SOME RESULTS OF f-BIHARMONIC MAPS

K. ZEGGA

Abstract

In this paper, we introduce the stress f-bienergy tensor $S_{2, f}$ of maps between Riemannian manifols. By using the stress f-bienergy tensor, we obtain some nonexistence results of proper f-biharmonic maps under the assumption $S_{2, f}=0$.

1. Introduction

There are two ways to formalize the link between bi-harmonic maps and f-harmonic maps. The first formalization is that by mimicking the theory of bi-harmonic maps, we can extend the bi-energy functional to f-bi-energy functional and obtain a new type of harmonic maps called bi- f-harmonic maps. This idea was already considered by S. Ouakkas, R. Nasri, and M. Djaa[4].

The second formalization is that by following the concept of f-harmonic map, we can extend the f-energy functional to f-bi-energy functional and obtain another type of harmonic maps called f-bi-harmonic maps as critical points of the f-bienergy functional.[7]
f-harmonic maps and their equations: f-Harmonic maps are critical points of the f-energy functional for maps $\varphi:(M, g) \rightarrow(N, h)$ between Riemannian manifolds

$$
E_{f}(\varphi)=\frac{1}{2} \int_{K} f|\mathrm{~d} \varphi|^{2} v_{g},
$$

where K is a compact domain of M. The Euler-Lagrange equation gives the f-harmonic map equation ([1], [4])

$$
\begin{equation*}
\tau_{f}(\varphi)=f \tau(\varphi)+\mathrm{d} \varphi(\operatorname{grad} f)=0 \tag{1}
\end{equation*}
$$

where $\tau(\varphi)=\operatorname{Tr}_{g} \nabla \mathrm{~d} \varphi$ is the tension field of φ vanishing of which means φ is a harmonic map.
f-biharmonic maps and their equations: f-Biharmonic maps are critical points of the f-bienergy functional for maps $\varphi:(M, g) \rightarrow(N, h)$ between Riemannian manifolds

$$
E_{2, f}(\varphi)=\frac{1}{2} \int_{K} f|\tau(\varphi)|^{2} v_{g}
$$

[^0]where K is a compact domain of M. The Euler-Lagrange equation gives the f-biharmonic map equation ([6])
\[

$$
\begin{equation*}
\tau_{2, f}(\varphi)=f \tau_{2}(\varphi)+(\triangle f) \tau(\varphi)+2 \nabla_{\operatorname{grad} f}^{\varphi} \tau(\varphi)=0 \tag{2}
\end{equation*}
$$

\]

where $\tau(\varphi)$ and $\tau_{2}(\varphi)$ are the tension and bitension fields of φ, respectively.
f-biharmonic maps was introduced in [6], where the author calculated the first variation to obtain the f-biharmonic map equation and the equation for the f-biharmonic conformal maps between the same dimensional manifolds. In this paper, we introduce the stress f-bienergy tensor $S_{2, f}$

$$
\begin{equation*}
S_{2, f}=f S_{2}+\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle g-2 \mathrm{~d} f \odot(\mathrm{~d} \varphi \cdot \tau(\varphi)), \tag{3}
\end{equation*}
$$

where

$$
S_{2}=\frac{1}{2} f|\tau(\varphi)|^{2}+f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle g-2 \nabla \tau(\varphi) \odot \mathrm{d} \varphi
$$

is the stress bi-energy tensor of φ.
Then, by using the stress f-bienergy tensor $S_{2, f}$, we obtain some nonexistence results of proper f-biharmonic maps under the assumption $S_{2, f}=0$.

2. The Euler-Lagrange equation and applications

For a smooth maps $\varphi:(M, g) \rightarrow(N, h)$ between Riemannian manifolds, M compact and orientable, and $f \in \mathcal{C}^{\infty}(M)$ positive. Consider the f-bienergy functional $E_{2, f}$

$$
E_{2, f}: \mathcal{C}^{\infty}(M, N) \rightarrow \mathbb{R}, \quad E_{2, f}(\varphi)=\frac{1}{2} \int_{M} f|\tau(\varphi)|^{2} v_{g}
$$

and a map φ is f-biharmonic if it is a critical point of $E_{2, f}$, that is, for any variation $\left\{\varphi_{t}\right\}$ of $\varphi,\left.\frac{\mathrm{d}}{\mathrm{d} t} E_{2, f}\left(\varphi_{t}\right)\right|_{t=0}=0$.

Given $\varphi: M \rightarrow(N, h)$, consider the functional

$$
F: G \rightarrow \mathbb{R}, \quad F(g)=E_{2, f}(\varphi),
$$

where G is the set of Riemannian metrics on M. As G is an infinite dimensional manifold [3], it admits a tangent space at g, the set of symmetric (0,2)-tensors on M, i.e.,

$$
T_{g} G=C\left(\odot^{2} T^{*} M\right)
$$

For a curve $t \mapsto g_{t}$ in G with $g_{0}=g$, denote by

$$
\omega=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left\{g_{t}\right\} \in T_{g} G
$$

the corresponding variational tensor field which in local coordinates, can be written

$$
\omega=\frac{\partial g_{i j}}{\partial t}(x, 0) \mathrm{d} x^{i} \mathrm{~d} x^{j}=\omega_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

where $g_{t}=g_{i j}(x, t) \mathrm{d} x^{i} \mathrm{~d} x^{j}$, and write $\delta=\left.\frac{\mathrm{d}}{\mathrm{d} t}\right|_{t=0}$ for the first variation.
For a one parameter variation $\left\{g_{t}\right\}$ of g, we have

$$
F\left(g_{t}\right)=\frac{1}{2} \int_{M} f\left|\tau_{t}(\varphi)\right|^{2} v_{g_{t}}
$$

