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SOME RESULTS OF f-BIHARMONIC MAPS

K. ZEGGA

ABSTRACT. In this paper, we introduce the stress f-bienergy tensor Sa r of maps be-
tween Riemannian manifols. By using the stress f-bienergy tensor, we obtain some
nonexistence results of proper f-biharmonic maps under the assumption Sa y = 0.

1. INTRODUCTION

There are two ways to formalize the link between bi-harmonic maps and f-harmon-
ic maps. The first formalization is that by mimicking the theory of bi-harmonic
maps, we can extend the bi-energy functional to f-bi-energy functional and obtain
a new type of harmonic maps called bi- f-harmonic maps. This idea was already
considered by S. Ouakkas, R. Nasri, and M. Djaa[4].

The second formalization is that by following the concept of f-harmonic map,
we can extend the f-energy functional to f-bi-energy functional and obtain another
type of harmonic maps called f-bi-harmonic maps as critical points of the f-bi-
energy functional.[7]

f-harmonic maps and their equations: f-Harmonic maps are critical points
of the f-energy functional for maps ¢: (M, g) — (N, h) between Riemannian man-
ifolds

1
Bi(e) =3 [ flde,

where K is a compact domain of M. The Euler-Lagrange equation gives the
f-harmonic map equation ([1], [4])

(1) 5(p) = f7(p) + dp(grad f) = 0,
where 7(p) = Try Vdy is the tension field of ¢ vanishing of which means ¢ is a
harmonic map.

f-biharmonic maps and their equations: f-Biharmonic maps are critical
points of the f-bienergy functional for maps ¢: (M,g) — (N,h) between Rie-
mannian manifolds

Fasle) =5 [ Ir@)Po,
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where K is a compact domain of M. The Euler-Lagrange equation gives the
f-biharmonic map equation ([6])

(2) 72.1(0) = [72(0) + (AS)7(9) + 2V g y7(0) = O,

where 7(p) and 72(p) are the tension and bitension fields of ¢, respectively.

f-biharmonic maps was introduced in [6], where the author calculated the
first variation to obtain the f-biharmonic map equation and the equation for the
f-biharmonic conformal maps between the same dimensional manifolds. In this
paper, we introduce the stress f-bienergy tensor Ss s

(3) Sa. g = fS2+ (1(p),de(grad f))g — 2df © (dg - 7(v)),
where
S2 = 31O + F{de, VoT(p))g — 29r(p) 0 dg

is the stress bi-energy tensor of .
Then, by using the stress f-bienergy tensor Sy r, we obtain some nonexistence
results of proper f-biharmonic maps under the assumption Ss y = 0.

2. THE EULER-LAGRANGE EQUATION AND APPLICATIONS

For a smooth maps ¢: (M, g) — (N, h) between Riemannian manifolds, M com-
pact and orientable, and f € C*°(M) positive. Consider the f-bienergy functional
Es ¢

1
Bay: COLN) SR, Easlo)=3 [ flrto)lPu,

and amap ¢ is f-biharmonic if it is a critical point of F f, that is, for any variation
{oi} of o, LB f(01)]t=0 = 0.
Given ¢: M — (N, h), consider the functional
F:G =R, F(g) =Ezz(p),

where G is the set of Riemannian metrics on M. As G is an infinite dimensional
manifold [3], it admits a tangent space at g, the set of symmetric (0,2)-tensors on
M, i.e.,
T,G = C(&*T*M).
For a curve t — g; in G with gy = g, denote by

d
= — e T,G,
w dt t:O{gt} g
the corresponding variational tensor field which in local coordinates, can be written
90 o o
w= gzj (x,0)dz'dz? = w;jda'da’,

where g, = g;;(z,t)dz'dz?, and write § = & |,_o for the first variation.
For a one parameter variation {g;} of g, we have

Flo) =5 [ TP
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We now compute §(F(g;)). Differentiating F'(g:) leads to

(4) / Follr) Py + 5 [ Tl Potwg,).

