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ON THE SOLVABILITY OF THE SEQUENCE SPACES
EQUATIONS OF THE FORM (#)a + F, =F, (p>1)
WHERE F = ¢, ¢ OR /s

B. DE MALAFOSSE

ABSTRACT. Given any sequence z = (zn),>1 of positive real numbers and any set
E of complex sequences, we write E. for the set of all sequences y = (yn)n>1 such
that y/z = (yn/2n)n>1 € E; in particular, c, denotes the set of all sequences y such
that y/z converges. By A we denote the operator of the first difference defined by
Any = yn — Yn—1 for all sequences y and all n > 1, with the convention yg = 0. In
this paper, we state some results on the (SSE) of the form (¢5)a + Fr = F, with
p>1,a,be Ut and F € {co, ¢, o0 }. We apply these results to the solvability of the
(SSE) (£8)a + sz = sy for u > 0, ((2)a + 5 = s) with 7 # 1 and (¢0)a + Fr = Fy
for r, u > 0 and F = ¢, ¢, or £oo. These results extend those stated in [14].

1. INTRODUCTION

For any given set of sequences E and for any positive sequence a, we write FE, =
(1/a)~! % E for the set of all sequences y for which y/a = (yn/an),>, € E. In

(3], by 84, s and & the sets E, for E = s, co or ¢, respectively. Then in (6]
we defined the sum E, 4+ F, and the product E, x F;, where E and F are any
of the sets ¢o, co or ¢. Then in [9] we gave a solvability of sequences spaces
inclusions Gy, C E, + F, where E, F, G € {lw,co,c} and some applications to
sequence spaces inclusions with operators. In the same way recall that the spaces
Weoo and wqg of strongly bounded and summable sequences are the sets of all y
such that (n™'Y7_; [yk|)n>1 is bounded and tend to zero, respectively. These
spaces were studied by Maddox [1] and Malkowsky [24]. In [20] some properties
were given of well known operators defined on the sets W, = (1/a)™! * ws and
WY = (1/a)~! * wo. The sets of analytic and entire sequences denoted by A and
I' are defined by sup,>; (|y»|"/") < 0o and lim,_,o (|yn|"/") = 0, respectively.
In this paper, we deal with special sequence spaces inclusion equations (SSIE),
(resp. sequence spaces equations (SSE)), which are determined by an inclusion
(resp. identity), for which each term is a sum or a sum of products of sets of
the form (E,)r and(Efy))r where f maps UY to itself, E is any linear space of
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sequences and T is a triangle. Some results on the (SSIE) and the (SSE) were
stated in [12, 23, 9, 7, 8, 21, 11, 19, 22].
In [19], we determined the set of all positive sequences z for which the (SSIE)

(S(IC)) B(r,s) c (S‘SCC) ) B(r’,s")

is the generalized operator of the first difference defined by (B(r,s)y)n = ryn +
$Yn—1 for all n > 2 and (B(r, s)y)1 = ry1. In this way we determined the set of all
positive sequences z for which (ry,—+syn—1)/x, — limplies (r'y,+8'yn—_1)/zn — 1
(n — o) for all y and for some scalar .

In this paper, we extend in a certain sense some results given in [23, 9, 7,
8, 21, 11, 22]. In [21], we show that for any given positive sequences a and
b the solutions of the equations x, + s2 = s where x is any of the symbols s
or s(© are determined by s, = s if a/b € co, and if a/b ¢ cy each of these
equations has no solution. We also determined the set of all positive sequences x
for which y,, /b, — [ if and only if there are sequences u and v for which y = u+wv
and u,/a, — 0, vy,/x, — ' (n — c0) for all y and for some scalars [ and I'.
This statement is equivalent to the equation s + s{” = s,(f). In [11], we gave
some properties of the sets of a—analytic and a-entire sequences denoted by A,
and T, and defined by sup, = (|[yn| /an)"™ < 0o and limy,_e0 (|yn| /an)"™ = 0,
respectively. Then, we determined the set of all x € U™ such that for every
sequence y, we have y, /b, — [ if and only if there are sequences v and v with y =

u+v, (Jua| /an)’™ = 0 and v, /2, — I (n — 00) for some scalars | and I’. This

statement means T'y+s'” = sl(f). In [8], we solved the (SSE) Ea—I—(sg;C))B(T 9= s

where E = {, ¢o or ¢ and z is the unknown. In [7], under some conditions we
determined the solutions of (SSE) with operators of the form (Eq*E,+Epy)a = E,,
(Eox(Ey)?+ Ey* Ey)a = B, and E, + (E,) , = E, where E is any of the sets {5
or ¢g. In [21] we determined the sets of all positive sequences x that satisfy the

holds, where 7,77, s' and s are real numbers, and B(r, s)

systems s0 + (Sz)A = Sby Sz D sp and sq + (séc))A = s}()c), s:(rc) D sgc). Then, we
dealt with the (SSE) with operators defined by (Eu)cp, + (s D, = st
where E is either ¢, or ¢g. In [22] we dealt with the (SSE) E, + s, = sp, where
E € {ws,wo, ¢} where £, is the set of all sequences of p-absolute type. Then,
we solved the (SSE) E, + si” = sl()c), where E € {wo,{,} and a solvability can
be found of the equation E, + s, = sp, where F € {¢,{x}. In [10], we studied
the (SSE) with operators (Ea)c(y)c() + (Ex)cnoyc(uy) = Ev, where b € Cy and
E is any of the sets ¢o or ¢yg. More recently in [12], we dealt with the solvability
of (SSE) of the form Ep + F, = F, where T is either of the triangles A or X,
where A is the operator of the first difference and ¥ is the operator defined by
Yoy = > r_; yk for all sequences y. More precisely, we gave a solvability of the
(SSE) Ea + F, = Fy, where E is any of the sets cg, £p, (p > 1), wo or A and
F = cor /. Then, there is a solvability of the (SSE) Es, + F, = F}, where E is
any of the sets cg, ¢, loo, £y, (p > 1), wo, I', A and F' = c or {. Finally, there is a
solvability of the (SSE) with operator defined by Ex, + F,, = F, where E =T or A,
F = cor £y, and a solvability of the (SSE) I's, + A, = A,. In [13] for any given



