CHARACTERIZING TOPOLOGICAL QUASI-BOOLEAN ALGEBRAS FROM WEAKLY TOPOLOGICAL QUASI-BOOLEAN ALGEBRAS

D. UMADEVI

Abstract

In this paper, we characterize the variety TQBA (Topological QuasiBoolean algebra) from the variety WTQBA (Weakly Topological Quasi-Boolean Algebra).

1. Introduction

The main idea of rough set theory was to develop a Mathematical formalism to deal with vagueness which arised due to the lack of information. Though rough set proposed by Pawlak [21] has wide range of applications, its algebraic approach has been quite interesting since its initiation by Iwinski in 1987 [12]. Later many authors studied the algebraic structures of rough sets determined by an equivalence relation and arbitrary binary relations $[\mathbf{2}, 5,7,8,11,13,14,15,19,22]$. One can find a survey on the algebras of rough sets in [20]. The notion of a topological quasi-Boolean algebra arose in the context of rough set theory while studying rough equality within the framework of the modal system S5 by Mohua Banerjee and Chakaraborty in [2].

A similar study of rough equality within the framework of modal system S 4 was carried out in $[\mathbf{1 8}]$ and an algebraic structure of rough sets system determined by quasi order was obtained as semantic counter part of the Lindenbaum-Tarski like construction. It does not satisfy an axiom of topological quasi-Boolean algebra. From abstraction of the properties of that algebraic structure, we obtain the notion of weakly topological quasi-Boolean algebra. Similar algebraic structure was named Tarski interior lattice in [6].

Let us denote the class of all topological quasi-Boolean algebras by TQBA and the class of all weakly topological quasi-Boolean algebras by WTQBA. In this paper, we prove that WTQBA is a variety. We also characterize TQBA from WTQBA.

For notations, definitions and results not given here, we refer readers to $[4,9,10]$.

[^0]
2. Weakly Topological Quasi-Boolean Algebras

Let us begin with the formal definition of a topological quasi-Boolean algebra.
Definition $2.1([2])$. An algebra $\mathcal{A}=(A, \vee, \wedge, \neg, L, 0,1)$ is said to be a topological quasi-Boolean algebra if \mathcal{A} satisfies the following statements

1. ($A, \vee, \wedge, \neg, 0,1$) is a quasi-Boolean algebra ($[\mathbf{2 3}]$ or De Morgan algebra).
2. The unary operator L satisfies the following axioms: for every $a, b \in A$,
(T1) $\quad L a \leq a$,
(T2) $\quad L L a=L a$,
(T3) $\quad L(a \wedge b)=L a \wedge L b$,

$$
\begin{equation*}
L 1=1 \tag{T4}
\end{equation*}
$$

Definition $2.2([\mathbf{1 8}])$. An algebra $(A, \vee, \wedge, \neg, L, 0,1)$ is said to be a weakly topological quasi-Boolean algebra if it satisfies the following statements

1. $(A, \vee, \wedge, \neg, 0,1)$ is a quasi-Boolean algebra.
2. The unary operator L satisfies the following axioms: for every $a, b \in A$,

(WT1)	$L a \leq a$,
(WT2)	$L L a=L a$,
(WT3)	$a \leq b \Rightarrow L a \leq L b$,
(WT4)	$L 1=1$.