The calculation of the first term breaks in two Lemmas.
Lemma 2.1 ([3]). The vector field ¢ = (divw)* — 1 grad(tracey w) satisfies
3(Ime()?) = =2(1() - Vdip,w) — 2(7 (), dp(€)),
where T(p) - Vdp € C(@*T*M) is defined by
(7(p) - V@) (X, Y) = (7(), Vdp(X, Y)).

Lemma 2 2 ([8]). Consider the one-form dy - 7(¢) € AY(M) defined by
dep - 7(0)(X) = (dp(X), 7(¢p)), then
/ (T (€))v, = / (= (symVn) + 1div(n)ﬁg whv
Vg M 9 ’ g

where n = fdp - 7(p).
Proof. First observe that
(5) (T(¢),dp(2)) = (dp - 7(9), Z°)  forall Z € C(TM),

then n(Z) = (n, 2°).
By the definition of £, we have

/Mf<T( dp(€))v, = / Fir(), de(dive)yu,
-1 / F(r(¢), dp(grad trace, w)))v,
- /Mn«divw)ﬂ)vg ~ 3 /. nterad(trace, ),

so, the first term of the right-hand side of (6) becomes
[ @iy, = [ (v @),
M M

= —/ (sym Vn,w)vg,
M

the second term of the right-hand side of (6) can then be written

1 1
- f/ n(grad(trace, w))vy = —f/ (n, d(traceyw))vy
M ' ) 2 )y ‘ '

(6)

(7)

2
1 # 1 . #
(8) =-3 M(n ,grad(traceqw))vg = 5 Mtraceg(w)dlv(n Vg
1
= */ (div(*)g, w)vg.
2J/m
The lemma follows from (6), (7), and (8). O

This preparation is the key to theorem.
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Theorem 2.3. Let ¢: (M, g) = (N,h) be a smooth map, M compact and ori-
entable, f € C°(M) and {g+} a one-parameter variation of g through Riemannian

metrics. Then

5(P(@) = 5 [ (Saphvy.

where Sz, ; € C(®*T*M) is the stress bi-energy tensor given by

9) Sa. ;= fS2+ (1(p),de(grad f))g — 2df © (de - 7(¢))
where
82 = (@) + {de, Vor(p)hg — 297 (o) © dp,

is the stress bi-energy tensor of .
Proof. Recall that §(v,,) = (1 g, w)v, (see, for example, [5]). Then, by Lemma 2.1,

2
we can rewrite (4)

5(F(vy,)) = — /M
+3 [ (G0,

By the Lemma 2.2, we obtain

S(F () = [

M
1

() +3 [ (5rr@Paw)e,

= [ (317(@)Pg ~ F(r(e) - V) + sym(Vn) - 3div(af)g. vy,
M

(F(r() - V), w)vy — / Fir(e), dp(€))v,
(10) M

(sym(Vn) — Sdiv(nf)g — F(r(o) - V), whu

In another hind, let p € M and {e;}!", a geodesic frame centered on p, then
we get

m m

(Ve e = 3 ((VEDhe) = Y (VEm)(ed)

[es(n(es)) = n(Velen] = D lei(f(r(p), dp(er)

i=1

lei(f){(T(p),dep(ei)) + fei(T(p), dp(es))

div(n®) =

i

I

«
Il
-

_
N
|

o
Il
N

= (1), dp(grad ) + D fI(VET(p),dp(ed) + (7(0), VE dp(ey))]
i=1

= (1(¢), dg(grad f)) + fIT()|* + f(de, VZT(p))
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and for the expression sym(Vn),

sym(Vn)eise5) = 3[(Va)(erres) + (Ve )]
1

= 5[61'(77(63‘))—U(Vé\fej)+€j(77(€i))—U(Vé\fe‘)]

Lestnes)) + 5 (n(ex))]

T2
(13) = 5lei(f(r(0), dp(e;)) + € (F(7(p), dip(ei)))]

= S 1ei(1) (7). diles)) + FVE 7))
+ 1r(9), VEdg(e) + (1) r(), diole)
+ IV () dplen)) + F(r(e), Ve dip(en))]
= (] © g (p)) (e ) + F(T97(2) © dp) i)

