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DIHEDRAL COVERS OF THE COMPLETE GRAPH K5

M. GHASEMI

Abstract. A regular cover of a connected graph is called dihedral if its transfor-

mation group is dihedral. In this paper, the author classifies all dihedral coverings

of the complete graph K5 whose fibre-preserving automorphism subgroups act arc-
transitively.

1. Introduction

Throughout this paper, we consider finite connected graphs without loops or mul-
tiple edges. For a graph X, every edge of X gives rise to a pair of opposite arcs.
By V(X), E(X), A(X) and Aut(X), we denote the vertex set, the edge set, the arc
set and the automorphism group of the graph X, respectively. The neighborhood
of a vertex v ∈ V(X) denoted by N(v) is the set of vertices adjacent to v in X.
Let a group G act on a set Ω and let α ∈ Ω. We denote by Gα the stabilizer of α
in G, that is, the subgroup of G fixing α. The group G is said to be semiregular
if Gα = 1 for each α ∈ Ω, and regular if G is semiregular and transitive on Ω. A

graph X̃ is called a covering of a graph X with projection p : X̃ → X if there is a

surjection p : V (X̃)→ V (X) such that p|N(ṽ) : N(ṽ)→ N(v) is a bijection for any

vertex v ∈ V(X) and ṽ ∈ p−1(v). The graph X̃ is called the covering graph and

X is the base graph. A covering X̃ of X with a projection p is said to be regular
(or K-covering) if there is a semiregular subgroup K of the automorphism group

Aut(X̃) such that graph X is isomorphic to the quotient graph X̃/K, say by h,

and the quotient map X̃ → X̃/K is the composition ph of p and h (for the purpose
of this paper, all functions are composed from left to right). If K is cyclic, elemen-

tary abelian or dihedral then X̃ is called a cyclic, elementary abelian or dihedral

covering of X, respectively. If X̃ is connected, K is the covering transformation
group. The fibre of an edge or a vertex is its preimage under p. An automorphism

of X̃ is said to be fibre-preserving if it maps a fibre to a fibre while an element of
the covering transformation group fixes each fibre setwise. All of fibre-preserving
automorphisms form a group called the fibre-preserving group.

An s-arc in a graph X is an ordered (s+1)-tuple (v0, v1, . . . , vs) of vertices of X
such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s; in other
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words, a directed walk of length s which never includes a backtracking. A graph
X is said to be s-arc-transitive if Aut(X) is transitive on the set of s-arcs in X.
In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means
arc-transitive or symmetric. An s-arc-transitive graph is said to be s-transitive
if it is not (s + 1)-arc-transitive. In particular, a subgroup of the automorphism
group of a graph X is said to be s-regular if it acts regularly on the set of s-arcs
of X. Also if the subgroup is the full automorphism group Aut(X) of X, then X
is said to be s-regular. Thus, if a graph X is s-regular, then Aut(X) is transitive
on the set of s-arcs and the only automorphism fixing an s-arc is the identity
automorphism of X.

Regular coverings of a graph have received considerable attention. For example,
for a graph X which is the complete graph K4, the complete bipartite graph K3,3,
hypercube Q3 or Petersen graph O3, the s-regular cyclic or elementary abelian
coverings of X, whose fibre-preserving groups are arc-transitive, classified for each
1 ≤ s ≤ 5 [3, 4, 6, 7]. As an application of these classifications, all s-regular
cubic graphs of order 4p, 4p2, 6p, 6p2, 8p, 8p2, 10p, and 10p2 constructed for each
1 ≤ s ≤ 5 and each prime p [3, 4, 6]. In [14], it was shown that all cubic graphs
admitting a solvable edge-transitive group of automorphisms arise as regular covers
of one of the following basic graphs: the complete graph K4, the dipole Dip3
with two vertices and three parallel edges, the complete bipartite graph K3,3, the
Pappus graph of order 18, and the Gray graph of order 54. Also all dihedral
coverings of the complete graph K4 and cubic symmetric graphs of order 2p were
classified in [5, 8]. But apart from the octahedron graph [11], graphs of higher
valencies have not received much attention. For more results see [1, 2, 13, 15]. In
a series of reductions of this kind, the final, irreducible graph is often a complete
graph. Thus studying K5 is the obvious next choice in order to establish a base
of examples for further investigation. All pairwise non-isomorphic connected arc-
transitive p-elementary abelian covers of the complete graph K5 are constructed
in [10]. In this paper all dihedral coverings of the complete graph K5 whose fibre-
preserving automorphism subgroups act arc-transitively are determined. Also we
give a family of 2-arc-transitive graphs.

Let n be a non-negative integer. Let Zn denote the cyclic group of order n and
D2n the dihedral group of order 2n. Set

D2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉.

By {0, 1, 2, 3, 4} denote the vertex set of K5. For n ≥ 3, the graph DK(2n) is
defined to have vertex set

V (DK(2n)) = {0, 1, 2, 3, 4} ×D2n

and edge set

E(DK(2n)) = {(0, c)(3, c), (1, c)(3, c), (1, c)(4, c), (2, c)(4, c), (0, c)(1, bc),
(0, c)(2, a−1bc), (0, c)(4, ac), (1, c)(2, bc), (2, c)(3, ac),

(3, c)(4, a−2bc), (4, c)(0, a−1c) | c ∈ D2n}.
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Note that the first four edges in the edge set E(DK(2n)) correspond with the tree
edges in the spanning tree T as depicted by the dashed lines in Fig. 1 and these four
edges have the common c as the second coordinates. In fact, the graph DK(2n) is
the covering graph derived from a T -reduced voltage assignment φ : A(K5)→ D2n

which assigns the six values b, a−1b, a, b, a−2b, a−1 to the six cotree edges in K5.
The following theorem is the main result of this paper.