An algebra $\left(L, \vee, \wedge,{ }^{*}, 0,1\right)$ is called a distributive p-algebra if $(L, \vee, \wedge, 0,1)$ is a bounded distributive lattice and $x \leq a^{*}$ iff $a \wedge x=0$ for all x. An algebra $\left(L, \vee, \wedge,{ }^{+}, 0,1\right)$ is called a distributive dual p-algebra if $(L, \vee, \wedge, 0,1)$ is a bounded distributive lattice and $a^{+} \leq x$ iff $a \vee x=1$ for all x. Let $\left(D_{1}, \vee_{1}, \wedge_{1},{ }^{*}, 0,1\right)$ be a distributive p-algebra and $\left(D_{2}, \vee_{2}, \wedge_{2},{ }^{+}, 0^{\prime}, 1^{\prime}\right)$ be a distributive dual p-algebra such that $D_{1} \cong D_{2}^{\partial}$, where D_{2}^{∂} is the dual of a lattice D_{2} which is obtained by swapping \vee and \wedge in D_{2}. An element a is said to be dense in D_{1} if $a^{*}=0$. Let F be any filter in D_{1} containing all the dense elements of D_{1}. Then we get a weakly topological quasi-Boolean algebra, $\left(\left\langle\left[D_{1}, D_{2}\right], F\right\rangle, \sqcup, \sqcap, \sim, L, \mathbf{0}, \mathbf{1}\right)$ [17], where $\left\langle\left[D_{1}, D_{2}\right], F\right\rangle=\left\{(a, b) \in D_{1} \times D_{2}: a \wedge_{1} \psi(b)=0\right.$ and $\left.a \vee_{1} \psi(b) \in F\right\}$ and for any (a, b) and $(c, d) \in\left\langle\left[D_{1}, D_{2}\right], F\right\rangle$,

$$
\begin{aligned}
(a, b) \sqcup(c, d) & =\left(a \vee_{1} c, b \vee_{2} d\right), \\
(a, b) \sqcap(c, d) & =\left(a \wedge_{1} c, b \wedge_{2} d\right), \\
\sim(a, b) & =(\psi(b), \varphi(a)), \\
L(a, b) & =\left(a, \varphi\left(a^{*}\right)\right), \\
\mathbf{0}=\left(0,0^{\prime}\right), & \quad \mathbf{1}=\left(1,1^{\prime}\right),
\end{aligned}
$$

where ψ and φ are the dual isomorphisms between D_{1} and D_{2}. If D_{1}, D_{2} and F are as above, then $\left\langle\left[D_{1}, D_{2}\right], F\right\rangle$ is a topological quasi-Boolean algebra if and only if D_{1} is a Stone algebra.

It was shown in $[\mathbf{1 7}]$ that the rough sets system determined by quasi order R, $\mathcal{R}^{*}=\left\{\left(X^{\mathbf{\nabla}}, X^{\mathbf{\Delta}}\right): X \subseteq U\right\}$ can be represented as $\left\{(X, Y) \in \mathcal{D}_{R} \times \mathcal{D}^{R}: X \cap \psi(Y)=\phi\right.$ and $X \cup \psi(Y) \in F\}$, where F is the principal filter generated by $B=\{x \in U$: $R(x)=\{x\}\}$ in \mathcal{D}_{R}. The dual isomorphisms φ, ψ between $\mathcal{D}_{R}=\left\{X^{\mathbf{V}}: X \subseteq U\right\}$ and $\mathcal{D}^{R}=\left\{X^{\mathbf{\Delta}}: X \subseteq U\right\}$ are given by $\varphi\left(X^{\mathbf{\nabla}}\right)=X^{c \mathbf{\Delta}}$ and $\psi\left(X^{\mathbf{\Delta}}\right)=X^{c \overline{\mathbf{\nabla}}}$. A similar representation of rough sets system determined by a quasi order was given by Järvinen and his co-authors in [16]. By the above construction, it was proved that $\left(\mathcal{R}^{*}, \sqcup, \sqcap, \sim, L,(\phi, \phi),(U, U)\right)$ is a weakly topological quasi-Boolean algebra [18] and the operators are defined as follows:

$$
\begin{aligned}
& \left(A^{\mathbf{V}}, A^{\mathbf{\Delta}}\right) \sqcup\left(B^{\mathbf{V}}, B^{\mathbf{\Delta}}\right)=\left(A^{\mathbf{V}} \cup B^{\mathbf{V}}, A^{\mathbf{\Delta}} \cup B^{\mathbf{\Delta}}\right), \\
& \left(A^{\mathbf{\vee}}, A^{\mathbf{\Delta}}\right) \sqcap\left(B^{\mathbf{\rightharpoonup}}, B^{\mathbf{\Delta}}\right)=\left(A^{\mathbf{v}} \cap B^{\mathbf{\vee}}, A^{\mathbf{\Delta}} \cap B^{\mathbf{\Delta}}\right), \\
& \sim\left(A^{\mathbf{V}}, A^{\mathbf{\Delta}}\right)=\left(\left(A^{c}\right)^{\mathbf{V}},\left(A^{c} \mathbf{\Lambda}^{\mathbf{\Delta}}\right),\right. \\
& L\left(A^{\mathbf{V}}, A^{\mathbf{\Delta}}\right)=\left(A^{\mathbf{v}}, \varphi\left(\left(A^{\mathbf{v}}\right)^{*}\right)\right)=\left(A^{\mathbf{V}}, A^{\mathbf{\rightharpoonup} \mathbf{\Delta}}\right) .
\end{aligned}
$$