ON THE SOLVABILITY OF THE SEQUENCE SPACES EQUATIONS 159
positive sequence a and b we solved the (SSE) defined by (E,) o +5i9 = 31(70) where
E = ¢y or £y, (p> 1) and the (SSE) (E,), + s2 = s) for E = c or s1, and we gave
applications to particular classes of (SSE). In [15] we dealt with the solvability
of the (SSIE) of the form {o, C £ + F, where F’ is either ¢y or {. Then, we
solved each of the (SSIE) ¢ C € 4 sz, ¢ C € + s{? and the (SSE) € + s = .
Then, it can be found a resolution of the (SSE) of the form (¢£), + F, = F with
p>1,r>0and F € {cy,c,loo}. In this paper, we extend some of the previous
results and we obtain a resolution of the next (SSE) (¢2)a + g = sy for u > 0,
(P)a + % = s with r # 1 and (¢2)a+ F, = F, for r, u > 0 and F = ¢, ¢ or {o.

This paper is organized as follows. In Section 2, we recall some definitions and
results on sequence spaces and matrix transformations. In Section 3, we state some
results on the multiplier M (E, F) of classical spaces In Section 4, we recall some
results on the sets f, 6, r, 6'\1 and G;. In Section 5, we recall some definitions
and results on the (SSIE) and (SSE) and deal with the solvability of the (SSIE)
81 CE+8z,¢c0CE+8Y, cC £+s'? = cand on the (SSE) E+s, =51, E+52 = ¢
and €45 = ¢. In Section 6, we state some results on the (SSE) (E; ) +F, = Fu,
where E and F' are any of the sets cg, ¢ or £. In Section 7, we deal with the
(SSE) ({2)a + F, = Fy, (p > 1) and we solve the (SSE) (¢2)a + s, = s, and
(P)a + 8% = ) for r # 1. Finally, in Section 8, we apply the results of Section 7
to the solvabilty of the (SSE) (¢2)a + F, = F,, for v, u > 0, where F' are any of
the spaces cg, ¢ or £s.

2. PRELIMINARY RESULTS

An FK space is a complete linear metric space for which convergence implies
coordinatewise convergence. A BK space is a Banach space of sequences that is an
FK space. A BK space E is said to have AK if for every sequence y = (yn)n>1 € E,
then y = limy, 00 > ey yre® | where e®) = (0,...,0,1,0,...), 1 being in the k-th
position.

For a given infinite matrix A = (Apx)n,k>1 We define the operators A,, for any
integer n > 1, by Ayy = > oo AkYk, where y = (yx)r>1, and the series are
assumed convergent for all n. So we are led to the study of the operator A defined
by Ay = (A,y),~, mapping between sequence spaces. When A maps E into F,
where E and F are any sets of sequences, we write that A € (E, F), (cf. [1]). Tt
is well known that if E has AK, then the set B (E) of all bounded linear operators
L mapping in E, with norm || L|| = sup, ([|L (y)|z / |yl ) satisfies the identity
B(E) = (E,E). By w, cg, ¢ and £y for the sets of all sequences, the sets of
null, convergent and bounded sequences. By /P for p > 1 we denote the set of
all sequences y = (yx),>, such that > p-, |yx|” < oco. Let UT C w be the set of
all sequences u = (un);>1 with u, > 0 for all n. Then, for any given sequence
= u, for all

nn
n. For u = (r"),>1 we write D, for Dy. Let E be any subset of w and u be any

u= (un)n21 € w we define the infinite diagonal matrix Dy by [Dy]
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sequence with wu, # 0 for all n. Using Wilansky’s notations [27] we have
(1/u) ' * E=Du*E={y= (yo)n>1 €w:y/uc E}.

By Eu, we can also denote the set D, * E. We use the sets s?, {9, s, and 17
defined as follows. For given a € UT we let D,*co = 82, Dy*c = s,(lc), also denoted
by ¢q, and D, x P = (P for p > 1 and s, for p = oo, (cf. [3, 5]). Each of the spaces
Do E, where E € {cg, ¢, loo, (P} is a BK space normed by [y, = sup,,>1 (|ynl /an)

and ||lyll,» = >°72; (|yk| /ax)?. Then, the spaces sj and €7 have AK. If a = (1")n>1

with r > 0, we write s,., s, sgc) and /P for the sets s, 52, sgf) and (2 respectively.
When r = 1, we obtain s; = l, 8§ = co, s§C> = c and ¢} = ¢P. Recall that

S1 = (s1,s1) is a Banach algebra (cf. [2]) and (co,s1) = (¢,81) = (81,81) = S1.
We have A € Sy if and only if sup,,>1 (3 pey [Ank|) < co. For any subset F of w,
we write F(A) = Fp = {y €w: Ay € F} for the matrix domain of A in F. The
infinite matrix T' = (tnx),, >, i said to be a triangle if ¢,, = 0 for k > n and
tnn # 0 for all n. Throughbﬁt this paper we use the next well known statement.
If T, T', and T" are triangles, E and F are any sets of sequences, then we have
T € (Er/, Frv) if and only if T"TT'~! € (E, F), (cf. [7, Lemma 9, p. 45]). Then,
for any given set E of sequences, we write AE = {y € w : y = Az for some x € E}.