Theorem 1.1. Let X̃ be a connected D2n-covering (n ≥ 3) of the complete

graphK5 whose fibre-preserving subgroup is arc-transitive. Then X̃ is arc-transitive

if and only if X̃ is isomorphic to DK(2n) for n ≥ 3.

2. Preliminaries related to coverings

Let X be a graph and K a finite group. By a−1, we mean the reverse arc to
an arc a. A voltage assignment (or K-voltage assignment) of X is a function

φ : A(X) → K with the property that φ(a−1) = φ(a)
−1

for each arc a ∈ A(X).
The values of φ are called voltages and K is the voltage group. The graph X ×φK
derived from a voltage assignment φ : A(X)→ K has a vertex set V (X)×K and
an edge set E(X) ×K, so that an edge (e, g) of X ×φ K joins a vertex (u, g) to
(v, φ(a)g) for a = (u, v) ∈ A(X) and g ∈ K, where e = uv.

Clearly, the derived graph X ×φ K is a covering of X with the first coordinate
projection p : X ×φ K → X which is called the natural projection. By defining

(u, g
′
)g := (u, g

′
g) for any g ∈ K and (u, g

′
) ∈ V (X×φK), K becomes a subgroup

of Aut(X ×φ K) which acts semiregularly on V (X ×φ K). Therefore, X ×φ K
can be viewed as a K-covering. For each u ∈ V (X) and uv ∈ E(X), the vertex
set {(u, g) | g ∈ K} is the fibre of u and the edge set {(u, g)(v, φ(a)g) | g ∈ K} is

the fibre of uv, where a = (u, v). Conversely, each regular covering X̃ of X with
a covering transformation group K can be derived from a K-voltage assignment.
Given a spanning tree T of the graph X, a voltage assignment φ is said to be
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a1a3

a1a1

Figure 1. A choice of the six cotree arcs in K5.
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T-reduced if the voltages on the tree arcs are the identity. Gross and Tucker

[9] showed that every regular covering X̃ of a graph X can be derived from a
T -reduced voltage assignment φ with respect to an arbitrary fixed spanning tree
T of X. It is clear that if φ is reduced, the derived graph X ×φ K is connected if
and only if the voltages on the cotree arcs generate the voltage group K.

Let X̃ be a K-covering of X with a projection p. If α∈ Aut(X) and α̃∈ Aut(X̃)
satisfy α̃p = pα, we call α̃ a lift of α, and α the projection of α̃. Concepts such

as a lift of a subgroup of Aut(X) and the projection of a subgroup of Aut(X̃)
are self-explanatory. The lifts and the projections of such subgroups are of course

subgroups in Aut(X̃) and Aut(X), respectively. In particular, if the covering graph

X̃ is connected, then the covering transformation group K is the lift of the trivial

group, that is K={α̃∈ Aut(X̃): p = α̃p}. Clearly, if α̃ is a lift of α, then Kα̃
consists of all the lifts of α.

Let X ×φK → X be a connected K-covering derived from a T -reduced voltage
assignment φ. The problem whether an automorphism α of X lifts or not can be
grasped in terms of voltages as follows. Observe that a voltage assignment on arcs
extends to a voltage assignment on walks in a natural way. Given α∈ Aut(X), we
define a function ᾱ from the set of voltages on fundamental closed walks based at
a fixed vertex v ∈ V (X) to the voltage group K by

(φ(C))ᾱ = φ(Cα),

where C ranges over all fundamental closed walks at v, and φ(C) and φ(Cα) are
the voltages on C and Cα, respectively. Note that if K is abelian, ᾱ does not
depend on the choice of the base vertex, and the fundamental closed walks at v
can be substituted by the fundamental cycles generated by the cotree arcs of X.

The next proposition is a special case of [12, Theorem 3.5].

Proposition 2.1. Let X ×φK → X be a connected K-covering derived from a
T -reduced voltage assignment φ. Then, an automorphism α of X lifts if and only
if ᾱ extends to an automorphism of K.

Two coverings X̃1 and X̃2 of X with projections p1 and p2, respectively, are

said to be equivalent if there exists a graph isomorphism α̃ : X̃1 → X̃2 such that
α̃p2 = p1. We quote the following proposition.

Proposition 2.2 ([16]). Two connected regular coverings X ×φ K and X ×ψ
K, where φ and ψ are T -reduced, are equivalent if and only if there exists an
automorphism σ∈ Aut(K) such that φ(u, v)σ = ψ(u, v) for any cotree arc(u, v)
of X.

3. Proof of Theorem 1.1

Suppose thatD2n = 〈a, b | an = b2 = 1, b−1ab = a−1〉. If n = 2, thenD4
∼= Z2×Z2.

Now since elementary abelian coverings of the complete graph K5 were classified
by Kuzman [10], we only consider n ≥ 3.

By K5, we denote the complete graph with vertex set {0, 1, 2, 3, 4}. Let T be a
spanning tree of K5 as shown by dashed lines in Figure 2. Let φ be such a voltage
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assignment defined by φ = 1 on T and φ = a0, a1, a2, a3, a4, and b0 on the cotree
arcs (0, 1), (1, 2), (2, 3), (3, 4), (4, 0), and (0, 2), respectively. Let ρ = (01234),
τ = (0132) and σ = (024). Then ρ, τ , and σ are automorphisms of K5.

