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MERSENNE, JACOBSTHAL, AND JACOBSTHAL-LUCAS

NUMBERS WITH NEGATIVE SUBSCRIPTS

A. DAŞDEMIR

Abstract. In this paper, we extend the usual Mersenne, Jacobsthal, and Jacob-

sthal-Lucas numbers to their terms with negative subscripts. Many identities for
new forms of these numbers, including Gelin-Cesáro identity, d’Ocagne’s identity,

and some sum formulas are presented. Furthermore, we give certain generating ma-

trices and show how the sums of the presented number sequences can be computed
by employing matrix technique.

1. Introduction

In the current literature, there are many integer sequences that are defined by
a recurrence relation. Fibonacci numbers are one of the most famous sequences.
The recursive sequences have very extensive applications in many sciences, such
as mathematics and psychics. This has recently contributed intense research and
drawn considerable attention to the subject. Today, we have many papers devoted
to investigating such integer sequences, see the monographs in [13, 11, 7] for more
detailed information on the subject.

In this paper, we consider the usual Mersenne, Jacobsthal, and Jacobsthal-
Lucas numbers. In recent days, they have investigated extensively due to their
many applications. For example, the Mersenne numbers {Mn}∞n=0 play a key
role in an investigation on the prime numbers. In the references [10]–[8], certain
important studies listed. Note that the Mersenne numbers are defined by the
recurrence relation

(1) M0 = 0 and Mn+1 = 2Mn + 1 for n > 0.

However, this recurrence relation is inhomogeneous. Equation (1) can be homog-
enized by subtracting two consecutive terms of this sequence as

(2) M0 = 0, M1 = 1 and Mn+1 = 3Mn − 2Mn−1.

Similarly, the usual Jacobsthal {Jn}∞n=0 and Jacobsthal-Lucas {jn}∞n=0 numbers
are defined by recursively

(3) J0 = 0, J1 = 1 and Jn+1 = Jn + 2Jn−1 for n > 0
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and

(4) j0 = 2, j1 = 1 and jn+1 = jn + 2jn−1 for n > 0,

respectively. Another way to obtain the members of the mentioned integer se-
quences is to use their Binet’s formulas. The explicit forms of these formulas are

Mn = 2n − 1,(5)

Jn =
2n − (−1)

n

3
(6)

jn = 2n + (−1)
n
.(7)

In [2], Daşdemir presented the identities

J2
n =

1

3
(J2n + 2(−1)n+1Jn)(8)

j2n = j2n + 2(−1)njn − 2.(9)

In [1], Catarino et al. gave certain correlations between the Mersenne, Jacobsthal,
and Jacobsthal-Lucas sequences as

Mk =

{
3Jk if k is even

jk if k is odd
(10)

Mn
2 = 4n −Mn+1,(11)

n∑
i=1

Mi = Mn+1 − n− 1.(12)

Certain sequences such as Fibonacci, Lucas or Pell numbers are extended to
their terms with negative subscripts. Further, the correlations between both cases
presented. For more details, one can investigate the references in [9, 5]. Note that
in each case, the obtained sequence consists of integers. But, similar investigations
have yet to be made for the Mersenne, Jacobsthal, and Jacobsthal-Lucas numbers.
Hence, there is currently no mathematical model can characterize their terms with
negative subscripts of sequences given in (2)–(4). In this paper, the first attempt
is displayed to fill this gap. In addition, we discover many identities such as Gelin-
Cesáro identity and d’Ocagne’s identity and present sum formulas and generating
matrices for new cases.

2. Mersenne, Jacobsthal, and Jacobsthal-Lucas numbers
with negative subscripts

Now we consider a kth order linear recurrence sequence {un}∞n=0 defined in the
form

un = c1un−1 + c2un−2 + · · ·+ ckun−k for n > 0

with initial terms u0 = r0, u−1 = r1, . . . , u1−k = rk−1 under the two fundamental
assumptions such

(i) ci’s and ri’s are any rational numbers and
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(ii) the polynomial f (x) = xk− c1xk−1−· · ·− ck−1x− ck has exactly k distinct
roots which we denote by λ1, λ2, . . . , λk.

