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OSCILLATORY BEHAVIOROF NONLINEAR

ADVANCED DIFFERENTIAL EQUATIONS

WITH A NON-MONOTONE ARGUMENT

Ö. ÖCALAN, N. KILIÇ and U. M. ÖZKAN

Abstract. Consider the first-order nonlinear advanced differential equation

x′(t) − p(t)f (x (τ(t))) = 0, t ≥ t0,

where p(t) is nonnegative function on R and τ(t) is non-monotone or nondecreasing
function such that τ(t) ≥ t for t ≥ t0. Under these assumptions we researched

oscillatory behaviour of solutions of nonlinear advanced differential equations and we

obtain new oscillation criteria, involving limsup and liminf. An example illustruting
the result is also given.

1. Introduction

Consider the nonlinear advanced differential equation

(1) x′(t)− p(t)f(x(τ(t))) = 0, t ≥ t0,

where p(t) is nonnegative function on R and τ(t) is non-monotone or nondecrasing
function such that

(2) τ(t) ≥ t for t ≥ t0

and

(3) f ∈ C(R,R) and xf(x) > 0 for x 6= 0.

By a solution of (1) we mean continuosly differentiable function defined on
[t0,∞) and such that (1) satisfied for t ≥ t0. Such a solution is called oscillatory
if it has arbitrarily large zeros. Otherwise, it is called non-oscillatory.

Recently, there has been a considerable interest in the study of the oscillatory
behaviour of the following special form of (1)

(4) x′(t)− p(t)x(τ(t)) = 0, t ≥ t0,
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and if τ(t) = t + T, where T > 0, then Equation (4) turns into the following
differential equation

(5) x′(t)− p(t)x(t+ T ) = 0, t ≥ t0.
In 1982, Ladas and Stavroulakis [7] established that if

lim inf
t→∞

∫ t+T

t

p(s)ds >
1

e
,

then all solutions of (5) are oscillatory. When p(t) ≡ p ∈ (0,∞), they also proved
that the condition

pT >
1

e
is necessary and sufficient condition such that

(a) The advanced differential inequality

x′(t)− p(t)x(t+ T ) ≥ 0, t ≥ t0,
has no eventually positive solution.

(b) The advanced differential inequality

x′(t)− p(t)x(t+ T ) ≤ 0, t ≥ t0,
has no eventually negative solution.

(c) All solutions of (5) are oscillatory.

We can give also Li and Zhu [9], Koplatadze and Chanturija [4] and Kusano [6]
and Kulenovic and Grammatikopoulus [5] as references for oscillation behaviour
of Equation (5).

In 1983, Fukagai and Kusano [3] proved that if τ(t) is nondecreasing and

lim inf
t→∞

∫ τ(t)

t

p(s)ds >
1

e
,

then all solutions of (4) are oscillatory, while if∫
tτ(t)p(s)ds ≤ 1

e
for all sufficiently large t,

then Equation (4) has a non-oscillatory solution.
Moreover, in [3], the authors proved that the following result; consider the

following nonlinear differential equation

(6) x′(t) + p(t)f(x(τ(t))) = 0, t ≥ t0.
Suppose that p(t) ≤ 0 and τ(t) ≥ t is nondecreasing for t ≥ t0. Suppose moreover
that

(7) M = lim sup
|x|→∞

|x|
|f(x)|

<∞.

If

(8) lim inf
t→∞

∫ τ(t)

t

[−p(s)] ds >
M

e
,
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then all solutions of Equation (6) are oscillatory.
Thus, in this paper, our aim is to obtain new oscillation criteria, involving

limsup and liminf, for all solutions of Equation (1) under the assumption that τ(t)
should not necessarily be monotone and there is no restrictions for f(t) related to
monotony. As far as we can see, since τ(t) is non-monotone function, Equation (1)
has not yet been studied in the literature with the stated conditions.

2. Main results

In this section, we present a new sufficient conditions for the oscillation of all
solutions of Equation (1), under the assumption that τ(t) is non-monotone or
nondecrasing function. Set

(9) h(t) := inf
s≥t

τ(s), t ≥ 0.

Obviously, h(t) is nondecreasing and τ(t) ≥ h(t) for all t ≥ 0.
Suppose that the f in Equation (1) satisfies the following condition

(10) lim sup
|x|→∞

x

f(x)
= M, 0 ≤M <∞.

