics and physics. Many authors have stud-
ied extensively two-point, three-point and multi-point boundary value problems
for differential equations, see [1, 6, 9, 13, 15, 17, 18, 21, 22] and the ref-
erences therein. Problems with integral boundary conditions have been used in
the description of many phenomena in the applied sciences, for example, heat
conduction, chemical engineering, underground water flow, and plasma physics.
Benaicha and Haddouchi [2] studied the existence of positive solutions for a non-
linear fourth-order two-point boundary value problem. For second order nonlin-
ear three-point integral boundary-value problem the interested reader can consult
[4, 5, 10, 11, 12, 20]. Third-order boundary value problems BVP with integral
conditions have attracted a lot of attention [3, 7, 16, 19, 23]. Yanping Guo and
Fei Yang [8] considered the following problem:

u′′′ (t) + f (t, u (t) , u′ (t)) = 0, t ∈ [0, 1] ,(1)

u (0) = u′′ (0) = 0, u (1) = α

∫ 1

0

g (t)u (t) dt,(2)
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where f is a nonnegative continuous function depend on the first-order derivatives,
and g ∈ L [0, 1].

In this paper, we extend the results obtained in [5, 20] to third-order prob-
lems. Unlike the reference mentioned above concerning the third-order nonlinear
boundary value problems with integral conditions, we study the existence of pos-
itive solutions on [0, T ], for the BVP

u′′′ (t) + a (t) f (t, u (t)) = 0, 0 < t < T,(3)

u (0) = u′′ (0) = 0, u (T ) = α

∫ η

0

u (s) ds,(4)

where 0 < η < T . The aim of this paper is to give some results for existence of
positive solutions to (3)–(4), assuming that 0 < α < 2T

η2 and f is either superlinear

or sublinear. Set

(5) f0 = lim
u→0+

f (t, u)

u
, f∞ = lim

u→∞

f (t, u)

u
.

Then f0 = 0 and f∞ = ∞ correspond to the superlinear case, and f0 = ∞ and
f∞ = 0 correspond to the sublinear case. By the positive solution of (3)–(4), we
mean that a function u (t) is positive on 0 < t < T and satisfies the problem
(3)–(4).

Throughout this paper, we suppose the following conditions hold:
(H1) f ∈ C ([0, T ]× [0,+∞) , [0,+∞)),

(H2) a ∈ C ([0, T ] , [0,+∞))
and there exists t0 ∈ [η, T ] such that a (t0) > 0.

The proof of the main theorem is based upon an application of the following
Krasnoselskii’s fixed point theorem in a cone.

Theorem 1.1 ([14]). Let E be a Banach space, and let K ⊂ E be a cone.
Assume that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩
(
Ω2 rΩ1

)
→ K

be a completely continuous operator such that
(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.
Then A has a fixed point in K ∩

(
Ω2 rΩ1

)
.

2. Auxiliary results on a linear BVP

In order to prove our main result, we need some auxiliary lemmas. These lemmas
are based on the linear boundary value problem.

Lemma 2.1. Let 2T 6= αη2. Then for y ∈ C ([0, T ] , [0,∞)), the problem

u′′′ (t) + y (t) = 0,(6)

u (0) = u′′ (0) = 0, u (T ) = α

∫ η

0

u (s) ds, η ∈ (0, T ) , α > 0,(7)
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has a unique solution given by

u (t) =
t

2T − αη2

∫ T

0

(T − s)2 y (s) ds− αt

3 (2T − αη2)

∫ η

0

(η − s)3 y (s) ds

− 1

2

∫ t

0

(t− s)2 y (s) ds.

Proof. From equation (6), we have u′′′ (t) = −y (t). Then, integrating from 0
to t, we obtain

u′′ (t) = −
∫ t

0

y (s) ds.