Every topological quasi-Boolean algebra is a weakly topological quasi-Boolean algebra because (T3) implies (WT3). But the converse is not true.

An example of a weakly topological quasi-Boolean algebra but not a topological quasi-Boolean algebra is shown in Figure 1.

Figure 1.
The operators \neg and L of the algebraic structure in Figure 1 are as follows:

$$
\begin{gathered}
\neg 0=1, \quad \neg a=f, \quad \neg c=e, \quad \neg b=d, \quad \neg e=c, \quad \neg d=b, \quad \neg f=a, \quad \neg 1=0, \\
L 0=L a=L c=0, \quad L e=L b=b, \quad L d=d, \quad L f=f, \quad L 1=1 .
\end{gathered}
$$

In [3], it is shown that TQBA is a variety. Similarly, we can check that WTQBA is closed under homomorphisms, subalgebras and direct products. Hence it leads to the following theorem.

Theorem 2.3. WTQBA is a variety of algebras.
In fact, WTQBA is a subvariety of TQBA.
In an attempt to characterize TQBA from WTQBA, we try to find the minimal subdirectly irreducible elements of the class $\Omega=W T Q B A \backslash T Q B A$. An element of the class Ω must be a weakly topological quasi-Boolean algebra $\mathcal{A}=$
$(A, \vee, \wedge, \neg, L, 0,1)$ and the unary operator L does not satisfy the axiom (T3). That is, it satisfies the axioms (WT1)-(WT4) but not the axiom (T3).

3. Minimal Subdirectly Irreducible Elements of Ω

First, we consider the smallest non-trivial quasi-Boolean algebras:

1. Three-element quasi-Boolean algebra

$$
\begin{gathered}
\cdot 1=\neg 0 \\
\cdot a=\neg a \\
\cdot 0=\neg 1 \\
\mathcal{A}^{3}
\end{gathered}
$$

2. Four-element quasi-Boolean algebras

3. Five-element quasi-Boolean algebra

$$
\left\{\begin{array}{l}
1=\neg 0 \\
c=\neg a \\
b=\neg b \\
a=\neg c \\
\mathcal{A}^{5}
\end{array}\right.
$$

4. Six-element quasi-Boolean algebras

\mathcal{A}_{1}^{6}

\mathcal{A}_{2}^{6}

Now we can identify the elements of Ω from the above quasi-Boolean algebras by imposing the unary operator L satisfying the axioms (WT1)-(WT4) but not the axiom (T3). If any two elements are comparable, i.e., $a \leq b$, then $L a \leq L b$
by the axiom (WT3). So, $L(a \wedge b)=L a \wedge L b$. Therefore, we have the following observation.

Observation 3.1. Any unary operation L satisfying the axioms (WT1)-(WT4) on chain distributes over \wedge, i.e., it satisfies the axiom (T3).

So, we do not consider chains. Hence $\mathcal{A}^{3}, \mathcal{A}^{5}, \mathcal{A}_{1}^{4} \notin \Omega$. In the case of \mathcal{A}_{2}^{4} and \mathcal{A}_{3}^{4}, all possible unary operators L on \mathcal{A}_{2}^{4} and \mathcal{A}_{3}^{4} satisfying the axioms (WT1)-(WT4) also satisfy the axiom (T3). So the algebras \mathcal{A}_{2}^{4} and \mathcal{A}_{3}^{4} are ruled out. Next, we consider the case of six element quasi-Boolean algebras. Since \mathcal{A}_{1}^{6} and \mathcal{A}_{2}^{6} have the same underlying lattice, we use the notation $\mathcal{A}_{1,2}^{6}$ to denote the underlying lattice of these algebras.