Finally, we recall the characterization of (¢, G) where G = ¢y, ¢ or £, which is
used in the following. Throughout this paper we write g = p/ (p — 1) forp > 1. We
define M (€, ls) = sup,, (|ank|) if p =1, and M (7, ls) = sup,, (O pe; |ank|?) if
p > 1. We obtain the following.

Lemma 1 ([26, Theorem 1.37, p. 161]). Let p > 1. Then we have
i) Ae (P L) if and only if
(1) M (PP L) < o0.
i) A€ (P, co) if and only if the condition in (1) holds and lim, o anr =0
for all k.

iii) A € (¢2,¢) if and only if the condition in (1) holds and lim, o any = lg
for some scalar I, and for all k.

3. THE MULTIPLIERS OF SOME SETS OF SEQUENCES

First we need to recall some well-known results. Let y and z be sequences and
let £ and F be two subsets of w, then we write yz = (y,2n),~,, we denote by
M(E,F) = {y €w: yz € F for all z € E} the multiplier space of E and F. In
this way, we recall the following results.

Lemma 2. Let E, E, F and F be arbitrary subsets of w. Then
(i) M(E,F) C M(E,F) for all E C E,
(il) M(E,F) C M(E,F) for all FCF.

Lemma 3. Let a € w, b be a nonzero sequence and E, F C w. Then A €
(Do * E,Dy * F') if and only if Dy ,ADq = ()\nkak/bn)mk,21 €(E,F).
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We have D, E C Dyp* F if and only if I € (D, * E, Dy, * F), which is equivalent
to Doy € (B, F) and to a/b € M(E, F'). This gives the following lemma.

Lemma 4. Leta, b€ Ut and let E and F be two subsets of w. Then Dy E C
Dy * F if and only if a/b € M(E, F).

In a similar way we obtain.

Lemma 5. Leta, b€ Ut and let E, F and G be subsets of w that satisfy the
condition M(E,F) = G. Then the following statements are equivalent:
i) a € Dyx@G,
ii) a/be M(E,F),
iii) Dy * E C Dy * F.

In the following we use the notation E* = ENU™ for any subset E of w. We
have the next result.

Lemma 6. Let E, F be linear spaces of sequences and assume F' is of absolute
type, that is,

(2) z€F = |z| € F for all z € w.
Then M(ET,F)= M(E,F).

By [25, Lemma 3.1, p. 648] and [26, Example 1.28, p. 157], we obtain the
following result.

Lemma 7. Let p > 1. We have:

i) M(e, co) M(loo,¢) = M(loo,c0) = co and M(e,c) = c.
ii) M (E,lo) =M (co, F) =Lloo for E, F = cg, ¢ or lo
iii) M(co,ﬁp) M (¢, P) = M (b, £P) = £P.

iv) M (P, F) =Ly for F € {co,c,s1,P}.

4. THE SETS f, @, I, 6‘\1 AND Gj.

To solve the next equations we recall some definitions and results. Now let U be
the set of all sequences (uy),~; € w with u, # 0 for all n. The infinite matrix
C (a) with a = (a,), € U is the triangle defined by [C (a)],, = 1/a, for k < n.
It can be shown that the triangle A (a) whose the nonzero entries are defined by
[A(a)l,,, = an, and [A(a)],,,,_; = —an—1 for all n > 2 is the inverse of C (a), that
is, C(a) (A(a)y) = A(a)(C(a)y) forally € w. If a = e = (1,1,...1,...) then
we obtain the well known operator of the first difference represented by A (e) =
A. Then we have A,y = y, — yn_1 for all sequences y and for all n > 1, with the
convention yg = 0. It is usually written ¥ = C (). Note that A = ¥~ and A,
3> € Si for any R > 1. By 6’\1 and C we define the sets of all positive sequences
a that satisfy the conditions C (a)a € {, and C (a) a € ¢, respectively. Then, we
write T' and T' for the sets of all positive sequences a that satisfy the conditions
lim, 00 (@n—1/an) < 1 and lim, o (@n—1/a,) < 1, respectively (cf. [3]). Finally,
by Gi the set Gy = {x € Ut : z,, > K4™ for all n for some K > 0 and v > 1}.
We obtain the following lemmas.
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Lemma 8. We havef:CA'CFCal C Gy.

Proof. The identity T = C follows from [18, Proposition 2.2 p. 88|, and the
inclusions I C Cy C G follow from [3, Proposition 2.1, p. 1786]. O

Lemma 9. Let a € UT. Then we have:
i) The following statements are equivalent
o) aeCy,
ﬂ) (Sa)A = Sa,
) ()a =k
ii) a € r if and only if (sﬁf))A = sﬁf).
i) a € T implies (P =102,
Proof. The statement in i) follows from [3, Theorem 2.6, pp. 1789-1790].
ii) follows from [3, Theorem 2.6, pp. 1789-1790] and [18, Proposition 2.2 p. 88|.
iii) follows from [5, Theorem 6.5, p. 3200]. O

5. ON SOME (SSIE) AND THE (SSE)

5.1. The sets Z(E, F), S(E, F) and the relation Rp.

The solvability of the (SSE) E, + F, = F}, consists in determining the set of all
positive sequences z that satisfy the statement y/b € F if and only if there are

two sequences «, (8 such that y = o+ /3, where a/a € FE and §/x € F for all y.

