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CHARACTERIZING

TOPOLOGICAL QUASI-BOOLEAN ALGEBRAS FROM

WEAKLY TOPOLOGICAL QUASI-BOOLEAN ALGEBRAS

D. UMADEVI

Abstract. In this paper, we characterize the variety TQBA (Topological Quasi-
Boolean algebra) from the variety WTQBA (Weakly Topological Quasi-Boolean

Algebra).

1. Introduction

The main idea of rough set theory was to develop a Mathematical formalism to
deal with vagueness which arised due to the lack of information. Though rough
set proposed by Pawlak [21] has wide range of applications, its algebraic approach
has been quite interesting since its initiation by Iwinski in 1987 [12]. Later many
authors studied the algebraic structures of rough sets determined by an equivalence
relation and arbitrary binary relations [2, 5, 7, 8, 11, 13, 14, 15, 19, 22]. One
can find a survey on the algebras of rough sets in [20]. The notion of a topological
quasi-Boolean algebra arose in the context of rough set theory while studying
rough equality within the framework of the modal system S5 by Mohua Banerjee
and Chakaraborty in [2].

A similar study of rough equality within the framework of modal system S4 was
carried out in [18] and an algebraic structure of rough sets system determined by
quasi order was obtained as semantic counter part of the Lindenbaum-Tarski like
construction. It does not satisfy an axiom of topological quasi-Boolean algebra.
From abstraction of the properties of that algebraic structure, we obtain the no-
tion of weakly topological quasi-Boolean algebra. Similar algebraic structure was
named Tarski interior lattice in [6].

Let us denote the class of all topological quasi-Boolean algebras by TQBA and
the class of all weakly topological quasi-Boolean algebras by WTQBA. In this
paper, we prove that WTQBA is a variety. We also characterize TQBA from
WTQBA.

For notations, definitions and results not given here, we refer readers to
[4, 9, 10].
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2. Weakly Topological Quasi-Boolean Algebras

Let us begin with the formal definition of a topological quasi-Boolean algebra.

Definition 2.1 ([2]). An algebra A = (A,∨,∧,¬, L, 0, 1) is said to be a topo-
logical quasi-Boolean algebra if A satisfies the following statements

1. (A,∨,∧,¬, 0, 1) is a quasi-Boolean algebra ([23] or De Morgan algebra).

2. The unary operator L satisfies the following axioms: for every a, b ∈ A,

(T1) La ≤ a,

(T2) LLa = La,

(T3) L(a ∧ b) = La ∧ Lb,
(T4) L1 = 1.

Definition 2.2 ([18]). An algebra (A,∨,∧,¬, L, 0, 1) is said to be a weakly
topological quasi-Boolean algebra if it satisfies the following statements

1. (A,∨,∧,¬, 0, 1) is a quasi-Boolean algebra.

2. The unary operator L satisfies the following axioms: for every a, b ∈ A,

(WT1) La ≤ a,

(WT2) LLa = La,

(WT3) a ≤ b⇒ La ≤ Lb,
(WT4) L1 = 1.

An algebra (L,∨,∧,∗ , 0, 1) is called a distributive p-algebra if (L,∨,∧, 0, 1) is
a bounded distributive lattice and x ≤ a∗ iff a ∧ x = 0 for all x. An algebra
(L,∨,∧,+ , 0, 1) is called a distributive dual p-algebra if (L,∨,∧, 0, 1) is a bounded
distributive lattice and a+ ≤ x iff a ∨ x = 1 for all x. Let (D1,∨1,∧1,∗ , 0, 1) be
a distributive p-algebra and (D2,∨2,∧2,+ , 0′, 1′) be a distributive dual p-algebra
such that D1

∼= D∂
2 , where D∂

2 is the dual of a lattice D2 which is obtained by
swapping ∨ and ∧ in D2. An element a is said to be dense in D1 if a∗ = 0.
Let F be any filter in D1 containing all the dense elements of D1. Then we get
a weakly topological quasi-Boolean algebra, (〈[D1, D2], F 〉,t,u,∼, L,0,1) [17],
where 〈[D1, D2], F 〉 = {(a, b) ∈ D1 ×D2 : a ∧1 ψ(b) = 0 and a ∨1 ψ(b) ∈ F} and
for any (a, b) and (c, d) ∈ 〈[D1, D2], F 〉,

(a, b) t (c, d) = (a ∨1 c, b ∨2 d),

(a, b) u (c, d) = (a ∧1 c, b ∧2 d),

∼ (a, b) = (ψ(b), ϕ(a)),

L(a, b) = (a, ϕ(a∗)),

0 = (0, 0′), 1 = (1, 1′),

where ψ and ϕ are the dual isomorphisms between D1 and D2. If D1, D2 and F
are as above, then 〈[D1, D2], F 〉 is a topological quasi-Boolean algebra if and only
if D1 is a Stone algebra.