By i1i2 . . . is denote a directed cycle which has vertices i1, i2, . . . , is in a
consecutive order. There are six fundamental cycles 130, 124, 1423, 134, 1403,
and 13024 in K5 which are generated by the six cotree arcs (0, 1), (1, 2), (2, 3),
(3, 4), (4, 0) and (0, 2), respectively. Each cycle is mapped to a cycle of the same
length under the actions of ρ, τ , σ. We list all these cycles and their voltages
in Table 1 in which C denotes a fundamental cycle of K5 and φ(C) denotes the
voltage of C.

Let X̃ = K5 ×φ D2n be a covering graph of the graph K5 satisfying the hy-
potheses in the theorem, where φ = 1 on the spanning tree T which is depicted
by the dashed lines in Figure 2. Note that the vertices of K5 are labeled by 0, 1,

2, 3, and 4. By the hypotheses, the fibre-preserving group, say L̃, of the cover-
ing graph K5 ×φ D2n acts arc-transitively on K5 ×φ D2n. Hence, the projection

of L̃, say L, is arc-transitive on the base graph K5. Thus L is isomorphic to
AGL(1, 5) = 〈ρ, τ〉, A5 = 〈ρ, σ〉, or S5 = 〈ρ, σ, τ〉. Consider the mapping ρ̄ from
the set {a0, a1, a2, a3, a4, b0} of the voltages of the six fundamental cycles of K5

to the group D2n, defined by (φ(C))ρ̄ = φ(Cρ), where C ranges over the six fun-
damental cycles. From Table 1, one can see that aρ̄0 = a1, aρ̄1 = a2b0, aρ̄2 = b−1

0 a3,
aρ̄3 = a4b0, aρ̄4 = b−1

0 a0 and bρ̄0 = b0. Similarly, we can define σ̄ and τ̄ .

C φ(C) Cρ φ(Cρ)

130 a0 241 a1

124 a1 230 a2b0

1423 a2 2034 b−1
0 a3

134 a3 240 a4b0

1403 a4 2014 b−1
0 a0

13024 b0 24130 b0

Cσ φ(Cσ) Cτ φ(Cτ )

132 a−1
2 a−1

1 321 a−1
2 a−1

1

140 a4a0 304 a−1
4 a−1

3

1043 a−1
0 a−1

4 a−1
3 3402 a3a4b0a2

130 a0 324 a−1
2 a−1

3

1023 a−1
0 b0a2 3412 a3a1a2

13240 a−1
2 a4a0 32104 a−1

2 a−1
1 a−1

0 a−1
4 a−1

3

Table 1. Fundamental cycles and their images with corresponding voltages.

Here we make the following general assumption.
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(I) Let X̃ be a connected D2n-covering (n ≥ 3) of the complete graph K5 whose
fibre-preserving subgroup is arc-transitive.

For the three following lemmas we suppose that n is an odd number.

Lemma 3.1. Suppose that the subgroup of Aut(X̃) generated by ρ and σ, say L,

lifts. Under the assumption (I), X̃ is arc-transitive if and only if X̃ is isomorphic
to DK(6).

Proof. Since ρ, σ ∈ L, Proposition 2.1 implies that ρ̄ and σ̄ can be extended to
automorphisms of D2n. We denote by ρ∗ and σ∗ these extended automorphisms,
respectively. In this case o(a0) = o(a1) = o(a3). Now we consider the following
two subcases:

Subcase I. o(a0) = o(a1) = o(a3) = 2.
By considering aσ

∗

1 = a4a0, we have o(a4a0) = 2. It follows that o(a4) 6= 2.

Since aρ
∗

4 = b−1
0 a0, we have o(b−1

0 a0) 6= 2. So o(b−1
0 ) = 2, and hence o(a2) 6= 2, by

aρ
∗

2 = b−1
0 a3. Now we may assume that a0 = aib, a1 = ajb, a3 = akb, a2 = ar,

a4 = as and b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1 and 0 < r, s ≤ n − 1. Since
Aut(D2n) acts transitively on involutions, by Proposition 2.2 we may assume that
a0 = b, a1 = aib, a3 = ajb, a2 = ar, a4 = as and b0 = akb, where 0 ≤ i, j, k ≤ n−1
and 0 < r, s ≤ n − 1. Also since K5 ×φ D2n is assumed to be connected, D2n =
〈a0, a1, a2, a3, a4, b0〉. Thus we may assume that (t, n) = 1, where t ∈ {i, j, k, r, s}.
Without loss of generality, we may assume that (i, n) = 1 or (r, n) = 1. In
fact, with the same arguments as in other cases we get the same results. First
suppose that (i, n) = 1. Since σ : a 7→ ai, b 7→ b is an automorphism of D2n, by
Proposition 2.2, we may assume that a0 = b, a1 = ab, a3 = aib, a2 = ar, a4 = as,
and b0 = ajb, where 0 ≤ i, j ≤ n− 1 and 0 < r, s ≤ n− 1. From Table 1, one can

see that aρ
∗

0 = bρ
∗

= ab, aρ
∗

1 = (ab)ρ
∗

= aρ
∗
bρ
∗

= ar+jb. Thus aρ
∗

= ar+j−1. By
considering the image of a2 = ar, a4 = as and b0 = ajb under ρ∗, we conclude that
ar(r+j−1) = aj−i, as(r+j−1) = aj and aj(r+j−1)ab = ajb. Also aσ

∗

0 = bσ
∗

= a−r+1b
and aσ

∗

1 = (ab)σ
∗

= aσ
∗
bσ
∗

= asb. Thus aσ
∗

= as+r−1.
Now by considering the image of a2 = ar, a4 = as and b0 = ajb under σ∗, we

conclude that ar(r+s−1) = as−i, as(r+s−1) = a−j+r and aj(s+r−1)a−r+1b = as−rb.
Therefore, we have the following:
(1) r(r + j − 1) = j − i, (2) s(r + j − 1) = j,
(3) j(r + j − 1) = j − 1, (4) j(s+ r − 1) = s− 1,
(5) r(s+ r − 1) = s− i (6) s(s+ r − 1) = −j + r.