We now compute $\delta\left(F\left(g_{t}\right)\right)$. Differentiating $F\left(g_{t}\right)$ leads to

$$
\begin{equation*}
\delta\left(F\left(g_{t}\right)\right)=\frac{1}{2} \int_{M} f \delta\left(\left|\tau_{t}(\varphi)\right|^{2}\right) v_{g_{t}}+\frac{1}{2} \int_{M} f\left|\tau_{t}(\varphi)\right|^{2} \delta\left(v_{g_{t}}\right) . \tag{4}
\end{equation*}
$$

The calculation of the first term breaks in two Lemmas.
Lemma $2.1([\mathbf{3}])$. The vector field $\xi=(\operatorname{div} \omega)^{\sharp}-\frac{1}{2} \operatorname{grad}\left(\operatorname{trace}_{g} \omega\right)$ satisfies

$$
\delta\left(\left|\tau_{t}(\varphi)\right|^{2}\right)=-2\langle\tau(\varphi) \cdot \nabla \mathrm{d} \varphi, \omega\rangle-2\langle\tau(\varphi), \mathrm{d} \varphi(\xi)\rangle,
$$

where $\tau(\varphi) \cdot \nabla \mathrm{d} \varphi \in C\left(\odot^{2} T^{*} M\right)$ is defined by

$$
(\tau(\varphi) \cdot \nabla \mathrm{d} \varphi)(X, Y)=\langle\tau(\varphi), \nabla \mathrm{d} \varphi(X, Y)\rangle
$$

Lemma 2.2 ([3]). Consider the one-form $\mathrm{d} \varphi \cdot \tau(\varphi) \in \Lambda^{1}(M)$ defined by $\mathrm{d} \varphi \cdot \tau(\varphi)(X)=\langle\mathrm{d} \varphi(X), \tau(\varphi)\rangle$, then

$$
\left.\int_{M} f\langle\tau(\varphi), \mathrm{d} \varphi(\xi))\right\rangle v_{g}=\int_{M}\left\langle-(\operatorname{sym} \nabla \eta)+\frac{1}{2} \operatorname{div}(\eta)^{\sharp} g, \omega\right\rangle v_{g},
$$

where $\eta=f \mathrm{~d} \varphi \cdot \tau(\varphi)$.
Proof. First observe that

$$
\begin{equation*}
\langle\tau(\varphi), \mathrm{d} \varphi(Z)\rangle=\left\langle\mathrm{d} \varphi \cdot \tau(\varphi), Z^{b}\right\rangle \quad \text { for all } Z \in C(T M) \tag{5}
\end{equation*}
$$

then $\eta(Z)=\left\langle\eta, Z^{b}\right\rangle$.
By the definition of ξ, we have

$$
\begin{align*}
\int_{M} f\langle\tau(\varphi), \mathrm{d} \varphi(\xi)\rangle v_{g}= & \int_{M} f\left\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{div} \omega)^{\sharp}\right\rangle v_{g} \\
& -\frac{1}{2} \int_{M} f\left\langle\tau(\varphi), \mathrm{d} \varphi\left(\operatorname{grad}\left(\operatorname{trace}_{g} \omega\right)\right)\right\rangle v_{g} \tag{6}\\
= & \int_{M} \eta\left((\operatorname{div} \omega)^{\sharp}\right) v_{g}-\frac{1}{2} \int_{M} \eta\left(\operatorname{grad}\left(\operatorname{trace}_{g} \omega\right)\right) v_{g}
\end{align*}
$$

so, the first term of the right-hand side of (6) becomes

$$
\begin{align*}
\int_{M} \eta\left((\operatorname{div} \omega)^{\sharp}\right) v_{g} & =\int_{M}\langle\eta, \operatorname{div}(\omega)\rangle v_{g} \\
& =-\int_{M}\langle\operatorname{sym} \nabla \eta, \omega\rangle v_{g}, \tag{7}
\end{align*}
$$

the second term of the right-hand side of (6) can then be written

$$
\begin{align*}
& -\frac{1}{2} \int_{M} \eta\left(\operatorname{grad}\left(\operatorname{trace}_{g} \omega\right)\right) v_{g}=-\frac{1}{2} \int_{M}\left\langle\eta, d\left(\operatorname{trace}_{g} \omega\right)\right\rangle v_{g} \\
& =-\frac{1}{2} \int_{M}\left\langle\eta^{\sharp}, \operatorname{grad}\left(\operatorname{trace}_{g} \omega\right)\right\rangle v_{g}=\frac{1}{2} \int_{M} \operatorname{trace}_{g}(\omega) \operatorname{div}\left(\eta^{\sharp}\right) v_{g} \tag{8}\\
& =\frac{1}{2} \int_{M}\left\langle\operatorname{div}\left(\eta^{\sharp}\right) g, \omega\right\rangle v_{g} .
\end{align*}
$$

The lemma follows from (6), (7), and (8).
This preparation is the key to theorem.