For instance, the solvability of the equation s, + s(f) = sgc) for a, b € U™ consists

in determining the set of all z € U™ that satisfy the next statement. For every
sequence y, the condition y,, /b, — I (n — o0) if and only if there are two sequences
a, B such that y = a+0 for which sup,,~; (|an| /an) < 0o and B, /z, — U (n — o0)
for some scalars [, I'. For any given linear spaces of sequences F and F, we put
I(E,F) = {z €eUT : K, CE,+ F,} and S(E,F) = {&¢ €U : E, + F, = F,}.
To characterize the set S(E, F') we need to define the relation Rg as follows. For
b € Ut and for any subset F of w, by cl¥ (b) the equivalent class for the equivalence
relation Rp defined by

TRpyif Dy x F'= Dy x F for z,y € UT.

It can be easily seen that cl? (b) is the set of all # € UT such that z/b € M (F, F)
and b/xz € M (F,F), (cf. [21]). Then we have c1” (b) = 1) (). For instance
cl® (b) is the set of all z € U+ such that D, xc = Dy c, that is, s\ = sl(f). This is
the set of all sequences € U™ such that x,, ~ Cb, (n — o) for some C > 0. In
the following we write c1° (b) for cl*= (b) for the set of all positive sequences such
that Kb, <z, < Kb, for some K;, K2 > 0 and for all n, (cf. [4, Proposition 1,
p. 244]). For b = (r"), -, we write cl” (r) for the set cl” (b), to simplify.

Now, recall the next elementary result on the sum of linear spaces of se-
quences. Let E, F and G be linear subspaces of w, then we have £ + F C G
if and only if E C G and F C G. For instance we have ¢y + s, C s7 if

and only if z € s and there is no positive sequence = for which s; + s C
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co. Then, we let 575 = {x € U : 2, > Kby, for some K > 0 and for all n}, and
é%:{z6Uﬂhmwmﬁ%MM:lbmmmli@+mﬁﬂd.Dﬂyibﬁm
= 51/, and sgi),n) = Sgc/)r, (or €1/) for r > 0. Notice

that c1® (b) = sl(f) ~ s9. It can be easily seen that sgc/)b =ap={zecU": sl()c) C

sV, (cf. [21)).

plify, we write 51 /mm) _

5.2. On the (SSIE) s; CE+5,, 0 CE+8Y, cCE+ st = ¢ and the (SSE)
E+5, =251, E+ ) =co and 5+s§;c) =c.

5.2.1. On the (SSIE) sy CE+ 84y, 0 CE+ 52 and ¢ C € + (9. In this part,

we recall some results on the solvability of the (SSIE) of the form F C & + F,

where £ and F' are linear spaces of sequences. These results may be applied to the

(SSIE) F, C E4 + F, which is equivalent to F' C E,, + F, with y = x/b.

Proposition 10. Let £ be a linear space of sequences and let p > 1. Then we
have
i) Let & C c¢. Then, the set Z(E,s1) of all positive sequences x such that
s1 C €+ sy is determined by

I((‘:, 81) = 71

i) Let € C P U s, with a € ¢g. Then, the set I(E,co) of all the positive
sequences T such that co C € + s is determined by

Z(ga CO) = S51.

iii) Let £ C co U (Sa)a with oo € cs. Then, the set Z(E,c) of all the positive

sequences x such that ¢ C € + s§f> is determined by

Z(&,¢c)=c¢C

Proof. 1) follows from [15, Theorem 2, p. 113]. ii) Let 2 € Z(€, ¢p) and assume
E Cs, with a € ¢y. Then we have

COCS—l—snga—i—sx:saﬂ

and 1/(a+ ) € M(co,s1). Since M(cg, s1) = s1 we deduce there is K > 0 such
that o, + z,, > K and since o € ¢y there is K’ > 0 such that z,, > K’ for all
n and z € 57. So, we have shown Z(&,¢y) C 51 if £ Cs, with a € ¢g. Now, we
consider the case & C /F. Let € Z(&, o) with £ C ¢P. Then we have s% C 4 if
and only if 1/\ € £P since M (¢g, ¢P) = ¢?. Then we have

cQCE+sy ClP 4+ =0F

and 1/ (e+ Ax) € M (co, ) = ¢P. Since P C ¢, we deduce 1 + \pz, — 0
(n — o0) and 1/Az € ¢o for all A € U such that 1/\ € ¢?. By Lemma 6 we
have 1/x € M (£P,cy) and since M (¢P,cy) = s1 we conclude z € 37 and again
I(E,co) C 37 if € C £P. Conversely, if € 37 then we have ¢y C s0 and ¢y C € + 59
and we conclude Z(&€, ¢g) = 57.
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iii) The case € C ¢g. By [16] we have ¢ C €+ ¢ if and only if # € ¢. The case
E C (sa)a with a € ¢s follows from [15], Theorem 5, p. 119. This completes the
proof. O

5.2.2. On the solvability of the (SSE) £+s, =51, £+52=¢; and E+s¥) =c.
The previous results may be applied to the (SSE) £ 4 s, = s; as follows.

Proposition 11.

i) Let £ C ¢ be a linear space of sequences. Then, the set S(E,s1) of all
positive sequences x such that € + s, = s1 is determined by

S(E,51) = cI™ (e).

i) Let p > 1 and let € be a linear space of sequences such that £ C £ Us,, with
a € cy. The set S(€,c) of all the positive sequences x such that € +s2 = ¢y
1s determined by

S(&,cp) =cl™ (e).

iii) Let € be a linear space of sequences with & C coU (sq)a with o € cs. Then,
(c)

the set S(&, ¢) of all positive sequences x such that E+sy’ = ¢ is determined
by
S(€,¢) =cl(e).

