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ON SUMS OF BINOMIAL COEFFICIENTS, WAVELETS,

COMPLEX ANALYSIS, AND OPERATOR THEORY

O. HUTNÍK and M. HUTNÍKOVÁ

Abstract. This note aims to highlight an interesting connection among the theory

of wavelets, special functions, complex analysis, and operator theory in order to
evaluate certain sums involving binomial coefficients. Our approach is based on a

relationship between spectral functions corresponding to Toeplitz operators acting
on weighted Bergman spaces and Toeplitz operators acting on true-poly-analytic

Bergman spaces over the upper half-plane. Choosing various generating symbols of

Toeplitz operators we may prove many interesting identities for sums of binomial
coefficients. Some concrete examples are provided.

1. Introduction

The shortest path between two truths in the real domain passes through the
complex domain.

Jacques Hadamard (1865–1963)

Usually, three approaches are used to prove identities involving binomial coef-
ficients as well as identities for sums of binomial coefficients:

• an algebraic proof – it transforms one side of the equation with the aid of
substitutions and of arithmetic operations into the expression on the other
side,

• a combinatorial proof – it shows that the expressions on both sides count
the same things,

• a probabilistic proof – it involves the computation of the probability of a
certain event in two different ways and equats them.

However, a more challenging problem is to find a simple closed formula for an
expression (such as the sums of combination coefficients), for instance, considering
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n ∈ Z+ := {0, 1, 2, . . . }, find the value of the sum

(1)
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(−1)k
k∑
r=0
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k

r

)(
n

k − r

)(
n

r

)
in dependence on the value of n. Several techniques are well-known for evalu-
ating the sum varying from very simple ones (transformations, substitutions, or
exchanging the order of summation to rewrite the sums in terms of known ex-
pressions summarized in many tables in the available literature) to some more
sophisticated ones (recurrences, divided differences, generating functions, etc.).
Also, mathematical software may be useful for this purpose.

The quotation from the beginning of this section expresses a deep insight of
Hadamard that many problems of real analysis (computation of integrals, summing
of series, solving differential equations) are easier (and perhaps elegantly) solved
by passing to the complex domain and using its methods. The aim of this note
is to present an interesting tool coming from a seemingly unrelated (and distant!)
areas of mathematics glued together – wavelets, special functions, poly-analytic
complex function theory, and Toeplitz operators1. On the one hand, it contributes
to the Hadamard’s viewpoint, and on the other hand, this machinery demonstrates
a useful method for summing certain binomial coefficients using the “continuous
mathematics”, as it is, for example, the already mentioned probabilistic approach,
see [12, 14, 15], or the residue approach, see [7], or the Rice’s integral [11].

2. Complex analysis, wavelets, special functions,
operator theory – a mixture of all of that

Polyanalytic is the new analytic.

Lúıs Daniel Abreu

Before describing our main analytic tool, we recall some basic facts from the
mathematical areas mentioned in the title. All of the complex analysis theory
needed for this note can be found in the Vasilevski’s monograph [13].

Weighted Bergman spaces and Toeplitz operators acting on them

In this note, the basic spaces, we restrict our attention to, are the weighted
Bergman spaces on the upper half plane Π = {w = u + iv ∈ C; v > 0} in the
complex plane C. Given a weight parameter λ ∈ (−1,+∞), we introduce the
standard weighted measure on Π,

dµλ(w) = (λ+ 1)(2v)λ
dudv

π
.

1Certain appearance of binomial sums in the theory of Toeplitz operators is mentioned in Wolf’s

paper [16]. However, Wolf does not study any connection between the two topics. Indeed, he
studies the compactness of the difference of the Toeplitz operator Ta and the discrete Wiener-

Hopf operator Wa for the case of symbol a being of a special form. Then Wolf’s computations

result in verifying a certain combinatorial identity.
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Then the weighted Bergman space A2
λ(Π) of analytic functions is the closed sub-

space of L2(Π,dµλ) consisting of measurable functions f on Π, for which(∫
Π

|f(w)|2 dµλ(w)

)1/2

< +∞.

Toeplitz operators form one of the most significant classes of concrete operators
because of their importance in both pure and applied mathematics, and in many
other sciences. Despite their simple definition, Toeplitz operators exhibit a very
rich spectral theory and appear in relation with many problems in physics, proba-
bility, finance, hydrology, information theory, signal processing, etc. In general, if
X is a function space and P is a projection from X to a closed subspace Y of X,
then the Toeplitz operator Tg : X → Y with a symbol g is given as Tgf = P (gf),
i.e., it is the compression of the multiplication operator into a suitable subspace. In
the literature, two of the most studied cases of Y are the Hardy and the Bergman
spaces. In our particular case, given a function (generating symbol) g ∈ L∞(Π),

the Toeplitz operator T
(λ)
g acting on A2

λ(Π) is defined as

T (λ)
g f = BΠ,λ(gf),

where BΠ,λ is the orthogonal projection of L2(Π,dµλ) onto A2
λ(Π).