By integrating t ∈ [0, T ] and using integration by parts, we have

u′ (t) = u′ (0)−
∫ t

0

(∫ x

0

y (s) ds

)
dx = u′ (0)−

∫ t

0

(t− s) y (s) ds

(8)

u (t) = u′ (0) t−
∫ t

0

(∫ x

0

(x− s) y (s) ds

)
dx = u′ (0) t− 1

2

∫ t

0

(t− s)2 y (s) ds.

Thus, for t = T , we find

(9) u (T ) = u′ (0)T − 1

2

∫ T

0

(T − s)2 y (s) ds.

Integrating the expression (8), again from 0 to η where η ∈ (0, T ), we obtain

(10)

∫ η

0

u (s) ds =
1

2
u′ (0) η2 − 1

2

∫ η

0

(∫ x

0

(x− s)2 y (s) ds

)
dx

=
1

2
u′ (0) η2 − 1

6

∫ η

0

(η − s)3 y (s) ds.

From (7) and (9), we have∫ η

0

u (s) ds =
1

α
u (T ) = u′ (0)

T

α
− 1

2α

∫ T

0

(T − s)2 y (s) ds.

Then, using (10), we see that

u′ (0)
T

α
− 1

2α

∫ T

0

(T − s)2 y (s) ds =
1

2
u′ (0) η2 − 1

6

∫ η

0

(η − s)3 y (s) ds.

Thus,

u′ (0)

(
2T − αη2

2α

)
=

1

2α

∫ T

0

(T − s)2 y (s) ds− 1

6

∫ η

0

(η − s)3 y (s) ds

or

u′ (0) =
1

(2T − αη2)

∫ t

0

(T − s)2 y (s) ds− α

3 (2T − αη2)

∫ η

0

(η − s)3 y (s) ds.
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Therefore, the boundary value problem (6)–(7) has a unique solution

u (t) =
t

2T − αη2

∫ T

0

(T − s)2 y (s) ds− αt

3 (2T − αη2)

∫ η

0

(η − s)3 y (s) ds

− 1

2

∫ t

0

(t− s)2 y (s) ds. �

The existence of positive solutions of the BVP (6)–(7) is given in the next result.

Lemma 2.2. Let 0 < α < 2T
η2 . If y ∈ C ([0, T ] , [0,+∞)), then the unique

solution of the problem (6)–(7) satisfies u (t) ≥ 0 for t ∈ [0, T ].

Proof. From u′′′ (t) = −y (t), t ∈ [0, T ], we get that u′′ (t) is decreasing on [0, T ].
Then, the condition u′′ (0) = 0 ensures that have u′′ (t) ≤ 0 for t ∈ [0, T ], which
implies u (t) is concave. Observe also that if u (T ) ≥ 0, the concavity of u and the
fact that u (0) = 0 imply that u (t) ≥ 0 for t ∈ [0, T ].

Since the graph of u is concave down (0, T ), we get

(11)

∫ η

0

u (s) ds ≥ 1

2
ηu (η) ,

where 1
2ηu (η) is the area of triangle under the curve u (t) from t = 0 to t = η for

η ∈ (0, T ).
If we assume that u (T ) < 0, then from (7) we have

(12)

∫ η

0

u (s) ds < 0.

By concavity of u and
∫ η
0
u (s) ds < 0, it implies that u (η) < 0.

Hence

u (T ) = α

∫ η

0

u (s) ds >
2T

η2
× 1

2
ηu (η) =

T

η
u (η) ,

which contradicts the concavity of u. �

Lemma 2.3. Let α > 2T
η2 . If y ∈ C ([0, T ] , [0,+∞)), then the problem (6)–(7)

has no positive solution.

Proof. Suppose that the problem (6)–(7) has a positive solution u.
If u (T ) > 0, then

∫ η
0
u (s) ds > 0. It implies that u (η) > 0 and

u (T )

T
=
α

T

∫ η

0

u (s) ds >
2

η2

(
1

2
ηu (η)

)
=
u (η)

η
.