CHARACTERIZING TOPOLOGICAL QUASI-BOOLEAN ALGEBRAS 3

It was shown in [17] that the rough sets system determined by quasi order R,
R∗={(XH, XN) : X⊆ U} can be represented as {(X,Y )∈DR×DR : X∩ψ(Y ) = φ
and X ∪ ψ(Y ) ∈ F}, where F is the principal filter generated by B = {x ∈ U :
R(x) = {x}} in DR. The dual isomorphisms ϕ, ψ between DR = {XH : X ⊆ U}
and DR = {XN : X ⊆ U} are given by ϕ(XH) = XcN and ψ(XN) = XcH. A
similar representation of rough sets system determined by a quasi order was given
by Järvinen and his co-authors in [16]. By the above construction, it was proved
that (R∗,t,u,∼, L, (φ, φ), (U,U)) is a weakly topological quasi-Boolean algebra
[18] and the operators are defined as follows:

(AH, AN) t (BH, BN) = (AH ∪BH, AN ∪BN),

(AH, AN) u (BH, BN) = (AH ∩BH, AN ∩BN),

∼ (AH, AN) = ((Ac)H, (Ac)N),

L(AH, AN) = (AH, ϕ((AH)∗)) = (AH, AHN).

Every topological quasi-Boolean algebra is a weakly topological quasi-Boolean
algebra because (T3) implies (WT3). But the converse is not true.

An example of a weakly topological quasi-Boolean algebra but not a topological
quasi-Boolean algebra is shown in Figure 1.

Figure 1.

The operators ¬ and L of the algebraic structure in Figure 1 are as follows:

¬0 = 1, ¬a = f, ¬c = e, ¬b = d, ¬e = c, ¬d = b, ¬f = a, ¬1 = 0,

L0 = La = Lc = 0, Le = Lb = b, Ld = d, Lf = f, L1 = 1.

In [3], it is shown that TQBA is a variety. Similarly, we can check that WTQBA
is closed under homomorphisms, subalgebras and direct products. Hence it leads
to the following theorem.

Theorem 2.3. WTQBA is a variety of algebras.

In fact, WTQBA is a subvariety of TQBA.
In an attempt to characterize TQBA from WTQBA, we try to find the min-

imal subdirectly irreducible elements of the class Ω = WTQBA \ TQBA. An
element of the class Ω must be a weakly topological quasi-Boolean algebra A =
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(A,∨,∧,¬, L, 0, 1) and the unary operator L does not satisfy the axiom (T3). That
is, it satisfies the axioms (WT1)–(WT4) but not the axiom (T3).

3. Minimal Subdirectly Irreducible Elements of Ω

First, we consider the smallest non-trivial quasi-Boolean algebras:
1. Three-element quasi-Boolean algebra

The operators ¬ and L of the algebraic structure in Figure 1 is as follows:

¬0 = 1,¬a = f,¬c = e,¬b = d,¬e = c,¬d = b,¬f = a,¬1 = 0

L0 = La = Lc = 0, Le = Lb = b, Ld = d, Lf = f, L1 = 1

In [3], it is shown that TQBA is a variety. Similarly, we can check that
WTQBA=HSP(WTQBA), where H, S, and P stand, respectively, for the closure oper-
ators of homomorphisms, subalgebras, and direct products. Hence it leads to the following
theorem.

Theorem 2.3. WTQBA is a variety of algebras.

In fact, WTQBA is a subvariety of TQBA.

In an attempt to characterize TQBA from WTQBA, we tried to find the minimal
subdirectly irreducible elements of the class Ω = WTQBA \ TQBA. An element of the
class Ω must be a weakly topological quasi-Boolean algebra A = (A,∨,∧,¬, L, 0, 1) and
the unary operator L does not satisfy the axiom (T3). That is, it satisfies the axioms
(WT1)-(WT4) but not the axiom (T3).

3 Minimal Subdirectly Irreducible Elements of Ω

First, we consider the smallest non-trivial quasi-Boolean algebras.