Theorem 2.3. Let $\varphi:(M, g) \rightarrow(N, h)$ be a smooth map, M compact and orientable, $f \in \mathcal{C}^{\infty}(M)$ and $\left\{g_{t}\right\}$ a one-parameter variation of g through Riemannian metrics. Then

$$
\delta\left(F\left(g_{t}\right)\right)=-\frac{1}{2} \int_{M}\left\langle S_{2, f}, \omega\right\rangle v_{g}
$$

where $S_{2, f} \in C\left(\odot^{2} T^{*} M\right)$ is the stress bi-energy tensor given by

$$
\begin{equation*}
S_{2, f}=f S_{2}+\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle g-2 d f \odot(\mathrm{~d} \varphi \cdot \tau(\varphi)) \tag{9}
\end{equation*}
$$

where

$$
S_{2}=\frac{1}{2}|\tau(\varphi)|^{2}+\left\langle\mathrm{d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle g-2 \nabla \tau(\varphi) \odot \mathrm{d} \varphi
$$

is the stress bi-energy tensor of φ.
Proof. Recall that $\delta\left(v_{g_{t}}\right)=\left\langle\frac{1}{2} g, \omega\right\rangle v_{g}$ (see, for example, [5]). Then, by Lemma 2.1, we can rewrite (4)

$$
\begin{align*}
\delta\left(F\left(v_{g_{t}}\right)\right)= & -\int_{M}\langle f(\tau(\varphi) \cdot \nabla \mathrm{d} \varphi), \omega\rangle v_{g}-\int_{M} f\langle\tau(\varphi), \mathrm{d} \varphi(\xi)\rangle v_{g} \tag{10}\\
& \left.+\left.\frac{1}{2} \int_{M}\left\langle\frac{1}{2} f\right| \tau_{t}(\varphi)\right|^{2} g, \omega\right\rangle v_{g}
\end{align*}
$$

By the Lemma 2.2, we obtain

$$
\begin{align*}
\delta\left(F\left(v_{g_{t}}\right)\right)= & \int_{M}\left\langle\operatorname{sym}(\nabla \eta)-\frac{1}{2} \operatorname{div}\left(\eta^{\sharp}\right) g-f(\tau(\varphi) \cdot \nabla \mathrm{d} \varphi), \omega\right\rangle v_{g} \\
& \left.+\left.\frac{1}{2} \int_{M}\left\langle\frac{1}{2} f\right| \tau(\varphi)\right|^{2} g, \omega\right\rangle v_{g} \tag{11}\\
= & \left.\left.\int_{M}\left\langle\frac{1}{4} f\right| \tau(\varphi)\right|^{2} g-f(\tau(\varphi) \cdot \nabla \mathrm{d} \varphi)+\operatorname{sym}(\nabla \eta)-\frac{1}{2} \operatorname{div}\left(\eta^{\sharp}\right) g, \omega\right\rangle v_{g} .
\end{align*}
$$

In another hind, let $p \in M$ and $\left\{e_{i}\right\}_{i=1}^{m}$ a geodesic frame centered on p, then we get

$$
\begin{align*}
\operatorname{div}\left(\eta^{\sharp}\right) & =\sum_{i=1}^{m}\left\langle\nabla_{e_{i}}^{\varphi} \eta^{\sharp}, e_{i}\right\rangle=\sum_{i=1}^{m}\left\langle\left(\nabla_{e_{i}}^{\varphi} \eta\right)^{\sharp}, e_{i}\right\rangle=\sum_{i=1}^{m}\left(\nabla_{e_{i}}^{\varphi} \eta\right)\left(e_{i}\right) \\
& =\sum_{i=1}^{m}\left[e_{i}\left(\eta\left(e_{i}\right)\right)-\eta\left(\nabla_{e_{i}}^{M} e_{i}\right)\right]=\sum_{i=1}^{m}\left[e _ { i } \left(f\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right)\right.\right. \\
& =\sum_{i=1}^{m}\left[e_{i}(f)\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle+f e_{i}\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle\right. \tag{12}\\
& =\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle+\sum_{i=1}^{m} f\left[\left\langle\nabla_{e_{i}}^{\varphi} \tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle+\left\langle\tau(\varphi), \nabla_{e_{i}}^{\varphi} \mathrm{d} \varphi\left(e_{i}\right)\right\rangle\right] \\
& =\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle+f|\tau(\varphi)|^{2}+f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle
\end{align*}
$$

and for the expression $\operatorname{sym}(\nabla \eta)$,

$$
\begin{align*}
\operatorname{sym}(\nabla \eta)\left(e_{i}, e_{j}\right)= & \frac{1}{2}\left[(\nabla \eta)\left(e_{i}, e_{j}\right)+(\nabla \eta)\left(e_{j}, e_{i}\right)\right] \\
= & \frac{1}{2}\left[e_{i}\left(\eta\left(e_{j}\right)\right)-\eta\left(\nabla_{e_{i}}^{M} e_{j}\right)+e_{j}\left(\eta\left(e_{i}\right)\right)-\eta\left(\nabla_{e_{j}}^{M} e_{i}\right)\right] \\
= & \frac{1}{2}\left[e_{i}\left(\eta\left(e_{j}\right)\right)+e_{j}\left(\eta\left(e_{i}\right)\right)\right] \\
= & \frac{1}{2}\left[e_{i}\left(f\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle\right)+e_{j}\left(f\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle\right)\right] \tag{13}\\
= & \frac{1}{2}\left[e_{i}(f)\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle+f\left\langle\nabla_{e_{i}}^{\varphi} \tau(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle\right. \\
& \left.+f\left\langle\tau(\varphi), \nabla_{e_{i}}^{\varphi} \mathrm{d} \varphi\left(e_{j}\right)\right\rangle+e_{j}(f)\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle\right) \\
& \left.+f\left\langle\nabla_{e_{j}}^{\varphi} \tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle+f\left\langle\tau(\varphi), \nabla_{e_{j}} \mathrm{~d} \varphi\left(e_{i}\right)\right\rangle\right] \\
= & (\mathrm{d} f \odot \mathrm{~d} \cdot \tau(\varphi))\left(e_{i}, e_{j}\right)+f\left(\nabla^{\varphi} \tau(\varphi) \odot \mathrm{d} \varphi\right)\left(e_{i}, e_{j}\right) \\
& \quad+f\left(\tau(\varphi) \cdot \nabla^{\varphi} \mathrm{d} \varphi\right)\left(e_{i}, e_{j}\right) .
\end{align*}
$$

