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FRACTIONAL HYBRID INITIAL VALUE PROBLEM

FEATURING q-DERIVATIVES

D. BALEANU, R. DARZI and B. AGHELI∗

Abstract. We have perused about the existence of a solution toward hybrid initial
value problem (HIVP) featuring fractional q-derivative Dδq

[
ν(t)

h
(
t,ν(t), max

0≤τ≤t
|ν(τ)|

) ] = ρ (t, ν (t)) , t ∈ (0, 1), 0 < δ ≤ 1,

ν(0) = 0,

in which Dδq denotes the Riemann-Liouville fractional q-derivative in the order of δ.
In Banach algebra, by making use of a fixed point theorem based Dhage along with

mixed Lipschitz and Caratheodory condition, a way of solving the above fractional

Hybrid initial value problem (FHIVP) featuring q-derivatives verified, in this study.

1. Introduction

Fractional calculus has a long history and it dates back to the birth of the classical
calculus. However, during these years, some research works have been carried out
but in the last few decades, this new calculus together with dynamic equation
has gained more popularity. There are several classes of fractional derivative,
but the most prevalent definitions are Riemann-Liouville and Caputo fractional
derivatives. The former has an abstraction mathematically but the latter is mostly
used by engineers.

Research on differential equations featuring fractional derivative has appreciably
improved within current years, which indicates the significance of the calculus
featuring fractional derivative and fractional integral in engineering, sciences, and
technologies [16, 11, 18, 5, 1, 3].

In the last few years, solvability of initial differential equations featuring frac-
tional derivative with regard to particular functions were investigated in these
kinds of problems in which there exist positive solutions or a way of solving pro-
pounded problems using Leray-Schoder theory and fixed point theorem [7, 12,
13, 14, 11, 20].
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As a matter of truth, there are similar requirements toward boundary conditions
[19, 20, 23, 21, 25, 15, 26].

In recent years, hybrid differential equation (quadrature perturbations of non
linear differential equation) has attracted much attention.

In [9], Dhage and his associate reviewed the following hybrid differential equa-
tion featuring linear perturbations of first order{

Dt

[
ν(t)

h(t,ν(t))

]
= ρ (t, ν (t)) , ρ ∈ C (J × R, R) , h ∈ C (J × R, R− {0}) ,

ν(t0) = x0 ∈ R.

J = [0, 1].
Zhao and his associates [26] utilizing a fixed point theorem in Banach algebras

researched a way of solving featuring the fractional version of the above IVP, i.e.,{
Dδ
t

[
ν(t)

h(t, ν(t))

]
= ρ (t, ν (t)) , 0 < δ ≤ 1.

ν(0) = 0.

There exists a way of solving the next fractional HIVP, featuring supermom Dδ
t

[
ν(t)

h

(
t, ν(t), max

0≤τ≤t
|ν(τ)|

)] = ρ (t, ν (t)) , 0 < δ ≤ 1,

ν(0) = 0,

where ρ ∈ C (J × R, R) and h ∈ C
(
J × R2, R− {0}

)
investigated by Caballero

and his associates [6], in which the way of measuring non compactness within the
Banach space was the basic tool applied by the scholars.

Now, we deal with the next HIVP featuring fractional q-derivatives

tD
δ
q

[
ν (t)

h
(
t, ν (t) , max

0≤τ≤t
|ν (τ)|

)] = ρ (t, ν (t)) , 0 < δ ≤ 1,(1)

ν(0) = 0,(2)

t ∈ (0, 1), h ∈ C
(
[0, 1]× R2, R− {0}

)
, tD

δ
q is q-derivative of Rimann-Liouville

the order of δ, ρ is the measurable map for each ν ∈ R and continuous to every
t ∈ R.

In Banach algebra, by employing a fixed point theorem based on Dhage, under
the following hypothesis, featuring Caratheodory condition and mixed Lipschitz,
there exists a way of solving the hybrid equations featuring fractional derivative.
Hypotheses:
(H1) There exists L > 0, which is a constant wherein

|h (t, r1, r2)− h (t, r3, r4)| ≤ L (max |r1 − r3| , |r2 − r4|)

for any t ∈ J = [0, 1] and r1, r2, r3, r4 ∈ R.

(H2) There is a function g ∈ L1 ([0, 1] , R), so that toward every x ∈ R

|ρ (t, x)| ≤ g (t) ,

t ∈ [0, 1].
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2. q-calculus

We here present preludes q-calculus, lemmas and definitions that employed in the
rest of this paper. The display here may be found in [10, 2], for example, presume
a ∈ R and q ∈ (0, 1)

[a]q =
1− qa

1− q
.