By (1) and (3), rj(r + j − 1) = j2 − ij and rj(r + j − 1) = rj − r. Thus
j2−ji = rj−r. Also by (4) and (5), rj(s+r−1) = sr−r and rj(s+r−1) = sj−ij.
Thus sj − ij = sr − r. So j2 − rj = sj − sr, and hence (j − r)(j − s) = 0. Also
by (2) and (3), sj(r + j − 1) = j2 and sj(r + j − 1) = sj − s. Thus j2 = sj − s.
By (j − r)(j − s) = 0, we have j = r or j = s. If j = r, then s2 + sr − s = 0,
by (6). Thus s = 0 or s = −r + 1. If s = 0, then j = 0 by (2). Thus r = 0, a
contradiction. If s = −r + 1, then s = 1 by j(s + r − 1) = s − 1. So r = 0, a
contradiction. If j = s, then by j2 = sj − s, we have s = 0, a contradiction.
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Now suppose that (r, n) = 1. Since σ : a 7→ ar, b 7→ b is an automorphism of
D2n, by Proposition 2.2, we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = a,
a4 = ar and b0 = akb, where 0 ≤ i, j, k ≤ n − 1 and 0 < r ≤ n − 1. From Table

1, one can see that aρ
∗

0 = bρ
∗

= aib, aρ
∗

2 = (a)ρ
∗

= ak−j . By considering the
image of a1 = aib, a3 = ajb, a4 = ar and b0 = akb under ρ∗, we conclude that
ai(k−j)aib = ak+1b, aj(k−j)aib = ar+kb, ar(k−j) = ak and ak(k−j)aib = akb. Also
aσ
∗

0 = bσ
∗

= ai−1b and aσ
∗

2 = (a)σ
∗

= ar−j . Now by considering the image of a1 =
aib, a3 = ajb, a4 = ar and b0 = akb under σ∗, we conclude that ai(r−j)ai−1b = arb,
aj(r−j)ai−1b = b, ar(r−j) = a−k+1 and ak(r−j)ai−1b = ar−1b.

Therefore, we have the following:
(1) i(k − j) + i = k + 1, (2) j(k − j) + i = r + k,
(3) r(k − j) = k, (4) k(k − j) + i = k,
(5) i(r − j) + i− 1 = r, (6) j(r − j) + i− 1 = 0,
(7) r(r − j) = −k + 1, (8) k(r − j) = r − i.

By (2) and (3), rj(k− j) = r2 + rk− ir and rj(k− j) = kj. Thus r2 + rk− ir =
kj. Also by (7) and (8), rk(r − j) = −k2 + k and rk(r − j) = r2 − ir. Thus
−k2 + k = r2 − ir. So kj − rk = −k2 + k, and hence k(j − r + k − 1) = 0. Thus
k = 0 or j = r − k + 1. If k = 0, then i = 0 by (4). Thus by −k2 + k = r2 − ir,
we have r = 0, a contradiction. If j = r − k + 1, then (k − 1)(r + 1) = 0 by (7).
Hence k = 1 or r = −1. If k = 1, then j = r. Now by (6), i = 1, and so by (8),
we have r = 1. So by (5), 1 = 0, a contradiction. If r = −1, then j = −k. Also
by (5), i(r − j + 1) = 0, and so i = 0 or r = j − 1. If i = 0, then by (1), k = −1.
Thus j = 1, and so by (3), 2 = −1. Therefore, n = 3 and

a0 = b, a1 = b, a3 = ab, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄, σ̄ and τ̄ can be extended to automor-
phisms of D2n. Thus by Proposition 2.1, ρ, σ and τ lift. Since S5 = 〈ρ, σ, τ〉 is

2-arc-transitive, it follows that Aut(X̃) contains a 2-arc-transitive subgroup lifted

by 〈ρ, σ, τ〉. Therefore, X̃ is 2-arc-transitive.
Finally, if r = j − 1, then by r = −1, we have j = 0. So by (6), i = 1. Also by

(7), k = 0. Now by (2), 1 = −1, and so n = 2, a contradiction.

Subcase II. o(a0) = o(a1) = o(a3) 6= 2.
By considering aσ

∗

1 = a4a0, we have o(a4a0) 6= 2. It follows that o(a4) 6= 2.

Since aρ
∗

4 = b−1
0 a0, we have o(b−1

0 a0) 6= 2. So o(b−1
0 ) 6= 2, and hence o(a2) 6= 2

by aρ
∗

2 = b−1
0 a3. Now we may assume that a0 = ai, a1 = aj , a2 = ak, a3 = al,

a4 = am and b0 = an, where 0 ≤ i, j, k, l,m, n ≤ n − 1. Since K5 ×φ D2n is
connected, we have a contradiction. �

Lemma 3.2. Suppose that the subgroup of Aut(X̃) generated by ρ and τ , say L,

lifts. Under the assumption (I), X̃ is arc-transitive if and only if X̃ is isomorphic
to DK(2n) for n > 3.