This contradicts the concavity of u.
If u (T ) = 0, then

∫ η
0
u (s) ds = 0, this is u (t) ≡ 0 for all t ∈ [0, η]. If there exists

t0 ∈ (η, T ) such that u (t0) > 0, then u (0) = u (η) < u (t0), which contradicts the
concavity of u. Therefore, no positive solutions exist. �

Lemma 2.4. Let 0 < α < 2T
η2 . If y ∈ C ([0, T ] , [0,+∞)), then the unique

solution of the problem (6)–(7) satisfies

(13) min
t∈[η,T ]

u (t) ≥ γ ‖u‖ , ‖u (t)‖ = max
t∈[0,T ]

|u (t)| ,
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where

(14) γ := min

{
η

T
,
αη2

2T
,
αη (T − η)

2T − αη2

}
.

Proof. Set u (τ) = ‖u‖. We consider three cases.
Case 1. If η ≤ τ ≤ T and mint∈[η,T ] u (t) = u (η), then the concavity of u

implies that
u (η)

η
≥ u (τ)

τ
≥ u (τ)

T
.

Thus,

min
t∈[η,T ]

u (t) ≥ η

T
‖u‖ .

Case 2. If η ≤ τ ≤ T and mint∈[η,T ] u (t) = u (T ), then (7), (11) and the
concavity of u implies

u (T ) = α

∫ η

0

u (s) ds ≥ αη
2

2

[
u (η)

η

]
≥ αη

2

2

[
u (τ)

τ

]
≥ αη2

2T
u (τ) .

Therefore,

min
t∈[η,T ]

u (t) ≥ αη2

2T
‖u‖ .

Case 3. If τ ≤ η ≤ T , then mint∈[η,T ] u (t) = u (T ). Using the concavity of u
and (7), (11), we have

u (τ)− u (T )

τ − T
≥ u (T )− u (η)

T − η
,

(15)

u (τ) ≤ u (T ) +
u (T )− u (η)

T − η
(τ − T ) ,

u (τ) ≤ u (T ) +
u (T )− u (η)

T − η
(0− T )

≤ u (T )

[
1− T

1− 2
αη

T − η

]
= u (T )

[
2T − αη2

αη (T − η)

]
.

This implies that

min
t∈[η,T ]

u (t) ≥ αη (T − η)

2T − αη2
‖u‖ .

This completes the proof. �

3. Existence of positive solutions for the nonlinear BVP

In this section, we state and prove our main results.

Theorem 3.1. Assume (H1) and (H2) hold, and 0 < α < 2T
η2 . Then the

problem (3)–(4) has at least one positive solution in the case
(i) f0 = 0 and f∞ =∞ (superlinear), or

(ii) f0 =∞ and f∞ = 0 (sublinear).
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Proof. From Lemma 2.1, u is a solution to the boundary value problem (3)–(4)
if and only if u is a fixed point of operator A, where A is defined by

(16)

Au (t) =
t

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

− αt

3 (2T − αη2)

∫ η

0

(η − s)3 a (s) f (s, u (s)) ds

− 1

2

∫ t

0

(t− s)2 a (s) f (s, u (s)) ds.

Denote that

K =
{
u : u ∈ C ([0, T ] ,R) , u ≥ 0, min

t∈[η,T ]
u (t) ≥ γ ‖u‖

}
,

where γ is defined in (14).
It is obvious that K is a cone in C ([0, T ] ,R). Moreover, from Lemma 2.2 and

Lemma 2.4, AK ⊂ K. It is also easy to check that A : K → K is completely
continuous.

Superlinear case. f0 = 0 and f∞ =∞. Since f0 = 0, we may choose ρ1 > 0 so
that f (t, u) ≤ εu for 0 < u < ρ1, where ε > 0 satisfies

(17) ε
T

2T − αη2

∫ T

0

(T − s)2 a (s) ds ≤ 1.