In this case, we can write any term of the sequence un as

(13) un =

k∑
i=1

aiλi
n,

where ai’s are the components of the field Q (λ1, λ2, . . . , λk) defined as ai = p√
D(f)

,

where p is algebraic integer and D(f) denotes the discriminant of the polynomial
f(x). Hence, Equation (13) allows us to extend the sequence un to that with
negative subscripts. Putting vn = u−n for n = 0, 1, 2, . . . , we have

(14) vn+k = −
(ck−1
ck

)
vn+k−1 − · · · −

( c1
ck

)
vn+1 +

1

ck
vn.

Inspired by the above-stated, we introduce negatively subscripted terms of sec-
ond order recurrence sequences given in (2)–(4) now. For combinatorial simplicity,
we introduce new representations

(15) Gn = M−n, Hn = J−n and In = j−n.

For convenience, we recommend to call these the backward Mersenne, Jacobsthal,
and Jacobsthal-Lucas sequences, respectively.

As can be seen from Equations (5)–(7), the usual Mersenne, Jacobsthal, and
Jacobsthal-Lucas sequences provide the above-stated assumptions. Hence, these
sequences can be extended to negative n. Consequently, applying the same ap-
proach in (14) to the sequences considered, we obtain the following recurrence
relations:

G−1 = 1, G0 = 0 and Gn+1 =
3

2
Gn −

1

2
Gn−1,(16)

H−1 = 1, H0 = 0 and Hn+1 =
1

2
Hn −

1

2
Hn−1,(17)

I−1 = 1, I0 = 2 and In+1 =
1

2
In −

1

2
In−1.(18)

As an example what could happen, we can write

G0 = 0,

G1 = −1

2
= −M1

2
,

G2 =
3G1 −G0

2
= −3

4
= −M2

4
,

G3 =
3G2 −G1

2
= −7

8
= −M3

8
,

G4 =
3G3 −G2

2
= −15

16
= −M3

16
,
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G5 =
3G4 −G3

2
= −31

32
= −M5

32
.

This process continues the same as the above with small changes as regularly for
increasing n. Hence, we can write this observation as one of our main goals in the
following theorem.

Theorem 2.1. Let n be any positive integer. Then we have

(19) Gn = −Mn

2n
, Hn =

(−1)n+1

2n
Jn and In =

(−1)n

2n
jn.

Proof. By the Binet’s formula in (5), we can write

Gn = M−n = 2−n − 1 =
1

2n
− 1 = −2n − 1

2n
= −Mn

2n
,

which is the first equation. Other equations can be proved similarly. �

Equations in (19) indicate that although Gn is a sequence that converge to −1,
Hn and In are divergent sequences. However, these new sequences have a lower
and upper bounds.

Now we consider certain properties concerning the backward Mersenne, Jacob-
sthal, and Jacobsthal-Lucas sequences. Note that these properties play key roles
in the proof procedure of some important theorems. Hence, we list them in the
following theorem.

Lemma 2.2. For the backward Mersenne, Jacobsthal, and Jacobsthal-Lucas
sequences, we have

Gn =

{
3Hn if n is even

In if n is odd
(20)

Gn
2 = 1 + 21−nGn+1,(21)

Hn
2 =

1

3

(
−H2n + 21−nHn

)
,(22)

In
2 = I2n + I2n−1 + 21−nIn + 1,(23)

Hn +Hn−1 =
1

2n
,(24)

In + In−1 =
3

2n
,(25)

In +Hn = 2Hn−1,(26)

In −Hn = −4Hn+1(27)

Hn = 2Hn+1 + (−1)
n+1

.(28)
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Proof. By employing (10) after considering the definitions of Gn, Hn and In,
we obtain (20). From the definition of Gn and (11), we can write

Gn
2 =

M2
n

22n
=

4n −Mn+1

22n
= 1− Mn+1

2n+12n−1
.