Three element quasi-Boolean algebra:
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The operators ¬ and L of the algebraic structure in Figure 1 is as follows:
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2. Four-element quasi-Boolean algebras

The operators ¬ and L of the algebraic structure in Figure 1 is as follows:

¬0 = 1,¬a = f,¬c = e,¬b = d,¬e = c,¬d = b,¬f = a,¬1 = 0

L0 = La = Lc = 0, Le = Lb = b, Ld = d, Lf = f, L1 = 1

In [3], it is shown that TQBA is a variety. Similarly, we can check that
WTQBA=HSP(WTQBA), where H, S, and P stand, respectively, for the closure oper-
ators of homomorphisms, subalgebras, and direct products. Hence it leads to the following
theorem.

Theorem 2.3. WTQBA is a variety of algebras.

In fact, WTQBA is a subvariety of TQBA.

In an attempt to characterize TQBA from WTQBA, we tried to find the minimal
subdirectly irreducible elements of the class Ω = WTQBA \ TQBA. An element of the
class Ω must be a weakly topological quasi-Boolean algebra A = (A,∨,∧,¬, L, 0, 1) and
the unary operator L does not satisfy the axiom (T3). That is, it satisfies the axioms
(WT1)-(WT4) but not the axiom (T3).

3 Minimal Subdirectly Irreducible Elements of Ω
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3. Five-element quasi-Boolean algebra
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Now we can identify the elements of Ω from the above quasi-Boolean algebras by imposing
the unary operator L satisfying the axioms (WT1)-(WT4) but not the axiom (T3). If
any two elements are comparable i.e., a ≤ b, then La ≤ Lb by the axiom (WT3). So,
L(a ∧ b) = La ∧ Lb. Therefore we have the following observation.

Observation 3.1. Any unary operation L satisfying the axioms (WT1)- (WT4) on chain
distributes over ∧, i.e., it satisfies the axiom (T3).

So, we do not consider chains. Hence A3,A5,A4
1 /∈ Ω. In the case of A4

2 and A4
3, all

possible unary operators L on A4
2 and A4

3 satisfying the axioms (WT1)- (WT4) also satisfy
the axiom (T3). So the algebras A4

2 and A4
3 are ruled out. Next, we consider the case of

six element quasi-Boolean algebras. Since A6
1 and A6

2 have the same underlying lattice, we
use the notation A6

1,2 to denote the underlying lattice of these algebras.

Proposition 3.2. The only possible unary operator L on A6
1,2 satisfying the axioms (WT1)

- (WT4) but not the axiom (T3) is defined by L0 = 0, Lc = 0, La = a, Lb = b, Ld = d, L1 =

1.

Proof. From the axioms (WT1) - (WT4), L0 = 0 and L1 = 1. Because the unary op-
erator L does not satisfy the axiom (T3), there exist two elements x, y ∈ A6

1,2 such that
L(x ∧ y) 6= Lx ∧ Ly. Since every comparable pair of elements in A6

1,2 satisfies the axiom
(T3), the only possible pair of elements in A6

1,2 which does not satisfy the axiom (T3) must
be the non-comparable elements. i.e., a and b. Then L(a ∧ b) 6= La ∧ Lb. Now, let us
consider the possible cases.
Case (i): La 6= a, Lb = b (the symmetric case Lb 6= b, La = a is similar).
(a) La = c, Lc = c. Then L(a ∧ b) = Lc = c = c ∧ b = La ∧ Lb. Thus (T3) would hold.
(b) La = c, Lc = 0. Then LLa 6= La and (WT2) would fail.
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use the notation A6
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1.
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1,2 such that
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Now we can identify the elements of Ω from the above quasi-Boolean algebras by imposing
the unary operator L satisfying the axioms (WT1)-(WT4) but not the axiom (T3). If
any two elements are comparable i.e., a ≤ b, then La ≤ Lb by the axiom (WT3). So,
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Now we can identify the elements of Ω from the above quasi-Boolean algebras by imposing
the unary operator L satisfying the axioms (WT1)-(WT4) but not the axiom (T3). If
any two elements are comparable i.e., a ≤ b, then La ≤ Lb by the axiom (WT3). So,
L(a ∧ b) = La ∧ Lb. Therefore we have the following observation.
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1,2 such that
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(T3), the only possible pair of elements in A6