Proof. 1) Since £ C ¢ the equation £ + s, = s1 is equivalent to the statements
x € sy and ¢ € Z(€, s1), and by i) in Proposition 10 we have Z(&,s1) = s1 and
conclude S(&,s1) = s1 N51 = cl™ (e).

ii) Let € S(E,cp). Then we have s C ¢p, that is, * € s; and by ii) in
Proposition 10 we obtain x € Z(&, ¢g) = 51. So, we have shown S(&, ¢p) C cl™ (e).
Conversely, let € c1* (e). Then we have s = ¢ which implies £ +s) = € +cy =
¢o since £ C P U s, C co. This concludes the proof of ii).

iii) Case €& C ¢g. By iii) in Proposition 10 we have Z(€,¢) = ¢. Then, the
inclusion &£ + s§f) C ¢ holds if and only if sg‘) C ¢, that is, z € ¢. So, we have
shown that if £ C ¢o then we have S (€,¢) = cl®(e). The case £ C (sq)a with

a € cs follows from [15, Theorem 5, p. 119]. This concludes the proof. O
6. ON THE (SSE) WITH OPERATOR OF THE FORM (E,)\ + Fp = F

We need some additional definitions and notations. Let a, b € U and let E, F
be linear spaces of sequences. By S ((E,), ,F) we denote the set of all x € U™
that satisfy the (SSE) with operator

(Bo)p + Fy = Fy.

To simplify we write S% = S((Eu)x-c0), S = S(Ea)a,c) and SF =
S((Ea)a »lss) =S ((Ea) s, s1)- For instance S is the set of all positive sequences
z = (r,),>, that satisfy the next statement. The condition y/b € ¢y holds if and

only if there are u, v € w such that y = v +v, Dy/,Au € E and v/x € ¢o for all y
(cf. [12, 15, 14]).
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We may apply the previous results to the solvability of the (SSE) (s,)A + Fr =
F,, (SQ)A +F, = F, and (s&c))A +F, =F, for F = ¢y or {s for r, u > 0.
The solvability of the (SSE) (s,)5 + Sz = Su, (s2)  + Sz = su Was obtained in
[14, Theorem 16, p. 235]. The solvability of the (SSE) (sS.C))A + s, = s, can be
obtained from i) in Proposition 11. This (SSE) is equivalent to the next statement.
The condition y,/u™ = O (1) (n — o0) holds if and only if there are «, 8 € w with
y = o+ [ such that lim, oo Apa/r™ =1 and B,/x, = O (1) (n — o) for all y
and for some scalar [. We are led to state the following results.

Proposition 12. Letr, u >0 and let E = s1, ¢ or ¢y

i) Ifr <1, thenSOO:{ 51 (u) Zzi

ii) If r =1, then S’%O:{ 51 (u) Zzz},

iil) If r > 1, then
a)

cd™ (w)  ifr<u,
(3) S =< st if 1 = u,
0 if > u.

0 if r > u.

Concerning the solvability of the (SSE) (E,), + s% = 5% with E € {co,¢, s}
we obtain the following proposition.

Proposition 13 ([14, Theorem 22, p. 237]). Letr, u > 0 and let E € {cp, ¢, $1}.

. o () ifu>1,
i) Ifr <1, then S _{ 0 ifu<l

0 .
ii) Ifr =1, then S9 :Sgoz{ 51 (u) %ii
iii) Ifr > 1, then B

a) SO = 55°, where S° is determined by (3) in Proposition 12.

0 _ 0 o _ J ¥ ) ifr<u,
b) S; =S, and S, —{ 0 ifr >
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7. ON THE (SSE) OF THE FORM ({2)a + F, =F, (p > 1)
AND APPLICATION TO SPECIAL CASES
First, we state general results on the (SSE) (/2)a + F, = F}, and apply them to the
solvability of the special (SSE) of the form (¢2)+s, = su, (£, ¢, )A+sw = o0,
n>1

(P)a + 53 = sp for v # 1 and ()5 + 53 = 0, _,- For this study, we use the
factorable matrix D, ;> D, which is the triangle whose nonzero entries are defined
by (Dl/bZDa)nk = ay /b, with k <n.

7.1. On the (SSE) ({2)a +F, =Fy, (p>1),a, beUT and F € {co,¢,loo}-

In this part we let 0@ = (b9}  af)
following result.

+
n>1 for a, b € UT. We can state the

Proposition 14. Letp > 1 and a, b € UT. Then we have:
i) The set Sj, = S((Eh) A, ¢) of all positive sequences x = (zn),~, such that
()5 + st = s,(f) satisfies the next properties:
a) S5, =cl®(b) if oD € by and 1/b € co.
b) S5, =0 if o@D ¢ by or1/béec.
ii) The set Sz = S((€h) A 1 Loo) of all positive sequences x = (xy),,5, such that
() A + 55 = sp satisfies the neat properties:
a) S =cl™(b) if o' € by and 1/b € c.
b) S5 =0 if 0@ ¢ Lo,
iii) The set Sg, = S ((£9) 5 ,co) of all positive sequences x = (), such that
(P) 5 + 8% = sY satisfies the next properties:
a) S, =cl™ (b) if there is o € co such that ((anbn)fq >ory aZ) _E loo.
b) 8%, =0 if 0@ ¢ by or1/b ¢ cy. -

Proof. First, notice that since A™! = X the (SSE) (¢2)a + F, = F, where
F € {co,c,ls} is equivalent to the (SSE) (Dy,,XD,) P + F,;, = F. i) a) By
Proposition 11 we have S§, = cl®(b) if € = (Dl/bEDa) P C co, that is, Dy, XD, €
(P, cp) which is equivalent to o@ ¢ ¢ and 1/b € cg. b) We have z € S,
Dyjy * (65)n C c and Dy, XD, € (P, c) which is equivalent to o@ e ¢ and
1/bec Soifol@ ¢ (,, or 1/b¢ c then we conclude S§, = (.