Behavior of Toeplitz operators T
(λ)
g and their algebras clearly depends on the

behaviour of its symbol g. From now on, we consider very special, the so-called
vertical symbols: a measurable function g : Π→ C is called vertical if there exists
a measurable function a : R+ → C such that g(w) = a(=(w)) for almost all w ∈
Π. Very important result of Vasilevski reads as follows, see the summarizing
Vasilevski’s book [13].

Theorem 2.1. The Toeplitz operator T
(λ)
a acting on A2

λ(Π) with a bounded
vertical symbol a on Π is unitarily equivalent to the multiplication operator Mγa,λ

acting on L2(R+), where the ”spectral” function γVa,λ : R+ → C is given by

γVa,λ(x) =
2x

Γ(λ+ 1)

∫ +∞

0

a(v) (2vx)λ e−2vx dv.

True-poly-analytic Bergman spaces and Calderón-Toeplitz operators

Now we move a step further to uncover an interesting connection among wavelets,
special functions, complex analysis, and Toeplitz operators. As it is well-known,
the standard Cauchy-Riemann operator

∂z :=
1

2

(
∂

∂x
+ i

∂

∂y

)
, z = x+ iy,

stands behind the scene of analytic functions. However, its iterations yield the
notion of poly-analytic function. More precisely, a function f is called poly-analytic
(or analytic of order n) if ∂nz f = 0. Poly-analytic functions of order n > 1
which are not poly-analytic of order n − 1 are called true-poly-analytic of order
n. Interestingly, poly-analytic functions inherit some of the properties of analytic
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functions, often in a nontrivial form. However, many of the properties break down
once we leave the analytic setting. The origin of investigations of poly-analytic
functions goes back to 60ties (mainly to works of Mark B. Balk [2]), see also the
recent survey [1].

There exists a close connection between the classical Bergman space of ana-
lytic functions, the time-scale (or wavelet) analysis, and certain special functions.
Recently, a quite unexpected connection in the poly-analytic setting has been ob-
tained: the true-poly-analytic Bergman space A(n+1)(Π) may be viewed as the
space of wavelet transforms with respect to Laguerre functions of order n. Recall
that the (simple) Laguerre functions are given as `n(x) := e−x/2Ln(x) with

Ln(x) :=
ex

n!

dn

dxn
(
e−xxn

)
=

n∑
i=0

(−1)i
(
n

i

)
xi

i!
, x ∈ R+,

being the Laguerre polynomial of order n ∈ Z+. For further reading and more
information about the time-scale approach to poly-analytic Bergman spaces we
recommend the recent papers [1, 9].

It was observed in several cases that Toeplitz operators can be transformed
into pseudo-differential operators by means of certain unitary maps constructed
as an exact analog of the Bargmann transform mapping the Segal-Bargmann-Fock
space F2(Cn) of Gaussian square-integrable entire functions on complex n-space
onto L2(Rn). A key result that gives an easy and direct access to the properties of
Toeplitz operators acting on true-poly-analytic Bergman spaces (or alternatively,
of Calderón-Toeplitz operators acting on wavelet subspaces, see [8, Theorem 3.2]),
is the following theorem.

Theorem 2.2. Let a be a bounded vertical symbol on Π. Then the Toeplitz op-

erator T
(n)
a acting on A(n)(Π) is unitarily equivalent to the multiplication operator

Mγa,n acting on L2(R+), where the “spectral” function γa,n : R+ → C is given by

γa,n(x) = 2x

∫ +∞

0

a(v)`2n(2vx) dv = 2x

∫ +∞

0

a(v) e−2vxL2
n(2vx) dv.

Sketch of proof (for the benefit of the reader). The key ingredient here is the
unitary operator Rn : A(n)(Π)→ L2(R) given by

(RnF )(ξ) = χ+(ξ)
√

2ξ

∫
Π

F (u, v)`n(2vξ) e−2πiξu dudv

v
,

which diagonalizes each Toeplitz operator T
(n)
a with bounded vertical symbol a in

the sense that RnT
(n)
a R∗n = γa,nI. This implies the assertion. �

In fact, the function γa,n is obtained by integrating a dilation of a bounded

vertical symbol a of T
(n)
a against a Laguerre function of order n, and it sheds a

new light upon the investigation of main properties of the corresponding Toeplitz

operator T
(n)
a , such as boundedness, spectrum, invariant subspaces, norm value,