Proof. Since ρ, τ ∈ L, Proposition 2.1 implies that ρ̄ and τ̄ can be extended
to automorphisms of D2n. We denote these extended automorphisms by ρ∗ and
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τ∗, respectively. In this case o(a0) = o(a1). Now we consider the following two
subcases:

Subcase I. o(a0) = o(a1) = 2.
By considering aτ

∗

0 = a−1
2 a−1

1 , we have o(a−1
2 a−1

1 ) = 2. It follows that o(a2) 6= 2.

Since aρ
∗

2 = b−1
0 a3, we have either o(b0) = o(a3) = 2 or o(b0) 6= 2 and o(a3) 6= 2.

First suppose that o(b0) 6= 2 and o(a3) 6= 2. Since aρ
∗

3 = a4b0, we have o(a4) 6= 2.

Also since aρ
∗

4 = b−1
0 a0, it follows that o(a0) 6= 2, a contradiction.

Now suppose that o(b0) = o(a3) = 2. Since aρ
∗

3 = a4b0, it implies that o(a4) 6= 2.
Now we may assume that a0 = aib, a1 = ajb, a3 = akb, a2 = ar, a4 = as and
b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1 and 0 < r, s ≤ n − 1. Since Aut(D2n)
acts transitively on involutions, we may assume that a0 = b, a1 = aib, a3 = ajb,
a2 = ar, a4 = as and b0 = akb, where 0 ≤ i, j, k ≤ n−1 and 0 < r, s ≤ n−1. Since
K5×φD2n is assumed to be connected, D2n = 〈a0, a1, a2, a3, a4, b0〉. Thus we may
assume that (t, n) = 1, where t ∈ {i, j, k, r, s}. Without loss of generality, we may
assume that (i, n) = 1 or (r, n) = 1. In fact, with the same arguments as in other
cases we get the same results. First suppose that (i, n) = 1. Since σ : a 7→ ai, b 7→ b
is an automorphism of D2n, by Proposition 2.2, we may assume that a0 = b,
a1 = ab, a3 = aib, a2 = ar, a4 = as and b0 = ajb, where 0 ≤ i, j ≤ n − 1 and

0 < r, s ≤ n − 1. From Table 1, one can see that aρ
∗

0 = bρ
∗

= ab, aρ
∗

1 = (ab)ρ
∗

=

aρ
∗
bρ
∗

= ar+jb. Thus aρ
∗

= ar+j−1. By considering the image of a2 = ar, a3 = aib
and b0 = ajb under ρ∗, we conclude that ar(r+j−1) = aj−i, ai(r+j−1)ab = as+jb
and aj(r+j−1)ab = ajb. Also aτ

∗

0 = bτ
∗

= a−r+1b, aτ
∗

1 = (ab)τ
∗

= aτ
∗
bτ
∗

= ai−sb.
Thus aτ

∗
= ai−s+r−1. By considering the image of a2 = ar and b0 = ajb under

τ∗, we conclude that ar(i−s+r−1) = ai−s−j+r and aj(i−s+r−1)a−r+1 = a−r+1−s+i.
Therefore, we have the following:
(1) r(r + j − 1) = j − i, (2) i(r + j − 1) + 1 = s+ j,
(3) j(r + j − 1) + 1 = j, (4) r(i− s+ r − 1) = i− s− j + r,
(5) j(i− s+ r − 1) = i− s.

By (4) and (5), (j − r)(i − s + r − 2) = 0. Thus j = r or i − s + r = 2. If
i − s + r = 2, then by (4) j = i − s. Now by (1), r(r + i − s − 1) = −s. So by
considering (4) i + r = j. Thus r = −s by j = i − s. So i = 2s + 2, and hence
j = s+ 2. Now by (2), 1 = 0, a contradiction. If j = r, then r(2r − 1) = r − i by
(1). Also by (3), r(2r − 1) = r − 1. So i = 1, and hence by (2), s = r. Now by
(5), s = r = j = 1. Thus by (1), 1 = 0, a contradiction.

Now suppose that (r, n) = 1. Since σ : a 7→ ar, b 7→ b is an automorphism of
D2n, by Proposition 2.2, we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = a,
a4 = ar and b0 = akb, where 0 ≤ i, j, k ≤ n − 1 and 0 < r ≤ n − 1. From Table

1, one can see that aρ
∗

0 = bρ
∗

= aib, aρ
∗

2 = (a)ρ
∗

= ak−j . By considering the
image of a1 = aib, a3 = ajb, a4 = ar and b0 = akb under ρ∗, we conclude that
ai(k−j)aib = ak+1b, aj(k−j)aib = ak+rb, ar(k−j) = ak and ak(k−j)aib = akb. Also
aτ
∗

0 = bτ
∗

= ai−1b, aτ
∗

2 = aτ
∗

= aj−r−k+1. By considering the image of a1 = aib,
a3 = ajb and b0 = akb under τ∗, we conclude that ai(j−r−k+1)ai−1b = aj−rb,
aj(j−r−k+1)ai−1b = aj−1b and ak(j−r−k+1)ai−1b = ai−1−r+jb.

Therefore, we have the following:
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(1) ik − ij + i = k + 1, (2) jk − j2 + i = r + k,
(3) rk − rj = k, (4) k2 − kj + i = k,
(5) i(j − r − k + 1) + i− 1 = −r + j, (6) j(j − r − k + 1) = j − i,
(7) k(j − r − k + 1) = j − r.

By (6), j2−jr−jk+i = 0. Also by (6) and (7), we have kj(j−r−k+1) = kj−ki
and kj(j− r− k+ 1) = j2− rj. Thus j2− jr = kj− ki. Thus i(k− 1) = 0, and so
i = 0 or k = 1. If i = 0, then by (1), we have k = −1. Also by (4), j = −2. Now
by (2), r = −1. Therefore,

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄ and τ̄ can be extended to automorphisms
of D2n. By Proposition 2.1, ρ and τ lift. Clearly, AGL(1, 5) = 〈ρ, τ〉 is 1-regular.