ii) a) By Proposition 11 we have Sg5 = ¢ (b) if £ = (D1,4XD,) 7 C c. This
inclusion is equivalent to 0(?) € ¢, and 1/b € ¢. b) may be shown as above. iii)
We have S§, = c1® (b) if &€ = (D1,,5D,) (P C so with a € ¢o. This inclusion
is equivalent to Dy/qpXD, € (£7,51) and we conclude by the characterization of
(¢P,s1). b) can be shown using the same arguments as those above. O

Remark 15. The solvability of the (SSE) (¢2) A + s$) = sgc) was given in [13,
Theorem 1, pp. 117-118] and we will recall this result in Section 8. Nevertheless,
the statement i) in Proposition 14 gives another point of view on the study of the

(SSE) ()5 + 5% = 51
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As a direct consequence of Proposition 14 we obtain the following results.

Example 16. Assume ) ;_, al = O (") (n — oo) for all ¢ > 1. Then by
Proposition 14 i) the set S¢ of all the solutions of the (SSE) (¢2), + s$ = s{©

with u # 1 is determined by S¢ = { ;1 (u) gz z 1’

7 we have Y ;_, k77 = O (1) (n — oo) for all ¢ > 1 the set of all the solutions of
the (SSE) (Ep )A + 589 = s is determined by Se.

(n7)p>1

Since for any given real

Remark 17. Let a, b € UT and assume a? € cs. By Proposition 14 iii)
with @ = 1/b, we conclude that if 1/b € ¢o then SP, = cl* (b). Again by
Proposition 14 iii) the condition 1/b ¢ co implies S), = 0. Then we have
g0 _ { c® (b)) if1/b€ co,

S ] if 1/b ¢ co.

7.2. On the solvability of the (SSE) () + s, = s, and (&), + g = Sp.

In this part we consider the (SSE) (£)a + s, = s, with p > 1 and « > 0, which is
equivalent to the next statement. The condition y,/u™ = O (1) (n — o0) holds if
and only if there are «v, B € w with y = v+ 3 such that D"~ | (Jou, — ag—1| /ar)’ <
oo and B, /z, = O(1) (n — oo) for all y and for some scalar I. Then, we study
the (SSE) (2) 5 + ¢ = sp for 7 > 0.

7.2.1. Solvability of the (SSE) (£)a+5; = Sy, u > 0. The next result follows
q

from Proposition 14 ii), where b = (u"),,~, and o@D = (u Yy al), o
Corollary 18. The set S, of all positive sequences x such that ({P)a + s, = sy
is determined by
o ) i AN
10 if ol ¢ L.

Proof. The condition ¢(?9) € £, with b = (u™), -, implies there is K > 0 such
that -
a _al+---+al
L <2 n<cK for all n
udn uan
and u > 1. So we have 1/b = (1/u"),,~, € c and by Proposition 14 ii) we conclude
Sy = cl® (u) if 0@ € £y,. Then, the condition o(@ ¢ ¢, implies S, = (. This
completes the proof. O

Remark 19. It can be easily seen that if Y 7, al < oo then we have S, =
cl® (b) if and only if u > 1. Then if Y 7~ ; al = oo then the condition S, = c1* (u)
implies u > 1.

Example 20. Let £ € R. The set S, of all the solutions of the (SSE)

(f’(ol /”5)@1)A + 55 = 5, is determined in the following way.



168 B. DE MALAFOSSE

i) If uw < 1 then S¢, = 0. ii) If w > 1 then S¢, = c1® (u). iii) If w = 1 then
5 { ™ (u) ifE>1/q
&u 0 if ¢ <1/q.
> e, 1/k% is convergent if and only if € > 1/¢.

This result follows from the fact that the series

7.2.2. On the solvability of the (SSE) (/). + s, = s, with > 0. In this
part we state a result on the solvability of the (SSE) (¢2) + s, = s, which can
be shown by Proposition 14 ii).

Corollary 21. Let r > 0. The set S:T of all positive sequences that satisfy the
(SSE) (L) A + 55 = sp with r > 0 is determined in the following way

D) Ifr<1thenl/bec= S, =cl™®(b) and 1/b ¢ Loy => S, = 0.

d®(b) if (nM9/bn), o, € loo,
0 if (n"/by),2, & loo-

iii) If r > 1 then S:rz { 5100 ®) z; E::ﬁ:;ni ;ﬁj

Remark 22. The (SSE) (€2) , + 5o = sp is totally solved for all r > 1.

i) Ifr=1 thenSr—{

7.3. Solvability of the (SSE) (#2)a + s = s) for p>1 and r # 1.
We state the next result where a = (7"”)nZl and b € U™ and we solve the equation
(P)a + 82 = s for r # 1.
Proposition 23. Let v # 1 and b € Ut. Let SO be the set of all positive
sequences x € UT that satisfy the (SSE) ((2)a + s% = 9. Then we have
i) If r <1 then

W

0
e

[ d®0) if1/bec,
R if 1/b ¢ co.

i) Ifr > 1 then SO = S, defined by iii) in Corollary 21.

Proof. i) follows from Remark 17 where > ,_, r% < oco. ii) Since r > 1 by
Lemma 9 iii) we have (¢2), = 2 and = € SO if and only if

(p

('r"’/bn
We have Z;(Dr’”/bn) CLPif (17 /bn),>, € M (€7, £P) and since M ((P,(P) = Lo We

conclude by Proposition 11 ii) with & = g‘?r"/bn) that the condition (r"/by,),~, €

(o implies SO = cI® (b). Now, the condition SO # () implies éﬁm/bn) C ¢ and

(r"/bn), 51 € M (P, co) = loo. So, the condition (7" /by,), s, ¢ loo implies SO = (.
This concludes the proof. B O

) —|—82 = ¢o with y = 2/b.