1,2 which does not satisfy the axiom (T3) must
be the non-comparable elements. i.e., a and b. Then L(a ∧ b) 6= La ∧ Lb. Now, let us
consider the possible cases.
Case (i): La 6= a, Lb = b (the symmetric case Lb 6= b, La = a is similar).
(a) La = c, Lc = c. Then L(a ∧ b) = Lc = c = c ∧ b = La ∧ Lb. Thus (T3) would hold.
(b) La = c, Lc = 0. Then LLa 6= La and (WT2) would fail.
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Now we can identify the elements of Ω from the above quasi-Boolean algebras
by imposing the unary operator L satisfying the axioms (WT1)–(WT4) but not
the axiom (T3). If any two elements are comparable, i.e., a ≤ b, then La ≤ Lb
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by the axiom (WT3). So, L(a ∧ b) = La ∧ Lb. Therefore, we have the following
observation.

Observation 3.1. Any unary operation L satisfying the axioms (WT1)–(WT4)
on chain distributes over ∧, i.e., it satisfies the axiom (T3).

So, we do not consider chains. Hence A3,A5,A4
1 /∈ Ω. In the case of A4

2 and A4
3,

all possible unary operators L on A4
2 and A4

3 satisfying the axioms (WT1)–(WT4)
also satisfy the axiom (T3). So the algebras A4

2 and A4
3 are ruled out. Next, we

consider the case of six element quasi-Boolean algebras. Since A6
1 and A6

2 have the
same underlying lattice, we use the notation A6

1,2 to denote the underlying lattice
of these algebras.

Proposition 3.2. The only possible unary operator L on A6
1,2 satisfying the

axioms (WT1)–(WT4) but not the axiom (T3) is defined by L0 = 0, Lc = 0,
La = a, Lb = b, Ld = d, L1 = 1.

Proof. From the axioms (WT1)–(WT4), L0 = 0 and L1 = 1. Because the unary
operator L does not satisfy the axiom (T3), there exist two elements x, y ∈ A6

1,2

such that L(x ∧ y) 6= Lx ∧ Ly. Since every comparable pair of elements in A6
1,2

satisfies the axiom (T3), the only possible pair of elements in A6
1,2 which does not

satisfy the axiom (T3) must be the non-comparable elements, i.e., a and b. Then
L(a ∧ b) 6= La ∧ Lb. Now, let us consider the possible cases.
Case (i): La 6= a, Lb = b (the symmetric case Lb 6= b, La = a is similar).

(a) La = c, Lc = c. Then L(a∧ b) = Lc = c = c∧ b = La∧Lb. Thus (T3) holds.

(b) La = c, Lc = 0. Then LLa 6= La and (WT2) fails.

(c) If La = 0, then Lc = 0 by (WT3). Then L(a ∧ b) = Lc = 0 = La ∧ Lb.
Case (ii): La 6= a, Lb 6= b.

(a) La = c, Lb = c. Thus, in view of (WT2), Lc = c. Therefore, by easy
calculation, (T3) holds.

(b) La = 0, Lb = c (the symmetric case is similar). Since Lb = c, in view of
(WT2), Lc = c. But in this case, La < Lc which contradicts (WT3).

(c) La = 0, Lb = 0. Then Lc = 0 and by easy calculation, one verifies that (T3)
holds.

Thus, it remains only the case La = a and Lb = b. If Lc = c, then (T3) holds. It
follows that it must be Lc = 0. Moreover, if Ld � d, then Ld = a because La = a
and (WT3). But in this case, (WT3) does not hold, because b ≤ d but Lb � Ld,
which is a contradiction (the other case with Ld = b is similar). Therefore, Ld = d.

Hence the only possible unary operator L on A6
1,2 satisfying the axioms

(WT1)–(WT4) but not the axiom (T3) is defined by L0 = 0, Lc = 0, Lb = b,
La = a, Ld = d, L1 = 1. �

In the case of an algebra A6
3, one can prove analogously that L2 and L3 defined

by L20 = 0, L2a = a, L2c = 0, L2b = b, L2d = d, L21 = 1 and L30 = 0, L3a = 0,
L3c = 0, L3b = b, L3d = d, L31 = 1 are the only possible unary operators on A6

3

satisfying the axioms (WT1)–(WT4) but not the axiom (T3).
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Theorem 3.3 ([4]). An algebra A is subdirectly irreducible iff A is trivial or
there exists the least congruence among its nontrivial congruences.