Thus Aut(X̃) contains a 1-regular subgroup lifted by 〈ρ, τ〉.
Now if k = 1, then by (3) and (4), r − rj = 1 and i − j = 0. Since i = j, it

follows that i(i − r) = −r + 1 by (5). So i2 − ir = −r + 1 = −1 − rj + 1. Thus
i = j = 0, and so r = 1. Now by (2), 2 = 0, a contradiction.

Subcase II. o(a0) = o(a1) 6= 2.
By considering aτ

∗

0 = a−1
2 a−1

1 , we have o(a−1
2 a−1

1 ) 6= 2. It follows that o(a2) 6= 2.

Since aρ
∗

2 = b−1
0 a3, we have either o(b0) = o(a3) = 2 or o(b0) 6= 2 and o(a3) 6= 2.

First suppose that o(b0) = o(a3) = 2. Since aρ
∗

3 = a4b0, it follows that o(a4) 6= 2.

Now by considering aρ
∗

4 = b−1
0 a0, we have o(b−1

0 a0) 6= 2 a contradiction.

Now suppose that o(b0) 6= 2 and o(a3) 6= 2. Since aρ
∗

3 = a4b0, we have o(a4) 6= 2.
Therefore, K5 ×φ D2n is not connected, a contradiction. �

Lemma 3.3. Suppose that the subgroup of Aut(X̃) generated by ρ, σ and τ ,

say L, lifts. Under the assumption (I), X̃ is arc-transitive if and only if X̃ is
isomorphic to DK(2n) for n ≥ 3.

Proof. ρ and σ lift. With the same arguments as in Cubcase I, we have n = 3
and

a0 = b, a1 = b, a3 = ab, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄ σ̄ and τ̄ can be extended to automor-
phisms of D2n. By Proposition 2.1, ρ, σ and τ lift. Also S5 = 〈ρ, σ, τ〉 is 2-arc-

transitive. Thus Aut(X̃) contains a 2-arc-transitive subgroup lifted by 〈ρ, σ, τ〉.
Thus X̃ is 2-arc-transitive. Moreover, ρ and τ lift. With the same arguments as
in Subcase II, we have

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that σ̄ can be extended to automorphisms of
D2n whenever n = 3. Now if n = 3, then by Proposition 2.1, σ lift. Now with the

same arguments as above, X̃ is 2-arc-transitive. �

Now suppose that n is even.
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Lemma 3.4. Suppose that the subgroup of Aut(X̃) generated by ρ and σ, say
L, lifts. Then there is no connected regular covering of the complete graph K5

whose fibre-preserving group is arc-transitive.

Proof. Since ρ, σ ∈ L, Proposition 2.1 implies that ρ̄ and σ̄ can be extended to
automorphisms of D2n. We denote these extended automorphisms by ρ∗ and σ∗,
respectively. In this case o(a0) = o(a1) = o(a3). Now we consider the following
two subcases:

Subcase I. o(a0) = o(a1) = o(a3) = 2.
Since o(a0) = 2, we may assume that a0 = an/2 or a0 6= an/2 and a0 = aib

(0 ≤ i < n). If a0 = an/2, then a1 = a3 = an/2. By Table 1, aσ
∗

1 = a4a0

and aσ
∗

3 = a0. Thus a4 = 1 and so by aρ
∗

4 = b−1
0 a0, we have b0 = an/2. Also

by aρ
∗

2 = b−1
0 a3, we have a2 = 1. Therefore K5 ×φ D2n is not connected, a

contradiction.
Thus we may assume that a0 6= an/2. So a1 6= an/2 and a3 6= an/2. Thus we

may assume that a0 = aib, a1 = ajb and a3 = akb, where 0 ≤ i, j, k < n. By

considering aρ
∗

1 = a2b0, we have one of the following cases:

i) a2 = alb, b0 = at (0 ≤ l < n, 0 < t < n);
ii) a2 = al, b0 = atb (0 < l < n, 0 ≤ t < n).

First suppose that a2 = alb, b0 = at (0 ≤ l < n, 0 < t < n). Since aρ
∗

4 = b−1
0 a0,

we may suppose that a4 = asb, where 0 ≤ s < n. Now since bσ
∗

0 = a−1
2 a4a0, we

have a contradiction. Now suppose that a2 = al, b0 = atb (0 < l < n, 0 ≤ t < n).

Since aρ
∗

4 = b−1
0 a0, we have o(a4) 6= 2 or a4 = an/2. First suppose that o(a4) 6= 2.

Now by Proposition 2.2, we may assume that a0 = aib, a1 = ajb, a3 = akb,
a2 = al, a4 = ak and b0 = atb, where 0 ≤ i, j, k, t ≤ n − 1 and 0 < l, k ≤ n − 1.
Now with the same arguments as in Subcase I, when n is odd, we have

a0 = b, a1 = b, a3 = ab, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄ and σ̄ can be extended to automorphisms
of D2n when n = 3, a contradiction.