Proposition 3.2. The only possible unary operator L on $\mathcal{A}_{1,2}^{6}$ satisfying the axioms (WT1)-(WT4) but not the axiom (T3) is defined by $L 0=0, L c=0$, $L a=a, L b=b, L d=d, L 1=1$.

Proof. From the axioms (WT1)-(WT4), $L 0=0$ and $L 1=1$. Because the unary operator L does not satisfy the axiom (T3), there exist two elements $x, y \in \mathcal{A}_{1,2}^{6}$ such that $L(x \wedge y) \neq L x \wedge L y$. Since every comparable pair of elements in $\mathcal{A}_{1,2}^{6}$ satisfies the axiom (T3), the only possible pair of elements in $\mathcal{A}_{1,2}^{6}$ which does not satisfy the axiom (T3) must be the non-comparable elements, i.e., a and b. Then $L(a \wedge b) \neq L a \wedge L b$. Now, let us consider the possible cases.
Case (i): $L a \neq a, L b=b$ (the symmetric case $L b \neq b, L a=a$ is similar).
(a) $L a=c, L c=c$. Then $L(a \wedge b)=L c=c=c \wedge b=L a \wedge L b$. Thus (T3) holds.
(b) $L a=c, L c=0$. Then $L L a \neq L a$ and (WT2) fails.
(c) If $L a=0$, then $L c=0$ by (WT3). Then $L(a \wedge b)=L c=0=L a \wedge L b$.

Case (ii): $L a \neq a, L b \neq b$.
(a) $L a=c, L b=c$. Thus, in view of (WT2), $L c=c$. Therefore, by easy calculation, (T3) holds.
(b) $L a=0, L b=c$ (the symmetric case is similar). Since $L b=c$, in view of (WT2), $L c=c$. But in this case, $L a<L c$ which contradicts (WT3).
(c) $L a=0, L b=0$. Then $L c=0$ and by easy calculation, one verifies that (T3) holds.
Thus, it remains only the case $L a=a$ and $L b=b$. If $L c=c$, then (T3) holds. It follows that it must be $L c=0$. Moreover, if $L d \lesseqgtr d$, then $L d=a$ because $L a=a$ and (WT3). But in this case, (WT3) does not hold, because $b \leq d$ but $L b \not \leq L d$, which is a contradiction (the other case with $L d=b$ is similar). Therefore, $L d=d$.

Hence the only possible unary operator L on $\mathcal{A}_{1,2}^{6}$ satisfying the axioms (WT1)-(WT4) but not the axiom (T3) is defined by $L 0=0, L c=0, L b=b$, $L a=a, L d=d, L 1=1$.

In the case of an algebra \mathcal{A}_{3}^{6}, one can prove analogously that L_{2} and L_{3} defined by $L_{2} 0=0, L_{2} a=a, L_{2} c=0, L_{2} b=b, L_{2} d=d, L_{2} 1=1$ and $L_{3} 0=0, L_{3} a=0$, $L_{3} c=0, L_{3} b=b, L_{3} d=d, L_{3} 1=1$ are the only possible unary operators on \mathcal{A}_{3}^{6} satisfying the axioms (WT1)-(WT4) but not the axiom (T3).

Theorem 3.3 ([4]). An algebra \mathbf{A} is subdirectly irreducible iff \mathbf{A} is trivial or there exists the least congruence among its nontrivial congruences.

The congruence lattices of the algebras $\left(\mathcal{A}_{1}^{6}, L_{1}\right)$, $\left(\mathcal{A}_{2}^{6}, L_{1}\right)$, where the unary operator L_{1} is defined as in the Proposition $3.2,\left(\mathcal{A}_{3}^{6}, L_{2}\right)$ and $\left(\mathcal{A}_{3}^{6}, L_{3}\right)$ are shown in Figure 2.

Figure 2.
It is evident from the above Hasse diagrams and Theorem 3.3 that the following theorem holds

Theorem 3.4. $\left(\mathcal{A}_{1}^{6}, L_{1}\right),\left(\mathcal{A}_{2}^{6}, L_{1}\right),\left(\mathcal{A}_{3}^{6}, L_{2}\right)$ and $\left(\mathcal{A}_{3}^{6}, L_{3}\right)$ are the minimal subdirectly irreducible algebras in Ω.