By replacing (12) and (13) in (11), we have

$$
\begin{aligned}
& \delta\left(F\left(v_{g_{t}}\right)\right)=\left.\int_{M}\left\langle-\frac{1}{4} f\right| \tau(\varphi)\right|^{2} g-f(\tau(\varphi) \cdot \nabla \mathrm{d} \varphi)+\mathrm{d} f \odot \mathrm{~d} \varphi \cdot \tau(\varphi) \\
&+f \nabla \tau(\varphi) \odot \mathrm{d} \varphi-\frac{1}{2}\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle g-\frac{1}{2} f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle g \\
&+f(\tau(\varphi) \cdot \nabla \mathrm{d} \varphi), \omega\rangle v_{g} \\
&=- \frac{1}{2} \int_{M}\left\langle f\left[\frac{1}{2}|\tau(\varphi)|^{2}+\left\langle\mathrm{d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle+\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle\right] g\right. \\
&-2 \mathrm{~d} f \odot \mathrm{~d} \varphi \cdot \tau(\varphi)-2 f \nabla \tau(\varphi) \odot \mathrm{d} \varphi, \omega\rangle v_{g} .
\end{aligned}
$$

Then

$$
\begin{aligned}
S_{2, f}= & {\left[\frac{1}{2} f|\tau(\varphi)|^{2}+f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle+\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle\right] g } \\
& -2 \mathrm{~d} f \odot \mathrm{~d} \varphi \cdot \tau(\varphi)-2 f \nabla \tau(\varphi) \odot \mathrm{d} \varphi \\
= & f S_{2}+\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle g-2 \mathrm{~d} f \odot(\mathrm{~d} \varphi \cdot \tau(\varphi))
\end{aligned}
$$

Remarks.

1. If $\varphi:(M, g) \rightarrow(N, h)$ is a Riemannian immersion, then

$$
S_{2, f}=f S_{2}
$$

2. If $f=1$, then

$$
S_{2, f}=S_{2}=\left[\frac{1}{2}|\tau(\varphi)|^{2}+\left\langle\mathrm{d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle\right] g-2 \mathrm{~d} \varphi \odot \nabla \tau(\varphi) .
$$

Theorem 2.4. Let $\varphi:(M, g) \rightarrow(N, h)$ be a smooth map, M compact and orientable, $f \in \mathcal{C}^{\infty}(M)$, then

$$
\operatorname{div} S_{2, f}=-\left\langle\tau_{2, f}(\varphi), \mathrm{d} \varphi\right\rangle-\frac{1}{2}|\tau(\varphi)|^{2} \mathrm{~d} f
$$

Proof. Write $S_{2, f}=T_{1}+T_{2}+T_{3}$, where $T_{1}, T_{2}, T_{3} \in C\left(\odot^{2} T^{*} M\right)$ are defined by

$$
\begin{aligned}
& T_{1}(X, Y)=f S_{2}(X, Y) \\
& T_{2}(X, Y)=\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle g(X, Y) \\
& T_{3}(X, Y)=-2(\mathrm{~d} f \odot(\tau(\varphi) \cdot \mathrm{d} \varphi))(X, Y)
\end{aligned}
$$

Let $p \in M$ and $\left\{e_{i}\right\}_{i=1}^{m}$ a geodesic frame centered on p . We have

$$
\begin{align*}
\left(\operatorname{div} T_{1}\right)\left(e_{j}\right)= & \sum_{i=1}^{m} e_{i}\left(T_{1}\left(e_{i}, e_{j}\right)\right)=\sum_{i=1}^{m} e_{i}\left[f S_{2}\left(e_{i}, e_{j}\right)\right] \\
(15) & \sum_{i=1}^{m} e_{i}(f) S_{2}\left(e_{i}, e_{j}\right)+f e_{i} S_{2}\left(e_{i}, e_{j}\right)=S_{2}\left(\operatorname{grad} f, e_{j}\right)+f\left(\operatorname{div} S_{2}\right)\left(e_{j}\right) \tag{15}\\
= & \frac{1}{2}|\tau(\varphi)|^{2} \mathrm{~d} f\left(e_{j}\right)+\left\langle\mathrm{d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle \mathrm{d} f\left(e_{j}\right)-\left\langle\nabla_{e_{j}}^{\varphi} \tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\right\rangle \\
& \quad-\left\langle\nabla_{\operatorname{grad} f} \tau(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle-f\left\langle\tau_{2}(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle,
\end{align*}
$$

whilst

$$
\begin{align*}
\left(\operatorname{div} T_{2}\right)\left(e_{j}\right) & =\sum_{i=1}^{m} e_{i}\left(T_{2}\left(e_{i}, e_{j}\right)\right)=\sum_{i=1}^{m} e_{i}\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle \delta_{i}^{j} \\
& =e_{j}\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle \tag{16}\\
& =\left\langle\nabla_{e_{j}}^{\varphi} \tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\right\rangle+\left\langle\tau(\varphi), \nabla_{e_{j}} \mathrm{~d} \varphi(\operatorname{grad} f)\right\rangle
\end{align*}
$$