+ f(r(p) - VZdp)(ei, €;).
By replacing (12) and (13) in (11), we have
(@) = [ (=110~ r(4)- Td) + df 0 dp - 7(0)

+ 19r(0) © i — 5 (r(p), dilarad f))g — 3 fldp, Vor(p))g

(14) + f(r() - Vdg), w)vg
- _% /M <f[%|7(90)|2 + (dp, VET(p)) + (7). dp(erad ) | g

—2df @ dp-7(p) — 2fVT(p) © d(p,w>vg.
Then
Sas = [SIIF (@ + 7de, T97()) + { (o), delgrad )] g
—2df ©de-7(p) —2fVT(p) ®dyp

= fS2 + (1(p),dp(grad f))g — 2df © (dp - 7(p)). O

Remarks.
1. If ¢: (M, g) — (N, h) is a Riemannian immersion, then

Sa,r = fSa.

2. If f=1, then

Ss = S = [T + (dp, Vr(e))]g — 24 © Tr (o)
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Theorem 2.4. Let ¢: (M,g) — (N,h) be a smooth map, M compact and
orientable, f € C*(M), then

. 1
div Sy, 5 = —(r2,5(), dp) = 57 (¢)[*df.

Proof. Write So ; =Ty + Ts + T3, where T1,T5,T5 € C(®*T*M) are defined
by

Ti(X,Y) = fSy(X,Y),
T2(X,Y) = (1(p), dp(grad f))g(X,Y),
T3(X,Y) = =2(df © (1(p) - dp)) (X, Y).

Let p € M and {e;}, a geodesic frame centered on p. We have

(divTh)(ej) = ZBZ (T (es,€5)) 261 fSa(ei, e;)]
i=1

i=1

=
3

(15) = > ei(f)Sa(ei ej) + feiSa(ei, ej) = Sa(gradf, e;) + f(diviSz)(e;)

1

.
Il

() Pdf (e;) + {dp, VI (0))df(e5) — (VE 7(10). dy(grad f))

- <vgradf7—(§0), d@(ej» — f(m2(p), dgo(ej»,

l\J\H

whilst

(divTs)(ej) = Z%(Tz(ei €;)) Zez ), dp(grad f))o?
=1 i=1

(16) e;(1(0), d(grad f))

= (VZ (), dp(grad f)) + (r(¢), Ve, dp(grad f))

and in the same way
(17)

(divTs)( Z ei(Ta(ei, €5)) Z ei[—2df © do.7(v)(ei, ;)]
i=1

=1

I
Ms

eil—df(ei)(dp(e;), () — df(e;)(dew(es), 7(9))]
){de(e;), 7(9)) = (Vigraa pdep(€5), T(9)) = (dep(€5), Viraa 7())

fZHess (eq,e5){dp(eq), 7()) — IT(@)[*df (e5) — (g, VE7())df (e;)-

[
: B
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Summing (15), (16), and (17) gives

(diVS2,f)(€j) = _%lT(W)Pdf(ej) - 2<vgradf7—(<p)7d(p(e‘)>
— Fna(p).dp(e;)) + (7(0), V., dip(erad £)
T+ AU AP(es), () — (Vg sdieles) ()
— trac, Hess(f)( ;) (de(-), 7())
(18) — —(fral) = AF)T(R) + 2V 0 7(0), ()
— S @IPA(eg) + (7). Ve, dg(arad 1)
— (V% pdiole), 7)) — trac, Hess(f)( ¢;)(d (), 7(¢))
~{ra,5(),dg(e) — 3T (@)PAS(e5) + (), Ve, dplarad £)
— (V% o pdole), 7)) — trac, Hess(f)(, ;) (de (), 7().

Now, we calculate the term
(7(9), Ve, dp(grad f)) — (Vgq pdele;), 7(0))

= (Ve,dp(grad f) — V7 ;dp(e;), 7(9))
(19) = (de(Ve] grad f), 7()) = < (VMek(f)ek)aT(SD»
(dep(Hess(f)(ej. ex)er), T()) = Hess(f)(e;, ex) (de(ex), T(¢))
= trace Hess(f)(e;,-)(de(-), ( )>
The theorem follows from (18) and (19). O

Remarks.
1) If f=1, then diVSQ)f = divS,.
2) If f is f-bi-harmonic, then divSs ;= —1|7(p)[?df.