An algebra \mathbf{A} is congruence-distributive if $\mathbf{C o n} \mathbf{A}$ is a distributive lattice. Therefore, the algebras $\left(\mathcal{A}_{1}^{6}, L_{1}\right),\left(\mathcal{A}_{2}^{6}, L_{1}\right),\left(\mathcal{A}_{3}^{6}, L_{2}\right)$ and $\left(\mathcal{A}_{3}^{6}, L_{3}\right)$ are congruencedistributive.

Since the unary operation \neg has no influence over the operation L, the elements of Ω are characterized by the sublattice which is closed under the unary operation L. We shall denote the following lattice structure together with the defined unary operation L by $N T_{5}$.

Figure 3.

All the minimal subdirectly irreducible algebras of Ω embed a copy of $N T_{5}$.
Theorem 3.5. Let $\mathcal{A}=(A, \vee, \wedge, \neg, L, 0,1)$ be a weakly topological quasi-Boolean algebra. Then $A \in \Omega$ if and only if it embeds a copy of $N T_{5}$.

Proof. Suppose \mathcal{A} embeds a copy of $N T_{5}$, then obviously $A \in \Omega$ (since $L(a \wedge b) \neq$ $L a \wedge L b)$. Conversely, assume that $\mathcal{A} \in \Omega$. Then there exist $a, b \in A$ such that $L(a \wedge b) \neq L a \wedge L b$. As discussed earlier, $a \nVdash b$. Let us assume that $L a=p$ and $L b=q$ for some $p, q \in A$. Since $L L a=L a$ and $L L b=L b, L p=p$ and $L q=q$. Let $a \wedge b=c$ and $p \wedge q=z$. Now, $z=p \wedge q=L a \wedge L b \leq a \wedge b=c$. Thus $z \leq c$. Since $L c \lesseqgtr L a \wedge L b=p \wedge q=z$, there exists $x \in A$ such that $x \lesseqgtr z$ and $L c=x$. We have that $L L c=L c, L x=x . x<z \leq c$ imply $x=L x \leq L z \leq L c=x$. Therefore, $L z=x$. Let $d=p \vee q$. We have that $p=L p \leq L d$ and $q=L q \leq L d$ imply $d=p \vee q \leq L d$. Also, we have $L d \leq d$. Therefore, $L d=d$. Thus the elements of the set $N=\{x, z, p, q, d\}$ with their unary operation L defined as $L x=x, L z=x, L p=p, L q=q, L d=d$ must be a homomorphic image of $N T_{5}$. It is enough to show that $p \nVdash q$ and all the five elements of N are distinct. If $p \| q$, then $p \leq q$ or $q \leq p$. If $p \leq q$, then $p \wedge q=p$. This implies $p=z$ which implies $p=L p=L z=x$. That is, $x=z$, which is a contradiction to $x<z$. Similar contradiction also occurs when $q \leq p$. Therefore $p \nVdash q$. If any other two elements of N are equal, then that also leads to a contradiction $x<z$. Hence all elements of N are distinct in A and they form $N T_{5}$.

Corollary 3.6. A weakly topological quasi-Boolean algebra $\mathcal{A}=(A, \vee, \wedge, \neg, L, 0,1)$ is a topological quasi-Boolean algebra if and only if it embeds no copy of $N T_{5}$.

4. Conclusion

In this paper, we have presented the minimal subdirectly irreducible algebras of the class $\Omega=W T Q B A \backslash T Q B A$. We have characterized the class of topological quasiBoolean algebras from the class of weakly topological quasi-Boolean algebras by the structure $N T_{5}$. We have a stronger algebra than the topological quasi-Boolean algebra in the context of rough sets system determined by an equivalence relation called rough algebra $[\mathbf{1}]$ and another algebra named Q-rough algebra $[\mathbf{1 8}]$ stronger than weakly topological quasi-Boolean algebra in the context of rough sets system determined by a quasi order. In future, we wish to characterize the class of rough algebras from the class of Q-rough algebras. This will help us to characterize the rough sets system determined by an equivalence relation from the rough sets system determined by quasi order.