and in the same way

$$
\begin{align*}
& \left(\operatorname{div} T_{3}\right)\left(e_{j}\right)=\sum_{i=1}^{m} e_{i}\left(T_{2}\left(e_{i}, e_{j}\right)\right)=\sum_{i=1}^{m} e_{i}\left[-2 \mathrm{~d} f \odot \mathrm{~d} \varphi \cdot \tau(\varphi)\left(e_{i}, e_{j}\right)\right] \tag{17}\\
& =\sum_{i=1}^{m} e_{i}\left[-\mathrm{d} f\left(e_{i}\right)\left\langle\mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle-\mathrm{d} f\left(e_{j}\right)\left\langle\mathrm{d} \varphi\left(e_{i}\right), \tau(\varphi)\right\rangle\right] \\
& =\Delta(f)\left\langle\mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle-\left\langle\nabla_{\operatorname{grad} f}^{\varphi} \mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle-\left\langle\mathrm{d} \varphi\left(e_{j}\right), \nabla_{\operatorname{grad} f}^{\varphi} \tau(\varphi)\right\rangle \\
& -\sum_{i=1}^{m} \operatorname{Hess}(f)\left(e_{i}, e_{j}\right)\left\langle\mathrm{d} \varphi\left(e_{i}\right), \tau(\varphi)\right\rangle-|\tau(\varphi)|^{2} \mathrm{~d} f\left(e_{j}\right)-\left\langle\mathrm{d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle \mathrm{d} f\left(e_{j}\right)
\end{align*}
$$

Summing (15), (16), and (17) gives

$$
\begin{aligned}
\left(\operatorname{div} S_{2, f}\right)\left(e_{j}\right)= & -\frac{1}{2}|\tau(\varphi)|^{2} \mathrm{~d} f\left(e_{j}\right)-2\left\langle\nabla_{\operatorname{grad} f} \tau(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle \\
& -f\left\langle\tau_{2}(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle+\left\langle\tau(\varphi), \nabla_{e_{j}} \mathrm{~d} \varphi(\operatorname{grad} f)\right\rangle \\
& +\Delta(f)\left\langle\mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle-\left\langle\nabla_{\operatorname{grad} f}^{\varphi} \mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle \\
& -\operatorname{trac}_{g} H \operatorname{ess}(f)\left(\cdot, e_{j}\right)\langle\mathrm{d} \varphi(\cdot), \tau(\varphi)\rangle \\
= & -\left\langle f \tau_{2}(\varphi)-\Delta(f) \tau(\varphi)+2 \nabla_{\operatorname{grad} f}^{\varphi} \tau(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle \\
& -\frac{1}{2}|\tau(\varphi)|^{2} \mathrm{~d} f\left(e_{j}\right)+\left\langle\tau(\varphi), \nabla_{e_{j}} \mathrm{~d} \varphi(\operatorname{grad} f)\right\rangle \\
& -\left\langle\nabla_{\operatorname{grad} f}^{\varphi} \mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle-\operatorname{trac}_{g} \operatorname{Hess}(f)\left(\cdot, e_{j}\right)\langle\mathrm{d} \varphi(\cdot), \tau(\varphi)\rangle \\
= & -\left\langle\tau_{2, f}(\varphi), \mathrm{d} \varphi\left(e_{j}\right)\right\rangle-\frac{1}{2}|\tau(\varphi)|^{2} \mathrm{~d} f\left(e_{j}\right)+\left\langle\tau(\varphi), \nabla_{e_{j}} \mathrm{~d} \varphi(\operatorname{grad} f)\right\rangle \\
& -\left\langle\nabla_{\operatorname{grad} f}^{\varphi} \mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle-\operatorname{trac}_{g} \operatorname{Hess}(f)\left(\cdot, e_{j}\right)\langle\mathrm{d} \varphi(\cdot), \tau(\varphi)\rangle .
\end{aligned}
$$

Now, we calculate the term

$$
\begin{align*}
& \left\langle\tau(\varphi), \nabla_{e_{j}} \mathrm{~d} \varphi(\operatorname{grad} f)\right\rangle-\left\langle\nabla_{\operatorname{grad} f}^{\varphi} \mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle \\
& =\left\langle\nabla_{e_{j}} \mathrm{~d} \varphi(\operatorname{grad} f)-\nabla_{\operatorname{grad} f}^{\varphi} \mathrm{d} \varphi\left(e_{j}\right), \tau(\varphi)\right\rangle \\
& =\left\langle\mathrm{d} \varphi\left(\nabla_{e_{j}}^{M} \operatorname{grad} f\right), \tau(\varphi)\right\rangle=\left\langle\mathrm{d} \varphi\left(\nabla_{e_{j}}^{M} e_{k}(f) e_{k}\right), \tau(\varphi)\right\rangle \tag{19}\\
& =\left\langle\mathrm{d} \varphi\left(\operatorname{Hess}(f)\left(e_{j}, e_{k}\right) e_{k}\right), \tau(\varphi)\right\rangle=\operatorname{Hess}(f)\left(e_{j}, e_{k}\right)\left\langle\mathrm{d} \varphi\left(e_{k}\right), \tau(\varphi)\right\rangle \\
& =\operatorname{trace} \operatorname{Hess}(f)\left(e_{j}, \cdot\right)\langle\mathrm{d} \varphi(\cdot), \tau(\varphi)\rangle .
\end{align*}
$$

The theorem follows from (18) and (19).
Remarks.

1) If $f=1$, then $\operatorname{div} S_{2, f}=\operatorname{div} S_{2}$.
2) If f is f-bi-harmonic, then $\operatorname{div} S_{2, f}=-\frac{1}{2}|\tau(\varphi)|^{2} \mathrm{~d} f$.