3. VANISHING OF THE f—BIHARMONIC STRESS-ENERGY TENSOR

Clearly, from (9), harmonic implies Sz y = 0, so it is only natural to study the
converse. Not F'(g) is nonnegative and zero if and only if ¢ is harmonic. Thus
our quest is for critical points (S2 y = 0) which are minima. Before embarking on
this problem, observe that (S2 s = 0) does note en general, imply harmonicity, as
illustrated by the non-geodesic curve v(t) = e with f(t) = e~ 2. Yet, if we impose
arc-length parametrization, we have the following proposition

Proposition 3.1. Let v: I C R — (N,h) be a curve parameterized by arc-
length, assume So ¢ = 0, then 7y is geodesic.

Proof. A direct Compotation shows

0= 505 (5 0) = 2 flr(0P — F(r (). Vo))~ £ (0. dv(5))

= ST 0
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Proposition 3.2. Let ¢: (M?,g) — (N,h) be a map from surface, and f €
C>®(M) positive, then

So s =0 1implies ¢ harmonic.

Proof. Let {e;}?_,, an orthonormal frame around p € M, the trace of Sy ; give
2
1
0= [ffw )2+ £de, V27(9)) + (7(¢), di(grad ) > glesed)
—2de (e:)(dg(e;), T —2fz (Ve, (), de(e

i=1
= fI7(9)|* + 2{dy(grad f), 7(¢)) + 2f<d% Ver(e))
— 2(dp(gradf), 7(p)) — 2f(dp, V¥7(p))
= flr(@),
then 7(p) =0, i.e, ¢ is harmonic. O

i)

Proposition 3.3. Let ¢: (M™, g) — (N, h) be a smooth map, with m # 2, and
f € C>®(M) positive, then Sa,; = 0 if and only if

(20) ﬁflf(%))l% —2df © (dp.7(p)) = 2f(dp © VT(p)) =0

Proof. Let {e;}?_, be an orthonormal frame around p € M. We have S ; = 0
implies trace Sy ¢ =0, so

- [1f\7<w>|2+f<dso,w< )+ (r(e >dso<gradf>>}2 (eir)
i=1

m

— 23" df(en)(depler), T —QfZ o(e:))

=1

= TR + m(r(p), dp(erad ) +mf(dp, V()

= 2(7(p), dp(gradf)) — 2(dp, V7 (¢))

and then
(21) F{de, Vor(9)) = —(7(¢). dp(gradf)) — ﬁ

Substituting (21) into the definition of Ss ¢, we obtain

1
0= 5/l -

flr(e)?.

%Jch(@”zg —2df ® (de.7(p)) —2fdp © VT (p)

1
= mflT(w)\Qg —2df © (dp.7(p)) — 2fdp © V7 (p).
The converse follows in the same way. O

Proposition 3.4. A map ¢: (M™,g) — (N,h), (m > 2), with So y =0 and
rank ¢ < m —1 is harmonic, where f € C*(M) positive.
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Proof. We take p € M. Since rank ¢(p) < m — 1, there exists a unit vector field
X, € kerdy. Then for X =Y = X, (20) becomes

AP (X, ) = 20 () dp(X,), () — 2f(dp(X,), V, 7() =0,
hence 7(¢) = 0. O

Corollary 3.1. Let p: (M™,g) — (N, h™) be a submersion (m)n). If So 5 =0,
then ¢ is harmonic.

Theorem 3.1. A map ¢: (M™,g) — (N,h"), (m # 4), with Soy = 0, M
compact and orientable, is harmonic.