Theorem 2.1. Assume that (2), (3) and (10) hold. If τ(t) is non-monotone
or nondecrasing function and

(11) lim inf
t→∞

∫ τ(t)

t

p(s)ds >
M

e
,

then all solutions of (1) oscillate.

Proof. Assume for the sake of contradiction, that there exists a nonoscillatory
solution x(t) of (1). Since −x(t) is also a solution of (1), we can confine our
discussion only to the case where the solution x(t) is eventually positive. Then,
there exists a t1 ≥ t0 such that x(t), x(τ(t)) > 0 for all t ≥ t1. Thus from (1), we
have

x′(t) = p(t)f(x(τ(t))) ≥ 0 for all t ≥ t1.
It means that x(t) is nondecreasing. Condition (11) implies that

(12)

∫ ∞
a

p(t)dt =∞.

In view of (12) and by the [8, Theorem 3.1.6] we obtain limt→∞ x(t) =∞. Suppose
that M > 0. Then, by virtue of (10) we can choose t2 ≥ t1 so large that

(13) f(x(t)) ≥ 1

2M
x(t) for t ≥ t2.

On the other hand, we know from [10, Lemma 2.2] (see also [1, Lemma 2.2])
that

(14) lim inf
t→∞

∫ τ(t)

t

p(s)ds = lim inf
t→∞

∫ h(t)

t

p(s)ds.
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Since h(t) ≤ τ(t), x(t) and h(t) are nondecreasing, by (1) and (13), we have

(15) x′(t)− 1

2M
p(t)x(h(t)) ≥ 0, t ≥ t3.

Also, from (11) and (14), it follows that there exists a constant c > 0 such that

(16)

∫ h(t)

t

p(s)ds ≥ c > M

e
, t ≥ t3 ≥ t2.

So, from (16), there exists a real number t∗ ∈ (t, h(t)), for all t ≥ t3 such that

(17)

∫ t∗

t

p(s)ds >
M

2 e
and

∫ h(t)

t∗
p(s)ds >

M

2 e
.

Integrating (15) from t to t∗ and using x(t) and h(t) are nondecreasing, then we
have

x(t∗)− x(t)− 1

2M

∫ t∗

t

p(s)x(h(s))ds ≥ 0

or

x(t∗)− x(t)− 1

2M
x(h(t))

∫ t∗

t

p(s)ds ≥ 0.

Thus, by (17), we have

(18) x(t∗)− 1

2M
x(h(t))

M

2 e
> 0.

Integrating (15) from t∗ to h(t) and using x(t) and h(t) are nondecreasing, we
obtain

x(h(t))− x(t∗)− 1

2M

∫ h(t)

t∗
p(s)x(h(s))ds ≥ 0

or

x(h(t))− x(t∗)− 1

2M
x(h(t∗))

∫ h(t)

t∗
p(s)ds ≥ 0.

Thus, by (17), we have

(19) x(h(t))− 1

2M
x(h(t∗))

M

2 e
> 0.

Combining the inequalities (18) and (19), we obtain

x(t∗) >
1

4 e
x(h(t)) >

(
1

4 e

)2

x(h(t∗))

and hence we have
x(h(t∗))

x(t∗)
< (4 e)2, t ≥ t4.

Let

w =
x(h(t∗))

x(t∗)
≥ 1,

and because of 1 ≤ w < (4 e)2, w is finite.
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Now dividing (1) with x(t) and then integrating from t to h(t), we get∫ h(t)

t

x′(s)

x(s)
ds−

∫ h(t)

t

p(s)
f(x(τ(s)))

x(s)
ds = 0

and

ln
x(h(t))

x(t)
−
∫ h(t)

t

p(s)
f(x(τ(s)))

x(τ(s))

x(τ(s))

x(s)
ds = 0.

Since x(t) is nondecreasing, we get

ln
x(h(t))

x(t)
−
∫ h(t)

t

p(s)
f(x(τ(s)))

x(τ(s))

x(h(s))

x(s)
ds ≥ 0

and

ln
x(h(t))

x(t)
− f(x(τ(ξ)))

x(τ(ξ))

x(h(ξ))

x(ξ)

∫ h(t)

t

p(s)ds ≥ 0

or

(20) ln
x(h(t))

x(t)
≥ f(x(τ(ξ)))

x(τ(ξ))

x(h(ξ))

x(ξ)

∫ h(t)

t

p(s)ds.

where ξ is defined with t < ξ < h(t), while t → ∞, ξ → ∞ and because of this
h(t)→∞. Then taking lower limit on both side of (20), we obtain lnw > w

e . But
this is impossible since lnx ≤ x

e for all x > 0.
Now, we consider the case where M = 0. In this case, it is clear that since

x
f(x) > 0 and

(21) lim
x→∞

x

f(x)
= 0,

by (21), we get

(22)
x

f(x)
< ε and

f(x)

x
>

1

ε
,

where ε > 0 is an arbitrary real number. Thus, since h(t) ≤ τ(t) and x(t), h(t)
are nondecreasing, by (1) and (22), we have

(23) x′(t)− 1

ε
p(t)x(h(t)) > 0.