3. Vanishing of the f-biharmonic stress-Energy tensor

Clearly, from (9), harmonic implies $S_{2, f}=0$, so it is only natural to study the converse. Not $F(g)$ is nonnegative and zero if and only if φ is harmonic. Thus our quest is for critical points $\left(S_{2, f}=0\right)$ which are minima. Before embarking on this problem, observe that ($S_{2, f}=0$) does note en general, imply harmonicity, as illustrated by the non-geodesic curve $\gamma(t)=\mathrm{e}^{t}$ with $f(t)=\mathrm{e}^{-\frac{t}{2}}$. Yet, if we impose arc-length parametrization, we have the following proposition

Proposition 3.1. Let $\gamma: I \subset \mathbb{R} \rightarrow(N, h)$ be a curve parameterized by arclength, assume $S_{2, f}=0$, then γ is geodesic.

Proof. A direct compotation shows

$$
\begin{aligned}
0=S_{2, f}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) & =\frac{1}{2} f|\tau(\gamma)|^{2}-f\left\langle d \gamma\left(\frac{\partial}{\partial t}\right), \nabla_{\frac{\partial}{\partial t}} \tau(\gamma)\right\rangle-f^{\prime}\left\langle\tau(\gamma), d \gamma\left(\frac{\partial}{\partial t}\right)\right\rangle \\
& =\frac{3}{2} f|\tau(\gamma)|^{2}
\end{aligned}
$$

Proposition 3.2. Let $\varphi:\left(M^{2}, g\right) \rightarrow(N, h)$ be a map from surface, and $f \in$ $\mathcal{C}^{\infty}(M)$ positive, then

$$
S_{2, f}=0 \quad \text { implies } \quad \varphi \quad \text { harmonic. }
$$

Proof. Let $\left\{e_{i}\right\}_{i=1}^{2}$, an orthonormal frame around $p \in M$, the trace of $S_{2, f}$ give

$$
\begin{aligned}
& 0= {\left[\frac{1}{2} f|\tau(\varphi)|^{2}+f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle+\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle\right] \sum_{i=1}^{2} g\left(e_{i}, e_{i}\right) } \\
& \quad-2 \sum_{i=1}^{2} \mathrm{~d} f\left(e_{i}\right)\left\langle\mathrm{d} \varphi\left(e_{i}\right), \tau(\varphi)\right\rangle-2 f \sum_{i=1}^{2}\left\langle\nabla_{e_{i}} \tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle \\
&=f|\tau(\varphi)|^{2}+2\langle\mathrm{~d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle+2 f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle \\
& \quad-2\langle\mathrm{~d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle-2 f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle \\
&= f|\tau(\varphi)|^{2},
\end{aligned}
$$

then $\tau(\varphi)=0$, i.e, φ is harmonic.
Proposition 3.3. Let $\varphi:\left(M^{m}, g\right) \rightarrow(N, h)$ be a smooth map, with $m \neq 2$, and $f \in \mathcal{C}^{\infty}(M)$ positive, then $S_{2, f}=0$ if and only if

$$
\begin{equation*}
\frac{1}{2-m} f|\tau(\varphi)|^{2} g-2 \mathrm{~d} f \odot(\mathrm{~d} \varphi \cdot \tau(\varphi))-2 f(\mathrm{~d} \varphi \odot \nabla \tau(\varphi))=0 \tag{20}
\end{equation*}
$$

Proof. Let $\left\{e_{i}\right\}_{i=1}^{2}$ be an orthonormal frame around $p \in M$. We have $S_{2, f}=0$ implies trace $S_{2, f}=0$, so

$$
\begin{aligned}
0= & {\left[\frac{1}{2} f|\tau(\varphi)|^{2}+f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle+\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle\right] \sum_{i=1}^{m} g\left(e_{i}, e_{i}\right) } \\
& -2 \sum_{i=1}^{m} \mathrm{~d} f\left(e_{i}\right)\left\langle\mathrm{d} \varphi\left(e_{i}\right), \tau(\varphi)\right\rangle-2 f \sum_{i=1}^{m}\left\langle\nabla_{e_{i}}^{\varphi} \tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle \\
= & \frac{m}{2} f|\tau(\varphi)|^{2}+m\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle+m f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle \\
& \quad-2\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle-2\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle
\end{aligned}
$$

and then

$$
\begin{equation*}
f\left\langle\mathrm{~d} \varphi, \nabla^{\varphi} \tau(\varphi)\right\rangle=-\langle\tau(\varphi), \mathrm{d} \varphi(\operatorname{grad} f)\rangle-\frac{m}{2(m-2)} f|\tau(\varphi)|^{2} \tag{21}
\end{equation*}
$$

Substituting (21) into the definition of $S_{2, f}$, we obtain

$$
\begin{aligned}
0 & =\frac{1}{2} f|\tau(\varphi)|^{2} g-\frac{m}{2(m-2)} f|\tau(\varphi)|^{2} g-2 \mathrm{~d} f \odot(\mathrm{~d} \varphi \cdot \tau(\varphi))-2 f \mathrm{~d} \varphi \odot \nabla \tau(\varphi) \\
& =\frac{1}{2-m} f|\tau(\varphi)|^{2} g-2 \mathrm{~d} f \odot(\mathrm{~d} \varphi \cdot \tau(\varphi))-2 f \mathrm{~d} \varphi \odot \nabla \tau(\varphi)
\end{aligned}
$$

The converse follows in the same way.
Proposition 3.4. A map $\varphi:\left(M^{m}, g\right) \rightarrow(N, h),(m>2)$, with $S_{2, f}=0$ and rank $\varphi \leq m-1$ is harmonic, where $f \in \mathcal{C}^{\infty}(M)$ positive.