Thus, if we let

(18) Ω1 = {u ∈ C ([0, T ] ,R) : ‖u‖ < ρ1} ,
then for u ∈ K ∩ ∂Ω1, we get

Au (t) =
t

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

− αt

3 (2T − αη2)

∫ η

0

(η − s)3 a (s) f (s, u (s)) ds

− 1

2

∫ t

0

(t− s)2 a (s) f (s, u (s)) ds

≤ t

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

≤ ε
t

2T − αη2

∫ T

0

(T − s)2 a (s)u (s) ds

≤ ε
T

2T − αη2
‖u‖

∫ T

0

(T − s)2 a (s) ds ≤ ‖u‖ .

Thus ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1.
Further, since f∞ =∞, there exists ρ̂2 > 0 such that f (t, u) ≥Mu, for u ≥ ρ̂2

where M > 0 is chosen so that

(19)
Mγη

2T − αη2

∫ T

η

(T − s)2 a (s) ds ≥ 1.
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Let ρ2 = max
{

2ρ1,
ρ̂2
γ

}
and Ω2 = {u ∈ C ([0, T ] ,R) : ‖u‖ < ρ2}. Then u ∈

K ∩ ∂Ω2 implies that

(20) min
t∈[η,T ]

u (t) ≥ γ ‖u‖ = γρ2 ≥ ρ̂2,

and so,

Au (η) =
η

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

− αη

3 (2T − αη2)

∫ η

0

(η − s)3 a (s) f (s, u (s)) ds

− 1

2 (2T − αη2)

∫ η

0

(
2T − αη2

)
(η − s)2 a (s) f (s, u (s)) ds

=
η

2T−αη2

∫ T

η

(T − s)2 a (s) f (s, u (s)) ds

+
1

6 (2T−αη2)

∫ η

0

[
6η (T−s)2 − 2αη (η−s)3−6T (η − s)2+3αη2(η−s)2

]
× a (s) f (s, u (s)) ds

≥ η

2T − αη2

∫ T

η

(T − s)2 a (s) f (s, u (s)) ds

+
1

6 (2T − αη2)

∫ η

0

[
6T (η−s)2−2αη (η−s)3−6T (η−s)2+3αη2(η−s)2

]
× a (s) f (s, u (s)) ds

=
η

2T − αη2

∫ T

η

(T − s)2 a (s) f (s, u (s)) ds

+
1

6 (2T − αη2)

∫ η

0

αη (η − s)2 (η + 2s) a (s) f (s, u (s)) ds

≥ η

2T − αη2

∫ T

η

(T − s)2 a (s) f (s, u (s)) ds

≥ ηMγ

2T − αη2
‖u‖

∫ T

η

(T − s)2 a (s) ds ≥ ‖u‖ .

Hence, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2. By the first part of Theorem 1.1, operator A
has a fixed point u in K ∩

(
Ω2 r Ω1

)
such that ρ1 ≤ ‖u‖ ≤ ρ2.

Sublinear case. f0 = ∞ and f∞ = 0. Since f0 = ∞, we may choose ρ3 > 0 so
that f (t, u) ≥ Nu for 0 < u ≤ ρ3, where N > 0 satisfies

(21)
Nγη

2T − αη2

∫ T

η

(T − s)2 a (s) ds ≥ 1.

Let

(22) Ω3 = {u ∈ C ([0, T ] ,R) : ‖u‖ < ρ3} ,
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then for u ∈ K ∩ ∂Ω3, we get

Au (η) =
η

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

− αη

3 (2T − αη2)

∫ η

0

(η − s)3 a (s) f (s, u (s)) ds

− 1

2

∫ η

0

(η − s)2 a (s) f (s, u (s)) ds

≥ η

2T − αη2

∫ T

η

(T − s)2 a (s) f (s, u (s)) ds

≥ ηNγ

2T − αη2

∫ T

η

(T − s)2 a (s) ds ‖u‖ ≥ ‖u‖ .

Thus, ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω3. Now, since f∞ = 0, there exists ρ̂4 > 0 so that
f (t, u) ≤ λu for u ≥ ρ̂4, where λ > 0 satisfies

(23)
λT

2T − αη2

∫ T

0

(T − s)2 a (s) ds ≤ 1.