etc., see [9]. Recently, an explicit description of the C∗-algebras generated by the
set of spectral functions was obtained in [10] via membership of all gammas γa,n
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in the algebra VSO(R+) of very slowly oscillating functions on R+ being the set
of all bounded functions uniformly continuous with respect to logarithmic metric
ρ(x, y) = | lnx− ln y|. An independent and beautiful reasoning of this result starts
from the simple estimate

|γa,n(x)− γa,n(y)| ≤ ‖a‖∞
(∫

R+

∣∣2vxL2
n(2vx) e−vx − 2vyL2

n(2vy) e−vy
∣∣ dv

v

)
with a ∈ L∞(R+) and x, y > 0. Replacing zL2

n(z) with an arbitrary polynomial
P of the form

P (x) =

m∑
j=0

αjx
j

with the special polynomial norm

N(P ) :=

m∑
j=0

j! |αj | =
∞∑
j=0

|P (j)(0)|,

we can estimate the function JP : R2
+ → C given by

JP (x, y) :=

∫
R+

∣∣P (vx) e−vx − P (vy) e−vy
∣∣ dv

v

as follows: JP (x, y) ≤ 2N(P )ρ(x, y). Thus, for each x, y > 0, we get

|γa,n(x)− γa,n(y)| ≤ ‖a‖∞JP (x, y) ≤ Cρ(x, y)

with P (z) = zL2
n(z) and C := 2 ‖a‖∞N(P ). This proves that γa,n ∈ VSO(R+)

for each n ∈ Z+. This enables to provide an explicit description of the C∗-algebra
generated by vertical Toeplitz operators on true-poly-analytic Bergman spaces
over the upper half-plane.

3. How to get sums via gammas? A toy example

In mathematics the most exiting and welcome results usually combine facts,

notions and ideas of very remote fields.

In the beginning, there is an easy observation about the connection of true-poly-
analytic gammas and Vasilevski’s gammas. In the case λ = n = 0, we have trivially
γVa,0 = γa,0, but in general, the situation is much more interesting. We can see that
the main difference between the true-poly-analytic gamma and Vasilevski’s gamma
function integral is the square of Laguerre polynomials appearing in γa,n. To
uncover the connection between the gammas, we use Feldheim’s formula [3] which
provides the product of two generalized Laguerre polynomials in terms of other
generalized Laguerre polynomials. More precisely, for α, β ∈ C with Reα > −1,
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Reβ > −1, and Re (α+ β) > −1, it holds

L(α)
m (x) · L(β)

n (x) =

m+n∑
k=0

Ak(m,n, α, β)L
(α+β)
k (x)

= (−1)m+n
m+n∑
k=0

Ak(m,n, β −m+ n, α+m− n)
xk

k!
,

where

Ak(m,n, α, β) := (−1)m+n+k
k∑
r=0

(
k

r

)(
m+ α

n− k + r

)(
n+ β

m− r

)
.

Using this result with α = β = 0 and m = n, we have

L2
n(x) =

2n∑
k=0

Ak(n)

k!
xk, where Ak(n) := (−1)k

k∑
r=0

(
k

r

)(
n

k − r

)(
n

r

)
.

Thus, we get the basic relation.

Theorem 3.1. For each a ∈ L∞(R+), each n ∈ Z+, and x > 0, it holds

(2) γa,n(x) =

2n∑
k=0

Ak(n)
2x

k!

∫ +∞

0

a(v)(2xv)k e−2vx dv =

2n∑
k=0

Ak(n) γVa,k(x).

There are many good reasons for being interested in this formula itself (men-
tioning some consequences for Toeplitz operators and the whole machinery for
the study of operator algebras), but we leave those reasons aside in this note (we
recommend our overview paper [9], where an interested reader may find many
interesting results and connections). Our goal is simply to see how this formula
may be a useful tool when expressing some sums. Of course, it is not an accident
that Ak(n) appears in our motivational task to evaluate the sum (1). Now we may
give an elegant solution.

In fact, for the generating symbol a ≡ 1 on R+, we easily get γa,n ≡ 1 for
each n ∈ Z+. Indeed, it is enough to realize that the system {`n(x)}n∈Z+

forms an
orthonormal basis in the space L2(R+). Also, using the definition of Euler Gamma
function Γ, we have

γVa,k(x) =
2x

k!

∫ +∞

0

(2vx)k e−2vx dv =
Γ(k + 1)

k!
= 1

for each k ∈ Z+ and x > 0, and therefore, by (2), we conclude that

2n∑
k=0

Ak(n) =

2n∑
k=0

(−1)k
k∑
r=0

(
k

r

)(
n

k − r

)(
n

r

)
≡ 1 for each n ∈ Z+.

In addition to the inner beauty of this reasoning, it allows us to say that each γa,n
is an affine combination of γVa,k with k = 0, 1, . . . , 2n.