Proof. We take $p \in M$. Since $\operatorname{rank} \varphi(p) \leq m-1$, there exists a unit vector field $X_{p} \in \operatorname{kerd} \varphi$. Then for $X=Y=X_{p}$, (20) becomes
$\frac{1}{2-m} f|\tau(\varphi)|^{2} g\left(X_{p}, X_{p}\right)-2 \mathrm{~d} f\left(X_{p}\right)\left\langle\mathrm{d} \varphi\left(X_{p}\right), \tau(\varphi)\right\rangle-2 f\left\langle\mathrm{~d} \varphi\left(X_{p}\right), \nabla_{X_{p}}^{\varphi} \tau(\varphi)\right)=0$, hence $\tau(\varphi)=0$.

Corollary 3.1. Let $\varphi:\left(M^{m}, g\right) \rightarrow\left(N, h^{n}\right)$ be a submersion $\left.(m\rangle n\right)$. If $S_{2, f}=0$, then φ is harmonic.

Theorem 3.1. A map $\varphi:\left(M^{m}, g\right) \rightarrow\left(N, h^{n}\right),(m \neq 4)$, with $S_{2, f}=0, M$ compact and orientable, is harmonic.

Proof. We have $S_{2, f}=0$, then

$$
\begin{align*}
0= & \operatorname{trace} S_{2, f}=\frac{m}{2} f|\tau(\varphi)|^{2}+(m-2)\langle\mathrm{d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle \tag{22}\\
& +(m-2) f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle
\end{align*}
$$

and integrating over M, we get

$$
\begin{align*}
0= & \frac{m}{2} \int_{M} f|\tau(\varphi)|^{2} v_{g}+(m-2) \int_{M}\langle\mathrm{~d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle v_{g} \tag{23}\\
& +(m-2) \int_{M} f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle v_{g} .
\end{align*}
$$

For the term $(m-2) \int_{M} f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle v_{g}$, we have

$$
\begin{align*}
\int_{M} f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle v_{g}= & \int_{M} f\left\langle\mathrm{~d} \varphi\left(e_{i}\right), \nabla_{e_{i}} \tau(\varphi)\right\rangle v_{g} \\
= & \int_{M}\left(f e_{i}\left\langle\mathrm{~d} \varphi\left(e_{i}\right), \tau(\varphi)\right\rangle-f|\tau(\varphi)|^{2}\right) v_{g} \\
= & \left.-\int_{M} f|\tau(\varphi)|^{2}\right) v_{g}+\int_{M} \nabla_{e_{i}}^{\varphi}\left\langle\mathrm{d} \varphi\left(e_{i}\right), f \tau(\varphi)\right\rangle v_{g} \tag{24}\\
& -\int_{M}\langle\mathrm{~d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle v_{g}
\end{align*}
$$

Consider a one form $\eta=\langle\mathrm{d} \varphi, f \tau(\varphi)\rangle$, then, as M is compact, we have

$$
\int_{M} \nabla_{e_{i}}^{\varphi}\left\langle\mathrm{d} \varphi\left(e_{i}\right), f \tau(\varphi)\right\rangle v_{g}=\int_{M} \operatorname{div}(\eta) v_{g}=0
$$

then, we can rewrite (23)

$$
\begin{equation*}
0=\frac{4-m}{2} \int_{M} f|\tau(\varphi)|^{2} v_{g} \tag{25}
\end{equation*}
$$

As f positive and $m \neq 4, \varphi$ is harmonic.
Proposition 3.5. A Riemannian immersion $\varphi:(M, g) \rightarrow(N, h)$ with $S_{2, f}=0$, $m \neq 4$, is minimal.

Proof. φ is Riemannian immersion, then $\langle\mathrm{d} \varphi, \nabla \tau(\varphi)\rangle=0$ and $S_{2, f}=0$ implies

$$
\begin{aligned}
0 & =\operatorname{trace} S_{2, f} \\
& =\frac{m}{2} f|\tau(\varphi)|^{2}+(m-2) f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle \\
& =\frac{m}{2} f|\tau(\varphi)|^{2}+(m-2) f\left\langle\nabla_{e_{i}}^{\varphi} \tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle \\
& =\frac{m}{2} f|\tau(\varphi)|^{2}+(m-2) f e_{i}\left\langle\tau(\varphi), \mathrm{d} \varphi\left(e_{i}\right)\right\rangle-f(m-2)|\tau(\varphi)|^{2} \\
& =\frac{m}{2} f|\tau(\varphi)|^{2}-f(m-2)|\tau(\varphi)|^{2} \\
& =\frac{4-m}{2} f|\tau(\varphi)|^{2}
\end{aligned}
$$

as f is positive and $m \neq 4, \varphi$ is minimal.
The next result introduces integral conditions ensuring that $S_{2, f}=0$ reveals harmonicity. First we cite Yau's version of Stokes theorem.

Lemma $3.2([8])$. Let $\left(M^{m}, g\right)$ be a complete Riemannian manifold and ω a smooth integrable $(m-1)$-form defined on M. Then there exists a sequence of domains B_{i} in M such that $M=\bigcup_{i} B_{i}, B_{i} \subset B_{i+1}$, and $\lim _{i \rightarrow \infty} \int_{B_{i}} d \omega=0$.

Theorem 3.3. Let $\left(M^{m}, g\right), m \neq 4$ be an orientable complete Riemannian manifold and $\varphi:\left(M^{m}, g\right) \rightarrow(N, h)$ a map with $S_{2, f}=0$, where $f \in \mathcal{C}^{\infty}(M)$ positive function. If $\int_{M} f\left|(\mathrm{~d} \varphi \cdot \tau(\varphi))^{\sharp}\right| v_{g}\langle\infty$ then φ is harmonic.