In a similar way we may solve the (SSE) (¢2), + s2 = s?ne) _, with 0 €R.
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Corollary 24. Letr > 0 and 0 € R. Let?oﬁ be the set of all positive sequences
x € UT that satisfy the (SSE) ((2) 5 + 82 = s?ne) _,+ Then we have

™ (b)  if6>0,

. Q0 _
i) IfT<1th€"Sr,0—{ 0 if 0 <0.

i) Ifr=1 then%:cloo(b) if 0 >1/q, and%z@ if0<1/q.
iii) If r > 1 then S%, =

Proof. 1) and iii) are direct consequences of Proposition 23 ii) Let a be a se-
quence defined by a; =1 and «,, = 1/1Inn for n > 2. We have

*ZZ:D(I/ne) - *E(ép) C Sq

n

&=Dqun

Dnz1

since

By Proposition 11 ii) we conclude ?{9 = cl* (b) if 8 > 1/q. Now, the condition
% # (0 implies (/2) , C s?ne)n and D(y/pey X € (€7, co), that is, 1/n%~1 = O (1)

(n = o0) and 6 > 1/q. So, the condition 8 < 1/¢ implies % = (). This completes
the proof. O

8. SOLVABILITY OF THE (SSE) (2)a + F, = F,, FOR p > 1.

In this section, we solve the next particular (SSE) (£2)\ + ¢z = ¢y, (B) A+ 52 = Su
and (), + 82 = s% with 7, u > 0. First, we recall a general result on the

resolution of the (SSE) (s9) , + s = sl()c) and () 5 + s&) = sgc) fora,be UT.

8.1. Solvability of the (SSE) (¢2), + ¢, = ¢, with r, u > 0.
The solvability of the (SSE) (2) , + ¢z = ¢, is a direct consequence of [13, Theo-

rem 1]. We recall this result where we use the notation o, = o = (>r_ ak) /by.

Lemma 25 ([13, Theorem 1, pp. 117-118]). Let a, b€ UT. Then we have:

i) The set S ((s) ) of all the solutions of the (SSE) (s9)  + s = sl()c) is
determined in the following way:
a) If a ¢ cs (that is, Y ;- ax = o0), then we have S ((s9),.c) =

cl®(b) ifo € s,
{ @ ZfCT ¢ S1.
b) If a € cs, then we have
cl®(b)  if1/b € co,
(5) S((sg)A ) =1 cl(e) ifl/bec~co,
0 if 1/b ¢ c.
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ii) The set S (({E) A ,c) with p > 1, of all the solutions of the (SSE) (¢2), +
sgf) = 31(;6) is determined in the following way:

¢ if (@)
a) If a? ¢ cs, then S (({2) ,c) = { Bl (b) ZZZ(Z) ;:,

b) b) If a? € cs, then S (({P)p,c) =S ((sg)A ,c) defined by (5).
To state the following result we use the set
Vq:{(r,u)€R+2:r<1§u0rr:1<uor1<r§u}.

Notice that we have (V9)° = () if and only if r < 1l and u < loru < r =1 or
r > max (1,u). By Lemma 25 ii) we obtain the following result.

Proposition 26. Let r, u > 0 and p > 1. Then, the set Sy = S((F)5 ,c) of
all the solutions of the (SSE) (¢F) 5 + s$ = s\ is determined by

{ cl®(u) if (ryu) € VI,

SC =
0 if (ryu) ¢ V.

P

Proof. The proof follows from Lemma 25 ii). If r < 1, trivially we have
(r")p>1 € es and 1/b = (u™"),,5; € ¢ if and only if u > 1. Let r = 1. We have
(r"),>1 & s and 0, = nu™"? = O (1) (n — oo) which implies that S; = cl® (u) if
and only if w > 1. If r > 1, we obtain

rd r\ g
Unqufl(E) (n = 00)

and ¢ € lo which implies S5 = cl(u) if and only if 7 < w. This concludes the
proof. O

This result leads to the next remark.

Remark 27. By [14, Theorem 24, p. 238], we have S5 = S5 . If r < 1 we
have Sp = S§ for E = ¢y, ¢, oo OF wo by [14, Theorem 24, p. 238] and [14,
Theorem 28, p. 239].

We may rewrite the set S as follows.
Corollary 28. Letp > 1 and r, u > 0. Then we have

i) Ifr <1, thenS;:{ d®(u) ifu>1,

0 if u < 1.
ii) If r =1, then Sg{ 61 () ZC‘ZE%
iit) If r > 1, then S :{ ‘03)1 (u) Zj:iz
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8.2. Solvability of the (SSE) (/). + s, = s, with r, u > 0.

Let Sp° = S((f2)a,s1) be the set of all the positive sequences z that satisfy
the (SSE) (#2), + 83 = s, with 7, w > 0 and p > 1. For 7, v > 0 and ¢ =
p/(p—1) > 1 we write ol (ryu) = w9 > _, r?%. It can be easily seen that

Vi={(ru): o (ru) = (J,(Lq) (r,u) )n>1 € U }. We obtain the following result.

Theorem 29. Let p > 1 and r, u > 0. Then we have

o [ I w) if (ryu) eV,

(6) 5 { I if (ru) ¢ V9.
Proof. The condition o(@ (r,u) € £y, implies 1/b = (u™"),>; € cand u > 1.
So by Proposition 14 ii) we have Sp° = cI™ (u) if (r,u) € V1. Again, by Proposi-
tion 14 we have Sp° = ) if (r,u) ¢ V7. O

Remark 30. The proof of Theorem 29 follows from the equivalence of D, /,XD,.€
(P, c) and Dy, XD, € ({P,Ls,).