References

1. Banerjee M. and Chakraborty M. K., Rough algebra, Bull. Polish Acad. Sc.(Math.) 41(4) (1993), 293-297.
2. Banerjee M. and Chakraborty M. K., Rough sets through algebraic logic, Fund. Inform. 28(3-4) (1996), 211-221.
3. Banerjee M. and Koushik P., The Variety of Topological Quasi-Boolean Algebras, Extended abstract, In proceedings of Logic III - Conference in Memoriam of Mostowski, Rasiowa Rauszer, Warsaw, Poland, 2005.
4. Burris S. and Sankappanavar H. P., A course in universal algebra, Springer-Verlag, New York, 1981.
5. Cattaneo G. and Ciucci D., Algebraic structures for rough sets, Transactions of Rough Sets II (2004), 208-252.
6. Cattaneo G. and Ciucci D., A Hierarchical Lattice Closure Approach to Abstract Rough Approximation Spaces, In: Wang, G. et al (Eds.), Proc. (RSKT 2008), LNAI 5009, SpringerVerlag, Heidelberg 2008, 363-370.
7. Comer S. D., On connections between Information systems, rough sets and algebraic logic, In: Algebraic methods in logic and in computer science, Banach Center Publications, 28 (1993), 117-124.
8. Comer S. D., Perfect extensions of regular double Stone algebras, Algebra Universalis, 34 (1995), 96-109.
9. Davey B. and Priestley H. A., Introduction to lattices and order, Second Edition, Cambridge University Press, Cambridge 2002.
10. Grätzer G., General lattice theory, Second edition, Birkhäuser-Verlag, Boston, 1998.
11. Iturrioz L., Rough sets and three-valued structures, In E. Orlowska (ed.), Logic at Work, Heidelberg 1999.
12. Iwiński T. B., Algebraic approach to rough sets, Bull. Polish Acad. Sci. Math., 35 (1987), 673-683.
13. Järvinen J., The ordered set of rough sets, In: S. Tsumoto, R. Slowinski, J. Komorowski, J.W. Grzymala-Busse (Eds.), Proc. Fourth International Conference on Rough Sets and Current Trends in Computing (RSCTC 2004), LNAI 3066, Springer-Verlag, Heidelberg, 2004, 49-58.
14. Järvinen J., Radeleczki S. and Veres L., Rough sets determined by quasiorders, Order 26(4) (2009), 337-355.
15. Järvinen J. and Radeleczki S., Representation of Nelson algebras by rough sets determined by quasiorders, Algebra Unversalis 66 (2011), 163-179.
16. Järvinen J., Pagliani P. and Radeleczki S., Information Completeness in Nelson Algebras of Rough Sets Induced by Quasiorders, Studia Logica 101(5)(2013), 1073-1092.
17. Nagarajan E. K. R. and Umadevi D., A Method of Representing Rough Sets System Determined by Quasi Order, Order, 30(1) (2013), 313-337.
18. Nagarajan E. K. R. and Umadevi D., Algebra of Rough Sets based on Quasi Order, Fundamenta Informaticae, 126(1-3) (2013), 83-101.
19. Pagliani P., Rough Sets and Nelson Algebras, Fund. Inform. 27 (1996), 205-219.
20. Pagliani P. and Chakraborty M. K., A geometry of approximation rough set theory: Logic, algebra and topology of conceptual patterns, Springer, 2008.
21. Pawlak Z., Rough sets, Int. J. Comp. Inform. Sci., 11 (1982), 341-356.
22. Pomykała J. and Pomykała J. A., The Stone algebra of rough sets, Bull. Polish Acad. Sci. Math., 36 (1988), 495-508.
23. Rasiowa H., An Algebraic Approach to Non-Classical Logics, North-Holland Publishing Company, 1994.
D. Umadevi, Department of Mathematics, Alliance College of Engineering and Design, Alliance

University, Bangalore, e-mail: umavasanthy@yahoo.com

[^0]: Received June 5, 2014; revised October 25, 2016.
 2010 Mathematics Subject Classification. Primary 03C05, 03C60.
 Key words and phrases. Topological quasi-Boolean algebra; weakly topological quasi-Boolean algebra; minimal subdirectly irreducible algebras.