Whereas n ∈ N and a, b ∈ R, the q-analogue of the power function (a−b)n featuring
n ∈ N0 := {0, 1, 2, . . . } is expressed

(a− b)(0) = 1, (a− b)(n) =

n−1∏
k=0

(a− bqk).

Consequently, if a 6= 0 and δ ∈ R, therefore,

(a− b)(δ) = aδ
∞∏
k=0

a− bqk

a− bqδ+k
.

Obviously, in case b = 0, a(δ) = aδ. For τ ∈ R − {0,−1,−2, . . . }, the q-gamma
function is expressed

Γq(τ) =
(1− q)(τ−1)

(1− q)τ−1
,

and gladdens Γq(τ + 1) = [τ ]qΓq(τ).
The q-derivative of
• a function u is expressed

(Dqu)(τ) =
u(qτ)− u(τ)

(q − 1)τ
, (Dqu)(0) = lim

τ→0
(Dqu)(τ),

• higher order is expressed with

(Dn
q u)(τ) = Dq(D

n−1
q u)(τ), n ∈ N,

wherein (D0
qu)(τ) = u(τ).

The q-integral of a function u expressed within the distance [0, b] is certain as

(Iqu)(τ) =

∫ τ

0

u(s)dqs = u(1− q)
∞∑
k=0

u(τqk)qk, τ ∈ [0, b].

Assuming that u is expressed within [0, b], thus∫ b

a

u(s)dqs =

∫ b

0

u(s)dqs−
∫ a

0

u(s)dqs,

wherein a ∈ [0, b].
The same is true for derivatives, an operator Inq may be represented as

(I0
qu)(τ) = u(τ), (Inq u)(τ) = Iq(I

k−1
q u)(τ), k ∈ N.

With regard to the basic theorem of arithmetic utilizing Iq and Dq, i.e.,

(DqIqu)(τ) = u(τ),
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and if u is continuous at τ = 0, then

(IqDqu)(τ) = u(τ)− u(0).

The equalities below utilized subsequently:∫ τ

0

u(s)(Dqg)(s)dqs =
[
u(s)g(s)

]s=τ
s=0
−
∫ τ

0

(Dqu)(s)g(qs)dqs,

[a(ς − s)](δ) = aδ(ς − s)(δ),

tDq(ς − s)(δ) = [δ]q(ς − s)(δ−1),

sDq(ς − s)(δ) = −[δ]q(ς − qs)(δ−1),

(τDq

∫ x

0

u(τ, s)dqs)(τ) =

∫ τ

0
τDqu(τ, s)dqs+ u(qτ, τ).

tDq indicates the derivative in relation to the variable ς.

Definition 2.1. Permit u be to a function expressed on [0, 1]. The q-integral
of Riemann-Liouville kind of the fractional order δ > 0 is

(Iδqu)(τ) =
1

Γq(δ)

∫ τ

0

(τ − qs)(δ−1)u(s)dqs, τ ∈ [0, 1],

meanwhile (I0
qu)(τ) = u(τ).

Definition 2.2. The q-integral of Riemann-Liouville kind featuring the frac-

tional derivative of order δ > 0, is expressed by (Dδ
qu)(τ) = (D

[δ]
q I

[δ]−δ
q u)(τ), [δ]

is equivalent to or the least integer greater than δ and (D0
qu)(τ) = u(τ).

Lemma 2.3 ([10]). Presume δ ≥ 0 and a ≤ b ≤ ς, therefore, (ς − b)(δ) ≤
(ς − a)(δ).

Lemma 2.4 ([10]). Suppose u a function expressed on [0, 1], δ and σ ≥ 0.
Next, we get the expressions below:

(a) (Iσq I
δ
qu)(τ) = (Iδ+σq u)(τ),

(b) (Dδ
qI
δ
qu)(τ) = u(τ).

Lemma 2.5 ([10]). Presume δ and n > 0 an integer. Therefore, the parity
below holds

(IδqD
n
q u)(τ) = (Dn

q I
δ
qu)(τ)−

n−1∑
k=0

τ δ−n+k

Γq(δ + k − n+ 1)
(Dk

qu)(0).