The congruence lattices of the algebras (A6
1, L1), (A6

2, L1), where the unary
operator L1 is defined as in the Proposition 3.2, (A6

3, L2) and (A6
3, L3) are shown

in Figure 2.
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It is evident from the above Hasse diagrams and Theorem 3.3 that the following holds:

Theorem 3.4. (A6
1, L1), (A6

2, L1), (A6
3, L2) and (A6

3, L3) are the minimal subdirectly irre-
ducible algebras in Ω.

An algebra A is congruence-distributive if Con A is a distributive lattice. Therefore,
the algebras (A6

1, L1), (A6
2, L1), (A6

3, L2) and (A6
3, L3) are congruence-distributive.
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Figure 2.

It is evident from the above Hasse diagrams and Theorem 3.3 that the following
theorem holds

Theorem 3.4. (A6
1, L1), (A6

2, L1), (A6
3, L2) and (A6

3, L3) are the minimal sub-
directly irreducible algebras in Ω.

An algebra A is congruence-distributive if Con A is a distributive lattice.
Therefore, the algebras (A6

1, L1), (A6
2, L1), (A6

3, L2) and (A6
3, L3) are congruence-

distributive.
Since the unary operation ¬ has no influence over the operation L, the elements

of Ω are characterized by the sublattice which is closed under the unary operation
L. We shall denote the following lattice structure together with the defined unary
operation L by NT5.

Figure 3.

All the minimal subdirectly irreducible algebras of Ω embed a copy of NT5.

Theorem 3.5. Let A=(A,∨,∧,¬, L, 0, 1) be a weakly topological quasi-Boolean
algebra. Then A ∈ Ω if and only if it embeds a copy of NT5.
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Proof. SupposeA embeds a copy of NT5, then obviously A ∈ Ω (since L(a∧b) 6=
La ∧ Lb). Conversely, assume that A ∈ Ω. Then there exist a, b ∈ A such that
L(a ∧ b) 6= La ∧ Lb. As discussed earlier, a ∦ b. Let us assume that La = p and
Lb = q for some p, q ∈ A. Since LLa = La and LLb = Lb, Lp = p and Lq = q.
Let a ∧ b = c and p ∧ q = z. Now, z = p ∧ q = La ∧ Lb ≤ a ∧ b = c. Thus z ≤ c.
Since Lc � La ∧ Lb = p ∧ q = z, there exists x ∈ A such that x � z and Lc = x.
We have that LLc = Lc, Lx = x. x < z ≤ c imply x = Lx ≤ Lz ≤ Lc = x.
Therefore, Lz = x. Let d = p ∨ q. We have that p = Lp ≤ Ld and q = Lq ≤ Ld
imply d = p ∨ q ≤ Ld. Also, we have Ld ≤ d. Therefore, Ld = d. Thus the
elements of the set N = {x, z, p, q, d} with their unary operation L defined as
Lx = x, Lz = x, Lp = p, Lq = q, Ld = d must be a homomorphic image of NT5. It
is enough to show that p ∦ q and all the five elements of N are distinct. If p ‖ q,
then p ≤ q or q ≤ p. If p ≤ q, then p ∧ q = p. This implies p = z which implies
p = Lp = Lz = x. That is, x = z, which is a contradiction to x < z. Similar
contradiction also occurs when q ≤ p. Therefore p ∦ q. If any other two elements
of N are equal, then that also leads to a contradiction x < z. Hence all elements
of N are distinct in A and they form NT5. �

Corollary 3.6. A weakly topological quasi-Boolean algebra A=(A,∨,∧,¬,L,0, 1)
is a topological quasi-Boolean algebra if and only if it embeds no copy of NT5.

4. Conclusion

In this paper, we have presented the minimal subdirectly irreducible algebras of the
class Ω = WTQBArTQBA. We have characterized the class of topological quasi-
Boolean algebras from the class of weakly topological quasi-Boolean algebras by
the structure NT5. We have a stronger algebra than the topological quasi-Boolean
algebra in the context of rough sets system determined by an equivalence relation
called rough algebra [1] and another algebra named Q-rough algebra [18] stronger
than weakly topological quasi-Boolean algebra in the context of rough sets system
determined by a quasi order. In future, we wish to characterize the class of rough
algebras from the class of Q-rough algebras. This will help us to characterize
the rough sets system determined by an equivalence relation from the rough sets
system determined by quasi order.
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