The last equation gives the proof of (21). Repeating the same steps, (22) and (23)
can be proved. On the other hand, we get

Hn +Hn−1 =
(−1)

n+1

2n
Jn +

(−1)
n

2n−1
Jn−1 =

(−1)
n+1

2n
(Jn − 2Jn−1) ,

and using identity Jn−2Jn−1 = (−1)
n−1

, we obtain (24). The remaining equations
can be proved by using the same procedure. �

Theorem 2.3. For any integer n, we have

(29) GnHn+1 −Gn+1Hn = 2×

{
−Hn if n is even

Hn+1 if n is odd

and

(30) GnIn+1 −Gn+1In =


1

2
In−1 if n is even

2In if n is odd.

Proof. To reduce the size of the paper, we only prove (29). Hence, we can write

GnHn+1 −Gn+1Hn =
(
−Mn

2n

) (−1)
n+2

Jn+1

2n+1
−
(
−Mn+1

2n+1

) (−1)
n+1

2n
Jn

=
(−1)

n+1

22n+1
(MnJn+1 +Mn+1Jn)

=
(−1)

n+1

22n+1

(
(2n−1)

2n+1−(−1)
n+1

3
+
(
2n+1−1

) 2n−(−1)
n

3

)
=

(−1)n+1

322n+1

(
22n+1 − 2n(−1)

n+1 − 2n+1 + (−1)
n+1

+ 22n+1 − 2n+1(−1)
n − 2n + (−1)

n
)

=
(−1)

n+1

2n+13

(
2n+2 − 3 + (−1)

n+1
)

The last equation gives the desired result. �

The next theorems inform us certain special identities such as Catalan’s identity,
Cassini’s identity, d’Ocagne’s identity and Gelin-Cesáro identity for the considered
sequences. Note that some of these identities for the usual Mersenne, Jacobsthal,
and Jacobsthal-Lucas sequences were given by Daşdemir [3, 2], Catarino et al. [1]
and Horadam [6] before.
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Theorem 2.4 (Catalan’s Identities). For any integers n and r, we have

Gn+rGn−r −Gn
2 =

GrMr

2n
,(31)

Hn+rHn−r −Hn
2 =

(−1)
n+r+1

2n−r
Hr

2(32)

In+rIn−r − In2 =
9(−1)

n+r

2n−r
Hr

2.(33)

Proof. By the definition of Gn, we can write

Gn+rGn−r −Gn
2 =

(
−Mn+r

2n+r

)(
−Mn−r

2n−r

)
−
(
−Mn

2n

)2
=

1

22n
(
Mn+rMn−r −Mn

2
)

=
1

22n

[(
2n+r − 1

) (
2n−r − 1

)
− (2n − 1)

2
]

=
1

22n
(
2n+1 − 2n+r − 2n−r

)
= − 1

2n+r
(2r − 1)

2
.

Hence, first equation is obtained. Equations (32) and (33) can be proved in a
similar way. �

When r = 1 in Theorem 2.4, we have Cassini’s identities. They are presented
in the following conclusion.

Corollary 2.5 (Cassini’s Identities). The following equations hold for any n:

Gn+1Gn−1 −Gn
2 = − 1

2n+1
,(34)

Hn+1Hn−1 −Hn
2 =

(−1)
n

2n+1
,(35)

In+1In−1 − In2 =
9(−1)

n+1

2n+1
.(36)

The next theorem gives d’Ocagne’s identity for the backward Mersenne, Jacob-
sthal, and Jacobsthal-Lucas sequences.

Theorem 2.6 (d’Ocagne’s Identities). For any integers m and n, we have

GmGn+1 −Gm+1Gn = −Gm−n

2n+1
,(37)

HmHn+1 −Hm+1Hn =
(−1)

n

2n+1
Hm−n(38)

ImIn+1 − Im+1In =
9(−1)

m

2m+1
Hn−m.(39)

Proof. From Theorem 2.1, we have

GmGn+1 −Gm+1Gn =
(
−Mm

2m

)(
−Mn+1

2n+1

)
−
(
−Mm+1

2m+1

)(
−Mn

2n

)
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=
1

2m+n+1
(MmMn+1 −Mm+1Mn)

=
1

2m+n+1

[
(2m − 1)

(
2n+1 − 1

)
−
(
2m+1 − 1

)
(2n − 1)