Lemma 2.6 ([2]). Presume δ ∈ R+ and f : (0, a] → C a function. If g ∈
L1
q [0, a], then Iδq g ∈ L1

q [0, a] and Iδq f ≤
aδ‖g‖L1

Γq(δ+1) .

3. Main results

In this part, we demonstrate the existing outcomes for the q-FHIVP (1)–(2) within
the bounded and closed interval J = [0, 1] following combined Lipschitz and
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Caratheodory circumstances within the nonlinearities included in them. We locate
the q-FHIVP (1)–(2) in the space C(J ,R) of continuous functions featuring real-
value expressed within J , which describes a supremum norm ‖.‖ within C(J ,R)
given below

(3) ‖ν‖ = max
t∈J
|ν(t)|

and a multiplication within C(J ,R) given as

(4) (νµ)(t) = ν(t)µ(t)

for ν, µ ∈ C(J ,R). Plainly C(J ,R) regarding the norm and multiplication in
(3)–(4) is a Banach algebra. By L1(J ,R), we represents the region of Lebesgue
integrable real-valued functions on J , equipped featuring the norm ‖ · ‖L1 defined
by

‖ν‖L1 =

∫ 1

0

|ν(s)|ds.

The subsequent Banach algebra featuring fixed point theorem based on Dhage [8]
is the basic theorem of our important result.

Theorem 3.1 ([8]). Assume ψ, is a bounded subset, closed, convex and non-
empty of the Banach algebra χ and assume A : ψ → χ and B : χ→ χ be operators
in which:

i) A is completely continuous,

ii) B is Lipschitz featuring a Lipschitz constant γ,

iii) ς = A ς B µ =⇒ ς ∈ ψ for all µ ∈ ψ, and
iv) M γ < 1, where M = ‖A(ψ)‖ = sup {‖A(ς)‖ : ς ∈ ψ}. Then, the operator

equation B ς A ς = ς has a solution in ψ.

Lemma 3.2. Let ν belong to C [0, 1], C
(
[0, 1]× R2, R− {0}

)
and 0 < δ < 1.

Then, the unique solution of the below IVP

(5) Dδ
q

[ ν (t)

h
(
t, ν (t) , max

0≤τ≤t
|ν (τ)|

)] = ρ(t),

(6) ν(0) = 0

for 0 ≤ t ≤ 1, ν(t) =
h
(
t,ν(t), max

0≤τ≤t
|ν(τ)|

)
Γq(δ)

∫ t

0

ρ(s)

(t− qs)(1−δ) dqs.

Proof. Utilizing both sides of (5), the operator Iδ and applying Definition 2.2,
we get an equivalent equation

Iδq Dq

[
I1−δ
q

( ν (t)

h
(
t, ν (t) , max

0≤τ≤t
|ν (τ)|

))] = Iδq ρ(t).

Here, from Lemma 2.5, we have

Dq

[
Iδq

(
g(t)

)]
− tδ−1g(0)

Γq (δ)
= Iδqρ(t),
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where we let h(t) = I1−δ
q

(
ν(t)

h
(
t,ν(t), max

0≤τ≤t
|ν(τ)|

)).

Afterwards, with Lemma 2.4, we get

(7) ν(t) =

h
(
t, ν (t) , max

0≤τ≤t
|ν (τ)|

)
Γq (δ)

∫ t

0

ρ(s)

(t− qs)(1−δ) dqs.

Thus, it lets (7) be satisfied.
Dividing by h

(
t, ν (t), max

0≤τ≤t
|ν (τ)|

)
, exerting on both sides and getting

Lemma 2.4 into account, we obtain (5). Also, setting t = 0 in (7), we get the
expression

ν(0) = h (0, ν(0), |ν(0)|)× 0 = 0.

This demonstrates ν(t) is a solution to problem (5)–(6). �

Theorem 3.3. Presume that hypotheses (H1) and (H2) retain. Moreover,

q-FHIVP (1)–(2) has a solution expressed on J , when L‖g‖L1

Γq(δ+1) < 1.

Proof. Let χ = C (J ,R) and

ψ =

{
ν ∈ χ, ‖ν‖ ≤ kLTδ, q

1− LTδ, q

}
,

where k = max |h (t, 0, 0)| and Tδ, q =
‖g‖L1

Γq (1+δ) . Obviously, ψ is a convex, closed,

and bounded subset of the Banach space χ.
With Lemma 3.1, BVP (1)–(2) is equal to the next equation

(8)
ν(t) = h

(
t, ν(t), max

0≤τ≤t
|ν (τ)|

) 1

Γq(δ)

∫ t

0

(t− q s)(δ−1)
ρ (s, ν (s)) dqs

= h
(
t, ν(t), max

0≤τ≤t
|ν (τ)|

)
Iδqρ (s, ν (s)) .