Proof. We have Ss y = 0, then

0 = traceSs s = % FIr (@) + (m — 2)(dp(gradf), ()
+ (m — 2) ftrace(dp, V7 (p)),

(22)
and integrating over M, we get
m
=5 | @+ m=2) [ @elgradf) )
2 Ju M

(23)
+(m-2) /M Jtrace(dp, V7 (p))vy

For the term (m —2) [}, ftrace(dp, V7(p))vy, we have
/ ftrace(de, V(o / Fldgp(ei), Ve, 7(9))vy
| (estdpten.rio = fire)P)e,
- [ @R+ [ v Fr(ee,

- / (dp(grad ), 7())v,.
M

Consider a one form n = (dy, fT(¢)), then, as M is compact, we have

/ V¥ (dples), fr(9))vy, = / div(n)v, = 0,
M M

then, we can rewrite (23)

(25) 0= 4_Tm /M flr (@)

As f positive and m # 4, ¢ is harmonic. O

Proposition 3.5. A Riemannian immersion ¢: (M, g) = (N, h) with Sp y =0,
m # 4, is minimal.
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Proof. ¢ is Riemannian immersion, then (dg, V7 (y)) = 0 and Ss y = 0 implies

0 = traceSs, s
= ZIT(@) + (m - 2) ftrace(dp, Vr(¢))
ST + (m = 2)[(VE7(0), dp(er))
ST + (m = 2)fei(r(p). dp(er)) = f(m = 2)|r(¢)?
= ST — f(m = 2)|r(¢)
= )R,

as f is positive and m # 4, ¢ is minimal. O

The next result introduces integral conditions ensuring that S y = 0 reveals
harmonicity. First we cite Yau’s version of Stokes theorem.

Lemma 3.2 ([8]). Let (M™,g) be a complete Riemannian manifold and w
a smooth integrable (m — 1)-form defined on M. Then there exists a sequence of
domains B; in M such that M = UZ B;, B; C Bi11, and lim;_ o fBi dw = 0.

Theorem 3.3. Let (M™,g), m # 4 be an orientable complete Riemannian
manifold and ¢: (M™,g) — (N,h) a map with Soy = 0, where f € C®(M)
positive function. If [, f|(de - 7())f|vg (0o then ¢ is harmonic.

Proof. For m = 2, this follows from Proposition (3.2), so now assume m # 2.
We have m

traceSy r = o fI7(@)|* + (m — 2)(dg(gradf), 7(¢))
+ (m — 2) ftrace{dy, V7(p)) =0,
then

(26) ftrace(dp, V7(p)) = FIr(@)? = (de(gradf), 7(¢)),

2(7;_ 2)

and from (12), we get

(27)  div(fde.m(9))F = fl7(9)]? + (de(gradf), () + ftrace(dp, V().
replacing (26) in (27), we obtain

4
div(fdg - 7(p))* = mfh’(@ﬁ
and this results in
4
s =2y 17O = AV (X, = dlizcvy),

where X = (fdy¢ - 7(¢))*. We now apply Lemma (3.2) to w = ixv,. To compute
the norm of w, choose p € M and a local normal chart (U, xk)’,;"':l around p

Yg(p) = dzt A A dz™, (ix(p)vg>i.,.l%...m = (_1)k+1fk~
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So .
wl(p) =lixvgP () = D (ix(D)vg)i..oiiny = (m — DI X[*(p).
iyerrim=1
Now,

[ Xt = [ (a0 @)l < .

so w is integrable. By Lemma (3.2), we get

m—4
lim/ dwvy = — lim flr()|?v, = 0,
[ vy = 5 [ s,

i—00 —2) imoo
hence ¢ is harmonic. O

Corollary 3.2. Let (M,g), m # 4, be an orientable complete Riemannian
manifold and ¢: (M, g) = (N, h) a map with finite energy and bienergy. If So 5 =
0, then ¢ is harmonic.

Theorem 3.4. A non-minimal Riemannian immersion ¢: (M*, g) — (N, h)
satisfies Sop = 0 if and only if it is pseudo-umbilical.

Proof. First note that for a Riemannian immersion, S ¢(X,Y") = 0 reduces to

(25) SAT(@)Pg(X,Y) = 2f{r(0), BIX, V),

B = Vdg being its second fundamental form. Recall that a Riemannian immersion
is pseudo-umbilical if and only if its shape operator A satisfies

1
AT(Lp) = E|T((p)|2[a
equivalently,
1
(B(X,Y),7(0)) = —I7()Ig(X, V).
Comparing it with (28) ends the proof. O
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