Integrating (23) from t to h(t), we obtain

x(h(t))− x(t)− 1

ε

∫ h(t)

t

p(s)x(h(s))ds > 0,

and

(24) x(h(t))− 1

ε
x(h(t))

∫ h(t)

t

p(s)ds > 0.

By (16) and (24), we can write

1 >
c

ε
or ε > c,

this contradicts to limx→∞
x

f(x) = 0. The proof of the theorem is completed. �
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Theorem 2.2. Assume that (2), (3), (10) and (12) hold with 0 < M <∞. If
τ(t) is non-monotone and

(25) lim sup
t→∞

∫ h(t)

t

p(s)ds > M,

where h(t) is defined by (9), then all solutions of Equation (1) oscillate.

Proof. Assume for the sake of conradiction, that there exists a nonoscillatory
solution x(t) of (1) and it means that x(t) is nondecreasing. In view of (12), we
know from Theorem 2.2 that limt→∞ x(t) =∞ for t ≥ t1. On the other hand, by
(10), we have a constant θ > 1 such that f(x(t)) ≥ 1

θM x(t) for t ≥ t1 ≥ t2. So, by
Equation (1) and using the functions x(t) and h(t) are nondecreasing, we have

(26) x′(t)− 1

θM
p(t)x(h(t)) ≥ 0, t ≥ t1 ≥ t2.

Now, integrating (26) from t to h(t), then we have

x(h(t))− x(t)− 1

θM

∫ h(t)

t

p(s)x(h(s))ds ≥ 0,

or

x(h(t))− x(t)− 1

θM
x(h(t))

∫ h(t)

t

p(s)ds ≥ 0.

This implies

x(h(t))

[
1− 1

θM

∫ h(t)

t

p(s)ds

]
≥ 0

and hence ∫ h(t)

t

p(s)ds ≤ θM,

for sufficiently large t. Therefore,

(27) lim sup
t→∞

∫ h(t)

t

p(s)ds ≤ θM.

On the other hand, from (2.17), we can write

lim sup
t→∞

∫ h(t)

t

p(s)ds = K > M.

So, we get M < K+M
2 < K. Therefore, if we choose θ = K+M

2M > 1, then from
(27), we get

lim sup
t→∞

∫ h(t)

t

p(s)ds = K ≤ θM =
K +M

2
.

This is a contradiction to K > K+M
2 . So, the proof is completed. �

Remark 2.3. We remark that if τ(t) is nondecreasing, then we have h(t) = τ(t)
for all t ≥ t0 and the condition (25) reduces to

(28) lim sup
t→∞

∫ τ(t)

t

p(s)ds > M,
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Now, we have the following example.

Example 2.4. Consider the following nonlinear advanced differential equation

(29) x′(t)− 3

e
x(τ(t)) ln(3 + |x(τ(t))|) = 0, t ≥ 1,

where

(30) τ(t) =

{
4t− 6k − 2, if t ∈ [2k + 1, 2k + 2]

−2t+ 6k + 10, if t ∈ [2k + 2, 2k + 3] ,
k ∈ N0.

By (9), we see that

h(t) := inf
s≥t

τ(s) =

{
4t− 6k − 2, if t ∈ [2k + 1, 2k + 1.5]

2k + 4, if t ∈ [2k + 1.5, 2k + 3] ,
k ∈ N0.

If we put p(t) = 3
e and f(x) = x ln(3 + |x|), then we have

M = lim sup
|x|→∞

x

x ln(3 + |x|)
= 0.

Now, for t = 2k + 3, k ∈ N0, we have

lim inf
t→∞

∫ τ(t)

t

p(s)ds = lim inf
t→∞

∫ h(t)

t

p(s)ds =
1

e
>
M

e
,

that is, all conditions of Theorem 2.2 are satisfied and therefore all solutions of
(29) oscillate.

We remark that no result in the literature gives an answer for the equation (29)
to be oscillatory under the (30).
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