This defines A : χ → χ and B : ψ → χ, with Aν (t) = h(t, ν (t) , max
0≤τ≤t

|ν (τ)|)

and B ν (t) = Iδqρ (s, ν (s)).
Afterwards, equation (8) is converted in the following operator

Aν(t)B ν(t) = ν(t),

whereas t ∈ J .
We ought to display in Theorem 3.1 which of the two operators A and B con-

vince whole requirements.
Imprimis, we display operator A, featuring Lipschitz constant L is a Lipschitz

operator on χ. Next, by hypothesis (H1),∣∣Aν (t)−Aµ (t)
∣∣ =

∣∣∣h(t, ν (t) , max
0≤τ≤t

|ν (τ)|
)
− h
(
t, µ (t) , max

0≤τ≤t
|µ (τ)|

)∣∣∣
≤ Lmax

(
|ν(t)− µ(t)|,

∣∣ max
0≤τ≤t

|ν(τ)| − max
0≤τ≤t

|µ(τ)|
∣∣)

≤ Lmax
(
‖ν − µ‖ , ‖ν − µ‖∗

)
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≤ Lmax
(
‖ν − µ‖, |ν − µ

∥∥∥)
≤ L ‖ν − µ‖ ,

where ‖ν − µ‖∗ = || (ν − µ)
∣∣
[0, t]
||, t ∈ j.

Catching supremum over t, for ν, µ ∈ χ, we get

||Aν (t)−Aµ (t)|| ≤ L ‖ν − µ‖ .

Next, we display B is completely continuous within χ on ψ. For this, we display
B is continuous and compact operator within χ on ψ.

Now, we display that B is continuous on ψ. Suppose that {νn} a sequence
into ψ converging to a point ν ∈ ψ. Thus, with Lebesgue dominating convergence
theorem

lim
n→∞

B νn (t) = lim
n→∞

Iδqρ (s, νn (t))

= lim
n→∞

1

Γq(δ)

∫ t

0

(t− q s)(δ−1)
ρ (s, νn (s)) dqs

=
1

Γq(δ)

∫ t

0

(t− q s)(δ−1)
lim
n→∞

ρ (s, νn (s)) dqs

=
1

Γq(δ)

∫ t

0

(t− q s)(δ−1)
ρ (s, ν (s)) dqs = Iδqρ (s, ν (t)) = B ν(t).

Then, we display B on ψ is a compact operator. That is sufficient to display
B(s) in χ is an equicontinuous set and uniformly bounded.

Otherwise, assume ν ∈ ψ be arbitrary. By (H2), we have

|B ν(t)| = |Iδqρ (s, ν (t)) | ≤ Iδq g (t) , t ∈ J .

Getting supremum over t, for all ν ∈ ψ from Lemma 3.2, ‖B ν (t)‖ ≤ Ta,q. This
represents B on ψ is uniformly bounded.

Because ρ(t, ν(t)) within [0, 1]×R is continuous, and within compact set [0, 1]×
[−r, r] is bounded. Assume N = sup {ρ (t, ν(t)) , t ∈ [0, 1] , ν ∈ [−r, r]}.

Here, we suggest that B is equcontinuous on ψ, given ε > 0. Presume δ <(
εΓq(δ)

2N

) 1
δ

. Next, for any ν ∈ ψ, s1, s2 ∈ [0, 1], s1 < s2, 0 < s2 − s1 < σ, have

|B ν (s2)−B ν (s1)|

=
1

Γq(δ)

∣∣∣ ∫ s2

0

(s2 − q s)(δ−1)
ρ (s, ν (s)) dqs−

∫ s1

0

(s1 − q s)(δ−1)
ρ (s, ν (s)) dqs

∣∣∣
=

N

Γq(δ)

∣∣∣ ∫ s2

0

sDq (s2 − s )
(δ)

− [δ]
dqs−

∫ s1

0

sDq (s1 − s )
(δ)

− [δ]
dqs
∣∣∣

≤ N

Γq(δ + 1)

{∣∣∣ ∫ s1

0
sDq (s2 − s)(δ)

dqs−
∫ s1

0
sDq (s1 − s)(δ)

dqs
∣∣∣

+
∣∣∣ ∫ s2

s1
sDq (s2 − s )

(δ)
dqs
∣∣∣}
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=
N

Γq(δ + 1)

{[
(s2 − s1)

(δ) − (s2)
(δ)

+ (s1)
(δ) ]

+ (s2 − s1)
(δ)
}

=
2N

Γq(δ + 1)
(s2 − s1)

(δ)
<

2N

Γq(δ + 1)
σδ.