We consider two cases:
Case 1. Suppose f is bounded. Then, there exists L > 0 such that f (t, u) ≤ L

for all (t, u) ∈ [0, T ] × [0,∞). Choosing ρ4 = max
{

2ρ3,
L
λ

}
. For u ∈ K with

‖u‖ = ρ4, we have

Au (t) =
t

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

− αt

3 (2T − αη2)

∫ η

0

(η − s)3 a (s) f (s, u (s)) ds

− 1

2

∫ t

0

(t− s)2 a (s) f (s, u (s)) ds

≤ t

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

≤ LT

2T − αη2

∫ T

0

(T − s)2 a (s) ds

≤ ρ4
λT

2T − αη2

∫ T

0

(T − s)2 a (s) ds ≤ ρ4,

and consequently, ‖Au‖ ≤ ‖u‖.
Case 2. Suppose f is unbounded, then from condition (H1), there is ρ4 ≥

max
{

2ρ3,
ρ̂4
γ

}
such that

f (t, u) ≤ f (t, ρ4) for u ∈ [0, ρ4] .
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Then for u ∈ K,

Au (t) =
t

2T − αη2

∫ T

0

(T − s)2 a (s) f (s, u (s)) ds

− αt

3 (2T − αη2)

∫ η

0

(η − s)3 a (s) f (s, u (s)) ds

− 1

2

∫ t

0

(t− s)2 a (s) f (s, u (s)) ds

≤ T

2T − αη2

∫ T

0

(T − s)2 f (s, u (s)) a (s) ds

≤ T

2T − αη2

∫ T

0

(T − s)2 f (s, ρ4) a (s) ds

≤ ρ4
λT

2T − αη2

∫ T

0

(T − s)2 a (s) ds ≤ ρ4 = ‖u‖ .

Therefore, in either case we may set

Ω4 = {u ∈ C ([0, T ] ,R) : ‖u‖ < ρ4} ,
and for u ∈ K∩∂Ω4, we may have ‖Au‖ ≤ ‖u‖. By the second part of Theorem 1.1,
operator A has a fixed point u in K ∩

(
Ω4 r Ω3

)
such that ρ3 ≤ ‖u‖ ≤ ρ4. This

completes the sublinear part of the theorem. Therefore, the problem (3)–(4) has
at least one positive solution. �

4. Examples

Example 4.1. Consider the boundary value problem

u′′′ (t) + t3u2 sinh (u) = 0, 0 < t <
3

4
,(24)

u (0) = 0, u′′ (0) = 0, u
(3

4

)
= 20

∫ 1
4

0

u (s) ds.(25)

Set α = 20, η = 1
4 , T = 3

4 , a (t) = t2, f (t, u) = tu2 sinh (u). Clearly, the

conditions (H1) and (H2) are satisfied. We can show that 0 < α = 20 < 24 = 2T
η2 .

Through a simple calculation we can get f0 = 0 and f∞ = ∞. Thus, by the
first part of Theorem 3.1, we can get that the problem (24)–(25) has at least one
positive solution.

Example 4.2. Consider the boundary value problem

u′′′ (t) + et
(√

1 + u+ u
)
t

u2
= 0, 0 < t < 1,(26)

u (0) = 0, u′′ (0) = 0, u (1) = 4

∫ 2
3

0

u (s) ds.(27)

Set α = 4, η = 2
3 , T = 1, a (t) = et, f (t, u) =

(
√
1+u+u)t
u2 = 0. Clearly, the

conditions (H1) and (H2) are satisfied. We can show that 0 < α = 4 < 9
2 = 2T

η2 .
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Through a simple calculation we can get f0 = ∞ and f∞ = 0. Thus, by the
second part of Theorem 3.1, we can get that the problem (26)–(27) has at least
one positive solution.

Acknowledgment. The authors want to thank the anonymous referee for the
throughout reading of the manuscript and several suggestions that help us improve
the presentation of the paper.
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