Now suppose that a4 = an/2. Now we may assume that a0 = aib, a1 = ajb,
a3 = akb, a2 = ar, a4 = an/2, and b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1 and
0 < r ≤ n−1. Since Aut(D2n) acts transitively on involutions, by Proposition 2.2,
we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = ar, a4 = an/2 and b0 = akb,
where 0 ≤ i, j, k ≤ n − 1 and 0 < r ≤ n − 1. Since K5 ×φ D2n is assumed to
be connected, D2n = 〈a0, a1, a2, a3, a4, b0〉. Thus we may assume that (t, n) = 1,
where t ∈ {i, j, k, r}. Without loss of generality, we may assume that (i, n) = 1 or
(r, n) = 1. In fact, with the same arguments as in other cases we get same results.
First suppose that (i, n) = 1. Since σ : a 7→ ai, b 7→ b is an automorphism of D2n,
by Proposition 2.2, we may assume that a0 = b, a1 = ab, a3 = aib, a2 = ar,
a4 = a(n/2) and b0 = ajb, where 0 ≤ i, j ≤ n − 1 and 0 < r ≤ n − 1. Now with
the same arguments as in Subcase I, when n is odd (by replacing s with (n/2)),
we have a contradiction.
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Now suppose that (r, n) = 1. Since σ : a 7→ ar, b 7→ b is an automorphism of
D2n, by Proposition 2.2, we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = a,
a4 = a(n/2) and b0 = akb, where 0 ≤ i, j, k ≤ n−1. Now by replacing r with (n/2)
in Case I, when n is odd, we have (n/2)(k− j) = k and (n/2)((n/2)− j) = −k+ 1
(see Equations (3) and (7) in Subcase I). So n = 2, a contradiction.

Subcase II. o(a0) = o(a1) = o(a3) 6= 2.
By considering aσ

∗

1 = a4a0, we have o(a4a0) 6= 2. So we have o(a4) 6= 2 or

o(a4) = 2 and a4 = an/2. If o(a4) 6= 2, then o(b−1
0 a0) 6= 2 by aρ

∗

4 = b−1
0 a0. Now

we have o(b0) 6= 2 or o(b0) = 2 and b0 = an/2. If b0 = an/2, then o(a2) 6= 2

by aρ
∗

2 = b−1
0 a3. Therefore, K5 ×φ D2n is not connected, a contradiction. If

o(b0) 6= 2, then by aρ
∗

2 = b−1
0 a3, we have o(a2) 6= 2 or o(a2) = 2 and a2 = an/2.

Thus K5 ×φ D2n is not connected, a contradiction. Finally, if a4 = an/2, then by

considering aρ
∗

3 = a4b0, we have o(b0) 6= 2 or o(b0) = 2 and b0 = an/2. Clearly,

b0 6= an/2 by aρ
∗

3 = a4b0. Thus o(b0) 6= 2, and so by aρ
∗

2 = b−1
0 a3, we have

o(a2) 6= 2 or o(a2) = 2 and a2 = an/2. Therefore, K5 ×φ D2n is not connected, a
contradiction. �

Lemma 3.5. Suppose that the subgroup of Aut(X̃) generated by ρ and τ , say L,

lifts. Under the assumption (I), X̃ is arc-transitive if and only if X̃ is isomorphic
to DK(2n) for n > 3.

Proof. Since ρ, τ ∈ L, Proposition 2.1 implies that ρ̄ and τ̄ can be extended
to automorphisms of D2n. We denote these extended automorphisms by ρ∗ and
τ∗, respectively. In this case o(a0) = o(a1). Now we consider the following two
subcases:

Subcase I. o(a0) = o(a1) = 2.
Since o(a0) = 2, we may assume that a0 = an/2 or a0 6= an/2 and a0 = aib

(0 ≤ i < n). If a0 = an/2, then a1 = an/2. By Table 1, we have aτ
∗

0 = a−1
2 a−1

1

and aρ
∗

1 = a2b0. Therefore, a2 = 1 and b0 = an/2. Also by aρ
∗

2 = b−1
0 a3, we have

a3 = an/2. Now by aρ
∗

3 = a4b0, we have a4 = 1. Thus X̃ is not connected, a

contradiction. Thus we may assume that a0 6= an/2 and a0 = aib. So a1 6= an/2

and so we may assume that a0 = aib, a1 = ajb, where 0 ≤ i, j < n. By considering
aτ
∗

0 = a−1
2 a−1

1 , we have o(a2) 6= 2 or a2 = an/2. First assume that o(a2) 6= 2. Thus

b0 = akb (0 ≤ k < n) by aρ
∗

1 = a2b0. Also since aρ
∗

2 = b−1
0 a3, we have o(a3) = 2 and

a3 = alb (0 ≤ l < n). Finally, since aρ
∗

4 = b−1
0 a0, we have o(a4) 6= 2 or a4 = an/2.

First suppose that a4 = an/2. We have a0 = aib, a1 = ajb, a3 = akb, a2 = ar,
a4 = an/2 and b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1 and 0 < r ≤ n − 1. Since
Aut(D2n) acts transitively on involutions, by Proposition 2.2, we may assume
that a0 = b, a1 = aib, a3 = ajb, a2 = ar, a4 = an/2 and b0 = akb, where

0 ≤ i, j, k ≤ n− 1 and 0 < r ≤ n− 1. Since aρ
∗

4 = b−1
0 a0, we have k = n/2. Now

a4a0 = b0, and so (a4a0)ρ
∗

= bρ
∗

0 . Thus a0 = a1, and so i = 0. We have aρ
∗

0 = aρ
∗

1 .

So a1 = a2b0, and hence r = n/2. Now a2 = a4, and so aρ
∗

2 = aρ
∗

4 . Therefore,
a0 = a3, and hence a3 = b. Now K5 ×φ D2n is not connected a contradiction.
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Now suppose that o(a4) 6= 2. With the same arguments as in Subcase II, when
n is odd, we have

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that ρ̄ and τ̄ can be extended to automorphisms
of D2n. By Proposition 2.1, ρ and τ lift. Also AGL(1, 5) = 〈ρ, τ〉 is 1-regular.