]
=

1

2m+n+1

(
2m+1 − 2m − 2n+1 + 2n

)
=

1

2m+n+1
(2m − 2n)

=
1

2m+1

(
2m−n − 1

)
and the result follows. Similarly, the others can be obtained. �

Theorem 2.7 (Gelin-Cesáro Identities). For any integers m and n, we have

Gn
4 −Gn−2Gn−1Gn+1Gn+2 =

Gn+1

2n+2

( 11

2n−1
− 9
)

+
1

2n+1
,(40)

Hn
4 −Hn−2Hn−1Hn+1Hn+2 = (−1)

n+1 Hn
2

2n+2
+

1

22n+3
(41)

In
4 − In−1In−2In+1In+2 = (−1)

n 9In
2

2n+2
+

81

22n+3
.(42)

Proof. To prove the theorem, we consider the cases r = 1 and r = 2 in Theo-
rem 2.4, separately. Clearly, we have

Gn+1Gn−1 −Gn
2 = − 1

2n+1
(43)

Gn+2Gn−2 −Gn
2 =

G2M2

2n
,(44)

respectively. Hence, from Equations (43) and (44), we obtain

Gn+1Gn−1Gn+2Gn−2 =
(
Gn

2 − 1

2n+1

)(
Gn

2 − 9

2n+2
Big)

= Gn
4 −Gn

2 11

2n+2
+

9

2

2n+3

and from (21)

Gn
4 −Gn+1Gn−1Gn+2Gn−2 =

(
1 + 21−nGn+1

) 11

2n+2
− 9

22n+3

= 9
2n+1 − 1

22n+3
+

11Gn+1

22n+1
+

1

2n+1

= −9
Gn+1

2n+2
+

11Gn+1

22n+1
+

1

2n+1
,

which gives (40). Using the same procedure, we can obtain Equations (41) and
(42). �
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One of our main aims is that we give formulas to calculate the sum of terms
of the backward Mersenne, Jacobsthal, and Jacobsthal-Lucas sequences. For this
purpose, we present the next theorem. However, we note that the infinite sum of
these sequences is divergent. This can be seen by employing the divergence test.
Consequently, we consider their finite sums. First of all, we give the following
lemma without the proof.

Lemma 2.8. Let n and r be any integers such that r ≤ n. Then we have

(45) 2n−rMr = Mn −Mn−r.

Theorem 2.9. Let n be a positive integer. Then, we have

(46) Cn =

n∑
i=1

Gi = −Gn − n,

(47) Dn =

n∑
i=1

Hi =

{
−Hn if n is even

1−Hn if n is odd

and

(48) En =

n∑
i=1

Ii =

{
In if n is even

1− In if n is odd.

Proof. We consider (46). By (5), (12) and (45), we can write

n∑
i=1

Gi = −M1

2
− M2

22
− · · · − Mn

2n

= −2n−1M1 + 2n−2M2 + · · ·+Mn

2n

= −Mn −Mn−1 +Mn −Mn−2 + · · ·+Mn

2n

= −
nMn −

n−1∑
i=1

Mi

2n

= −nMn −Mn + n

2n

= −n (2n − 1)−Mn + n

2n

= −n2n −Mn

2n

=
Mn

2n
− n

and the result follows. To prove (47), we use the induction method. For n = 1,
the validity of that is clear. Assume that this holds for any integer. If we can show
that the case holds for n+ 1, then we complete the proof. Depending on whether
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n is an odd integer or an even integer, we have two cases. From our assumption
and (28), we can write

n+1∑
i=1

Hi = Hn+1 +

n∑
i=1

Hi = Hn+1 +

{
−Hn if n is even
1−Hn if n is odd

=

{
Hn+1 −Hn if n is even
1 +Hn+1 −Hn if n is odd

=

{
1−Hn+1 if n is, even
−Hn+1 if n is odd

=

{
−Hn+1 if n+ 1 is even
1−Hn+1 if n+ 1 is odd

So, the desired result is achieved. Applying the same method, the last equation
can be proved. �

3. Matrix Approach

In this section, we investigate generating matrices of the backward Mersenne,
Jacobsthal, and Jacobsthal-Lucas sequences. Now, we consider the recurrence re-
lation given in (16). This equation may also be expressed by the matrix recurrence
relation as

(49) Gn+1 = AGn,

where

(50) Gn =

[
Gn+1 Gn

Gn Gn−1

]
and A =

[
3/2 −1/2
1 0

]
.