Remark 31. Tt can be easily verified that Sy = S¢° for r > 1.

8.3. Solvability of the (SSE) (¢2), + 50 = s% with r, u > 0.

Let S) = S((f2) 5 ,co) be the set of all the positive sequences = that satisfy the
(SSE) (¢2) 5 + 82 = s with r, u > 0 and p > 1.

Theorem 32. Letp > 1. If r <1 then Sg = 8% where E = ¢, ¢, {~ defined
in Lemma 13 and if r > 1 then Sy = S3° where S° is defined in (6).

Proof. If r # 1, we may apply Proposition 23 with b = (u")n21. The case r =1
follows from Proposition 14 iii) where a = (1/n),,,. We have

n

iy~ 1" Z rih = patly=1m = 0 (1) (n — o)
k=1
if w > 1. This completes the proof. O

Remark 33. We may rewrite Sg defined in Theorem 32 as follows:
oo .
i) If » < 1, then we have ngS%: 61 (u) ifzzi’ ,
where E = ¢g, ¢, loo O Weo by [14, Theorem 24 p. 238] and [14, Theorem 28,
p. 239].
ii) If » > 1 then, by [14, Theorem 16, p. 235], we have S) = S2° = 52° where
Sge is defined by (4).

REFERENCES

1. Maddox 1. J., Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New
York, 1980.

2. de Malafosse B., Contribution a l’étude des systémes infinis, Thése de Doctorat de 3¢ cycle,
Université Paul Sabatier, Toulouse III, 1980.



172

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.
20.
21.

22.

23.
24.
25.
26.

27.

B. DE MALAFOSSE

. de Malafosse B., On some BK space, Int. J. Math. Math. Sci. 28 (2003), 1783-1801.
. de Malafosse B., Sum and product of certain BK spaces and matriz transformations between

these spaces, Acta Math. Hung. 104(3) (2004), 241-263.

. de Malafosse B., On the Banach algebra B(lp(c)), Int. J. Math. Math. Sci. 60 (2004),

3187-3203.

. de Malafosse B., Sum of sequence spaces and matriz transformations, Acta Math. Hung.

113(3) (2006), 289-313.

. de Malafosse B., Application of the infinite matriz theory to the solvability of certain se-

quence spaces equations with operators. Mat. Vesnik 54(1) (2012), 39-52.

. de Malafosse B., Applications of the summability theory to the solvability of certain sequence

spaces equations with operators of the form B(r,s). Commun. Math. Anal. 13(1) (2012),
35-53.

. de Malafosse B., Solvability of certain sequence spaces inclusion equations with operators,

Demonstratio Math. 46(2) (2013), 299-314.

de Malafosse B., Solvability of certain sequence spaces equations with operators, Novi Sad.
J. Math. 44(1) (2014), 9-20.

de Malafosse B., Solvability of sequence spaces equations using entire and analytic sequences
and applications, J. Indian Math. Soc. 81(1-2) (2014), 97-114.

de Malafosse B., On sequence spaces equations of the form Er + Fp = F} for some triangle
T, Jordan J. Math. Stat. 8(1) (2015), 79-105.

de Malafosse B., Solvability of sequence spaces equations of the form (Eq)a + Fr = Fp,
Fasc. Math. 55 (2015), 109-131.

de Malafosse B., New results on the sequence spaces equations using the operator of the first
difference, Acta Math. Univ. Comenian. 86(2) (2017), 227-242.

de Malafosse B., Eztension of some results on the (SSIE) and the (SSE) of the form F C
E+ F) and € + F, = F, Fasc. Math. 59 (2017), 107-123.

de Malafosse B., Application of the infinite matriz theory to the solvability of sequence spaces
inclusion equations with operators, in press in Ukrainian Math. J.

de Malafosse B., On new classes of sequence spaces inclusion equations involving the sets
o, ¢, €p, (1 <p < o0), wy and weo, J. Indian Math. Soc. 84(3-4) (2017), 211-224.

de Malafosse B., Malkowsky E., Matriz transformations in the sets x (Npﬁq) where x is

in the form s¢, or sg, or séc). Filomat 17 (2003), 85-106.

de Malafosse B., Malkowsky E., On the solvability of certain (SSIE) with operators of the
form B(r, s), Math. J. Okayama. Univ. 56 (2014), 179-198.

de Malafosse B., Rakocevi¢ V., Calculations in new sequence spaces and application to
statistical convergence, Cubo A 12(3) (2010), 117-132.

de Malafosse B., Rakocevi¢ V., Matriz transformations and sequence spaces equations, Ba-
nach J. Math. Anal. 7(2) (2013), 1-14.

de Malafosse B., Malkowsky E., On sequence spaces equations using spaces of strongly
bounded and summable sequences by the Cesaro method, Antartica J. Math. 10(6) (2013),
589-609.

Farés A., de Malafosse B., Sequence spaces equations and application to matriz transforma-
tions, Int. Math. Forum 3(19) (2008), 911-927.

Malkowsky E., The continuous duals of the spaces co(A) and c(A) for exponentially bounded
sequences A, Acta Sci. Math. (Szeged) 61 (1995), 241-250.

Malkowsky E., Linear operators between some matriz domains, Rend. del Circ. Mat. di
Palermo. 68(2) (2002), 641-655.

Malkowsky E., Rakocevi¢ V., An introduction into the theory of sequence spaces and measure
of noncompactness, Zbornik radova, Matematicki institut SANU 9 (17) (2000), 143-243.
Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Stud-
ies 85, 1984.

B. de Malafosse, Université du Havre, France, e-mail: bdemalaf@wanadoo.fr