Thus Aut(X̃) contains a 1-regular subgroup lifted by 〈ρ, τ〉.
Now assume that a2 = an/2. Thus b0 = akb (0 ≤ k < n) by aρ

∗

1 = a2b0. Also

since aρ
∗

2 = b−1
0 a3, we have o(a3) = 2 and a3 = alb (0 ≤ l < n). Finally, since

aρ
∗

4 = b−1
0 a0, we have o(a4) 6= 2 or a4 = an/2. First suppose that a4 = an/2.

We have a0 = aib, a1 = ajb, a3 = akb, a2 = a4 = an/2 and b0 = alb, where
0 ≤ i, j, k, l ≤ n − 1. Since aτ

∗

4 = a3a1a2, we have k = j. Also since aτ
∗

2 =
a3a4b0a2, we have l = k = j. Since Aut(D2n) acts transitively on involutions, by
Proposition 2.2, we may assume that a0 = b, a1 = aib, a3 = aib, a2 = a4 = an/2,

and b0 = aib, where 0 ≤ i, j, k ≤ n − 1. Since aρ
∗

4 = b−1
0 a0, we have i = n/2, a

contradiction.
Now suppose that a0 = aib, a1 = ajb, a3 = akb, a2 = an/2, a4 = as and

b0 = alb, where 0 ≤ i, j, k, l ≤ n − 1 and 0 < s ≤ n − 1. Since Aut(D2n) acts
transitively on involutions, we may assume that a0 = b, a1 = aib, a3 = ajb,
a2 = an/2, a4 = as and b0 = akb, where 0 ≤ i, j, k ≤ n − 1 and 0 < s ≤ n − 1.
Since K5 ×φ D2n is assumed to be connected, D2n = 〈a0, a1, a2, a3, a4, b0〉. Thus
we may assume that (t, n) = 1, where t ∈ {i, j, k, s}. Without loss of generality we
may assume that (i, n) = 1 or (s, n) = 1. In fact, with the same arguments the in
other cases we get the same results. First suppose that (i, n) = 1. Therefore, we
may assume that a0 = b, a1 = ab, a3 = aib, a2 = a(n/2), a4 = as, and b0 = ajb,
where 0 ≤ i, j ≤ n−1 and 0 < s ≤ n−1. Now with the same arguments as in Case
II, when n is odd we get a contradiction. Now suppose that (s, n) = 1. Therefore,
we may assume that a0 = b, a1 = aib, a3 = ajb, a2 = an/2, a4 = a and b0 = akb,

where 0 ≤ i, j, k ≤ n − 1. From Table 1, one can see that aρ
∗

0 = bρ
∗

= aib, aρ
∗

4 =

(a)ρ
∗

= ak. By considering the image of a1 = aib, a3 = ajb and a2 = an/2 under
ρ∗, we conclude that aik+ib = a(n/2)+kb, ajk+ib = ak+1b and a(n/2)k = ak−j . Thus,
we have ik+ i = n/2+k, jk+ i = k+1 and (n/2)k = k− j. By (n/2)k = k− j, we
have nk = 2k − 2j. It follows that 2j = 2k. Also aτ

∗
= ajbaiba(n/2) = aj−i+(n/2).

Thus aτ
∗

2 = an/2(j−i+(n/2)) = ajbaakba(n/2) = aj−1−k+(n/2). So, 2j − 2k − 2 = 0
and so 2 = 0, a contradiction.

Subcase II. o(a0) = o(a1) 6= 2.
By considering aτ

∗

0 = a−1
2 a−1

1 , we have o(a−1
2 a−1

1 ) 6= 2. Thus o(a2) 6= 2 or

a2 = an/2. First suppose that o(a2) 6= 2. By considering aρ
∗

2 = b−1
0 a3, we have

one of the following cases:

i) a3 = aib, b0 = ajb (0 ≤ i, j < n);
ii) a3 = ai, b0 = an/2 (0 < i < n);
iii) a3 = an/2, b0 = ai (0 < i < n).
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By aρ
∗

1 = a2b0, we have a contradiction in the first case. Now consider the

second case. Since aρ
∗

3 = a4b0, we have o(a4) 6= 2. Now K5 ×φ D2n is not

connected, a contradiction. Now consider the last case. Since aρ
∗

3 = a4b0, we have
o(a4) 6= 2. Thus K5 ×φ D2n is not connected, a contradiction.

Now suppose that a2 = an/2. By aρ
∗

1 = a2b0, we have o(b0) 6= 2. Also since

aρ
∗

2 = b−1
0 a3, we have o(a3) 6= 2. Finally, since aρ

∗

3 = a4b0, we have o(a4) 6= 2 or

a4 = an/2. Thus K5 ×φ D2n is not connected, a contradiction. �

Lemma 3.6. Suppose that the subgroup of Aut(X̃) generated by ρ, σ and τ ,
say L, lifts. Then there is no connected regular covering of the complete graph K5

whose fibre-preserving group is arc-transitive.

Proof. ρ and σ lift. With the same arguments as in Case I, we have a con-
tradiction. Also ρ and τ lift. With the same arguments as in Subcase II, we
have

a0 = b, a1 = b, a3 = a−2b, a2 = a, a4 = a−1, b0 = a−1b.

From Table 1, it is easy to check that σ̄ can be extended to automorphisms of
D2n whenever n = 3, a contradiction. �

Proof of Theorem 1.1. This follows from Lemmas 3.1, 3.2 , 3.3, 3.4, 3.5 and 3.6.
�
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