If we extend (49) to the left-hand side to deal with terms with large subscripts
simultaneously, then we have

(51) Gn = An−1G1

by an inductive argument. In addition, an auxiliary matrix P is defined as

(52) P =

[
−1/2 0

0 1

]
.

It should be noted that G1 = AP . Consequently, we can write

(53) Gn = AnP

This process can be repeated in the backward Jacobsthal and Jacobsthal-Lucas
sequences. First of all, we introduce the matrices

(54) Hn =

[
Hn+1 Hn

Hn Hn−1

]
and In =

[
In+1 In
In In−1

]
.

Hence, we have

(55) Hn = BnR and In = BnS,
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where

(56) B =

[
−1/2 1/2

1 0

]
, R =

[
1/2 0
0 1

]
and S =

[
−1/2 2

2 1

]
.

Note that the matrix equations given in (53) and (55) have somewhat unfavorable
structures because they are computed by auxiliary matrices. Hence, let us define
new matrices as

(57) Wn =

[
−Gn+1

Gn

2

−Gn
Gn−1

2

]
,

(58) Un =

[
2Hn+1 Hn

2Hn Hn−1

]
and

(59) Vn =

[
2In+1 In
2In In−1

]
.

For simplicity, these matrices can be called the backward Mersenne, Jacobsthal
and, Jacobsthal-Lucas matrices, respectively. Then, we can give the next theorem.

Theorem 3.1. For any positive integer n, we have

(60) Wn = An and Un = Bn.

Proof. We only show the validity of the first equation in (60). The other is
analogous. This is obviously true when n = 1. Let it be true for n = 1, 2, . . . , k.
Hence, we must show that Gk+1 = Ak+1, namely that

Ak+1 = AAk = AGk,

and by the recurrence relation and the product of two matrices, Ak+1 = Gk+1,
which completes the proof. �

It should be noted that to obtain the matrix Vn in (59) consecutively, we cannot
find a generating matrix. However, it is possible to obtain it by using an auxiliary
matrix in the form

(61) T =

[
−1 2
4 1

]
.

Hence, we give the following theorem.

Theorem 3.2. For all positive integers n, we have

(62) Vn = BnT = UnT.

Proof. By employing the rule of matrix multiplication and from (26) and (27),
the proof is completed. �

The matrix method has played an important and effective role stemming from
Number Theory. As an example of the usage of the matrix approach, we can give
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to obtain determinantal identities. Now, we focus on computing (46) and (47). To
do this, we define two matrices in the forms

(63) K =

 1 0 0
1 3

2
−1
2

0 1 0

 =

 1 0 0
1
0 A


and

(64) L =

 1 0 0
1 −1

2
1
2

0 1 0

 =

 1 0 0
1
0 B

 .
Hence, we give the next theorem.

Theorem 3.3. For all positive integers n, we have

(65) Kn =

 1 0 0
−Cn

−Cn−1 Wn


and

(66) Ln =

 1 0 0
2Dn

2Dn−1 Un

 .
Proof. We consider (65). For n = 1, it can be seen that this holds. Assume

that this holds for n = 1, 2, . . . , k. Hence, for n = k + 1, we can write

Kk+1 = KkK =

 1 0 0

−Ck −Gk+1
Gk

2

−Ck−1 −Gk
Gk−1

2

 1 0 0
1 3

2
−1
2

0 1 0


=

 1 0 0

−Ck −Gk+1 − 3
2Gk+1 + Gk

2
Gk+1

2

−Ck−1 −Gk − 3
2Gk + Gk−1

2
Gk

2

 .
This completes the proof. The other can also be proved in a similar way. �

In Conclusion 2.5, we give the Cassini’s formulas for the considered sequences.
Note that these formulas can be obtained by computing the determinants of the
matrix equations in (60) and (62).
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