Proof. For $m=2$, this follows from Proposition (3.2), so now assume $m \neq 2$. We have

$$
\begin{aligned}
\operatorname{trace} S_{2, f}= & \frac{m}{2} f|\tau(\varphi)|^{2}+(m-2)\langle\mathrm{d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle \\
& +(m-2) f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle=0
\end{aligned}
$$

then

$$
\begin{equation*}
f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle=\frac{-m}{2(m-2)} f|\tau(\varphi)|^{2}-\langle\mathrm{d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle \tag{26}
\end{equation*}
$$

and from (12), we get

$$
\begin{equation*}
\operatorname{div}(f \mathrm{~d} \varphi \cdot \tau(\varphi))^{\sharp}=f|\tau(\varphi)|^{2}+\langle\mathrm{d} \varphi(\operatorname{grad} f), \tau(\varphi)\rangle+f \operatorname{trace}\langle\mathrm{~d} \varphi, \nabla \tau(\varphi)\rangle \tag{27}
\end{equation*}
$$

replacing (26) in (27), we obtain

$$
\operatorname{div}(f \mathrm{~d} \varphi \cdot \tau(\varphi))^{\sharp}=\frac{m-4}{2(m-2)} f|\tau(\varphi)|^{2},
$$

and this results in

$$
\frac{m-4}{2(m-2)} f|\tau(\varphi)|^{2} v_{g}=\operatorname{div}(X) v_{g}=d\left(i_{X} v_{g}\right)
$$

where $X=(f \mathrm{~d} \varphi \cdot \tau(\varphi))^{\sharp}$. We now apply Lemma (3.2) to $\omega=i_{X} v_{g}$. To compute the norm of ω, choose $p \in M$ and a local normal chart $\left(U, x^{k}\right)_{k=1}^{m}$ around p

$$
v_{g(p)}=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{m}, \quad\left(i_{X}(p) v_{g}\right)_{i \ldots \hat{k} \ldots m}=(-1)^{k+1} \xi^{k}
$$

So

$$
|\omega|(p)=\left|i_{X} v_{g}\right|^{2}(p)=\sum_{i_{1}, \ldots, i_{m}=1}^{m}\left(i_{X}(p) v_{g}\right)_{i_{1}, \ldots, i_{m}}=(m-1)!|X|^{2}(p)
$$

Now,

$$
\int_{M}|X| v_{g}=\int_{M}\left|(f \mathrm{~d} \varphi \cdot \tau(\varphi))^{\sharp}\right| v_{g}<\infty,
$$

so ω is integrable. By Lemma (3.2), we get

$$
\lim _{i \rightarrow \infty} \int_{B_{i}} d \omega v_{g}=\frac{m-4}{2(m-2)} \lim _{i \rightarrow \infty} \int_{B_{i}} f|\tau(\varphi)|^{2} v_{g}=0
$$

hence φ is harmonic.
Corollary 3.2. Let $(M, g), m \neq 4$, be an orientable complete Riemannian manifold and $\varphi:(M, g) \rightarrow(N, h)$ a map with finite energy and bienergy. If $S_{2, f}=$ 0 , then φ is harmonic.

Theorem 3.4. A non-minimal Riemannian immersion $\varphi:\left(M^{4}, g\right) \rightarrow(N, h)$ satisfies $S_{2, f}=0$ if and only if it is pseudo-umbilical.

Proof. First note that for a Riemannian immersion, $S_{2, f}(X, Y)=0$ reduces to

$$
\begin{equation*}
\frac{1}{2} f|\tau(\varphi)|^{2} g(X, Y)=2 f\langle\tau(\varphi), B(X, Y)\rangle \tag{28}
\end{equation*}
$$

$B=\nabla \mathrm{d} \varphi$ being its second fundamental form. Recall that a Riemannian immersion is pseudo-umbilical if and only if its shape operator A satisfies

$$
A_{\tau(\varphi)}=\frac{1}{m}|\tau(\varphi)|^{2} I,
$$

equivalently,

$$
\langle B(X, Y), \tau(\varphi)\rangle=\frac{1}{m}|\tau(\varphi)|^{2} g(X, Y)
$$

Comparing it with (28) ends the proof.

References

1. Course N., f-harmonic maps, Thesis, University of Warwick, Coventry, CV4 7AL, UK, 2004.
2. Djaa M., Cherif A. M., Zegga K. and Ouakkas S., On the generalized of harmonic and bi-harmonic maps, Int. Electron. J. Geom. 5(1) (2012), 90-100.
3. Loubeau E., Montaldo S. and Oniciuc C., The stress-energy tensor for biharmonic maps, Math. Z. 259 (2008), 503-524.
4. Ouakkas S., Nasri R. and Djaa M., On the f-harmonic and f-biharmonic maps, J. Geom.Topol. 10(1) (2010), 11-27.
5. Petersen P., Riemannian Geometry, Springer-Verlag, 1998.
6. Wei-Jun Lu, On f-Biharmonic maps between Riemannian manifolds, arXiv:1305.5478, preprint, 2013.
7. W-Jun Lu, On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds, Sci. China Math. 58(7) (2015), 1483-1498.
8. Yau S. T., Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670.
9. Zegga K., Djaa M. and Cherif A. M., On the f-biharmonic maps and submanifolds, Kyungpook Math. J. 55(1) (2015), 157-68.
K. Zegga, Mascara University, Faculty Science and technology, Algeria,
e-mail: zegga.kadour@univ-mascara.dz

[^0]: Received June 6, 2017; revised February 22, 2018.
 2010 Mathematics Subject Classification. Primary 35R35, 49M15, 49N50.
 Key words and phrases. f-harmonic maps f-biharmonic maps stress-energy tensor.
 The author would like to thank the reviewers for their useful remarks and suggestions.