We may observe that Feldheim’s formula was the main ingredient to express
true-poly-analytic gammas via Vasilevski’s ones. Using other formulas for square of
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Laguerre polynomials, we may recover some known formulas for sums of binomial
coefficients.

Remark. Starting with the (definition) formula for Laguerre polynomial

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
=

n∑
k=0

(
n

k

)
(−x)k

k!
, x ∈ R+,

we immediately get

`2n(x) = e−xL2
n(x) = e−x

n∑
r=0

n∑
s=0

(−1)r+s

r!s!

(
n

r

)(
n

s

)
xr+s.

Then the formula for γa,n may be written as follows

γa,n(x) = 2x

∫ +∞

0

a(v)`2k(2vx) dv =

n∑
r=0

n∑
s=0

Br,s(n) γVa,r+s(x),

where

Br,s(n) := (−1)r+s
(
n

r

)(
n

s

)(
r + s

r

)
,

and for each n ∈ Z+, it holds

n∑
r=0

n∑
s=0

Br,s(n) = 1.

Remark. Furthermore, from Howell’s formula [6], see also [5, formula 8.976
(36)],(

L(α)
n (x)

)2

=
Γ(1 + α+ n)

22nn!

n∑
r=0

(
2n− 2r

n− r

)
(2r)!

r!

1

Γ(1 + α+ r)
L

(2α)
2r (2x),

we have

L2
n(x) =

1

22n

n∑
k=0

Ck(n)L2k(2x), where Ck(n) :=

(
2n− 2k

n− k

)(
2k

k

)
.

Similarly as above, we then recover the known formula

1

22n

n∑
k=0

Ck(n) = 1 for each n ∈ Z+,

see, e.g., [4, formula (6.10)].

4. A more sophisticated example

...it seems worth enough for a mathematician to think (and sometime to write)
not only about new mathematical facts but also about old original ideas. Par-

ticularly, relations between new facts and old ideas deserve special attention...

Vladimir V. Kisil
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Now we demonstrate the usefulness of the described procedure considering the
oscillating symbol a(v) = e2vi. Then the explicit form of the corresponding func-
tion γa,n is

γa,n(x) = 2x

∫ +∞

0

e−2v(x−i)L2
n(2vx) dv =

x

x− i

∫ +∞

0

e−tL2
n

(
tx

x− i

)
dt

=
(−1)n

(x− i)2n+1

n∑
k=0

(−1)k
(
n

k

)2

x2k+1,

where [5, formula 7.414.2] has been used. On the other hand, for each k ∈ Z+, we
have

γVa,k(x) =
2x

k!

∫ +∞

0

e−2v(x−i)(2vx)k dv =

(
x

x− i

)k+1

,

where [5, formula 3.381.4] has been used. Then from the equality (2), we have

n∑
k=0

(−1)k
(
n

k

)2

x2k = (−1)n(x− i)2n
2n∑
k=0

Ak(n)

(
x

x− i

)k
, x > 0.

Especially, for x = 1, we have

(−1)n
2n∑
k=0

Ak(n)(1− i)2n−k =

n∑
k=0

(−1)k
(
n

k

)2

.

This identity seems to be interesting itself because it provides a sum of combi-
nations of powers of complex number w = 1 − i in real terms only.2 Moreover,
the sum on the right-hand side is well known – it equals the coefficient of rn in
(1− r)n(1 + r)n = (1− r2)n. More precisely,

n∑
k=0

(−1)k
(
n

k

)2

= (−1)[n2 ]

(
n

[n2 ]

)
1 + (−1)n

2
= (−1)n22n

(n−1
2

n

)
,

see [4, formula (1.35), (1.45)], and we have

2n∑
k=0

Ak(n)(1− i)2n−k = 22n

(n−1
2

n

)
.

Similarly as in Remarks above, we may obtain the corresponding identities with
coefficients Br,s(n) (a triple sum identity, in fact) and Ck(n) (a double sum iden-
tity, in fact). Moreover, choosing various symbols, we may provide many other
identities for sums of binomial coefficients. These are left to the interested reader.

2In some sense, it may resemble the famous Binet formula – the expression of Fibonacci (natural)

numbers via powers of irrational numbers (golden ratio, in fact).
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Final comments

Of course, the identities proved here might be proved by a variety of other means.
For example, using hypergeometric functions, using orthogonality ideas and the
generating function for Laguerre polynomials, the Chu-Vandermonde summation,
the Rice integral formulas, etc. However, we hope the interested reader will enjoy
the presented interesting (and perhaps unexpected) connections among sums of
binomial coefficients, time-frequency (wavelet) analysis, and spectral functions of
Toeplitz operators associated with functions on the upper half-plane in the complex
plane.
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