Therefore, we receive |B ν (s2)−B ν (s1)| < ε, for all s1, s2 ∈ [0, 1], toward all
ν ∈ ψ. This demonstrates B(ψ) in χ is an equi-continuous set. Here, the set B(ψ)
is the equi-continuous set within χ and uniformly bounded, so that is compact via
Arzela-Ascoli theorem.

Eventually, B on ψ is a complete continuous operator. Afterwards, we conclude
that in Theorem 3.1, the hypothesis (iii) is achieved.

Assume ν ∈ χ and µ ∈ ψ arbitrary way that ν = Aν. Then, by hypothesis
(H1) and Lemma 2.6, we have

|ν (t)| = |Aν(t)−B µ(t)| =
∣∣h(t, ν(t), max

0≤τ≤t
|ν (τ)|)

∣∣ ∣∣Iδq g(t, µ(t))
∣∣

≤
∣∣h(t, ν(t), max

0≤τ≤t
|ν (τ)|)− h(t, 0, 0) + h(t, 0, 0)

∣∣ ∣∣Iδq g(t)
∣∣

≤
(
L
[

max
{
ν(t), max

0≤τ≤t
|ν (τ)|

}]
+ k
) ‖g‖L1

Γq (δ + 1)
≤ L (‖ν‖+ k)

‖g‖L1

Γq (δ + 1)

where k = max
0≤τ≤t

|h(t, 0, 0)|.

Thus, |ν (t)| ≤ L (‖ν‖+ k)
‖g‖L1

Γq(δ+1) . Taking supremum over t

(9) ‖ν‖ ≤
Lk

‖g‖L1

Γq(δ+1)

1− L ‖g‖L1

Γq(δ+1)

=
LkTδ,q

1− LTδ,q
.

This demonstrates Theorem 3.1, hypothesis (iii) is satisfied. At last, we have

(10) M = ‖B(ψ)‖ = sup {‖B ν‖ , ν ∈ ψ} ≤
‖g‖L1

Γq (δ + 1)
.

So, Mγ ≤ 1. Accordingly, in Theorem 3.1, all conditions are satisfied, and thus
the operator equation Aν Bµ = ν has a way of solving, which is ψ. Hence, the
BVP (1)–(2) defined on J has a solution. �

4. An example

Regarding the following q-FHIVP:

(11)


Dδ
q

[
ν(t)

1
2 + 1

4 tan−1

(
max

0≤τ≤t
|ν(τ)|

)] = cos t,

ν(0) = 0

where δ = q = 1
2 , ρ (t, ν (t)) = cos t,

h
(
t, ν(t), max

0≤τ≤t
|ν(τ)|

)
=

1

2
+

1

4
tan−1

(
max

0≤τ≤t
|ν(τ)|

)
and g(t) = 1.
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We get

|h (t, r1, r3)− h (t, r2, r4)|

=
∣∣∣(1

2
+

1

4
tan−1 |r3|

)
−
(1

2
+

1

4
tan−1 |r4|

)∣∣∣ ≤ 1

4

∣∣tan−1 (|r3| − |r4|)
∣∣

≤ 1

4

∣∣tan−1 (|r3 − r4|)
∣∣ ≤ 1

4

∣∣tan−1 (max(|r1 − r2| , |r3 − r4|))
∣∣

≤ 1

4
max (|r1 − r2| , |r3 − r4|) ,

because tan−1 t < t as t > 0. Also, |ρ(t, ν(t))| = |cos t| ≤ 1 = g (t).
Thus hypotheses (H1) and (H2) hold also for q = δ = 1

2 , and we can obtain

Γq (δ + 1) =

(
1− 1

2

)( 1
2 )(

1− 1
2

) 1
2

≈ 0.93201317,

M ≤
‖g‖L1

Γq (δ + 1)
≈ 1

4

( 1

0.93201317

)
= 1.07294529, Mγ ≤ 1

4
(1.53647204) .

Hence, the q-FHIVP (11) has a solution.
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