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Abstract. We consider tetravalent graphs within a family introduced by Praeger

and Xu in 1989. These graphs have the property of having exceptionally large
symmetry groups among all tetravalent graphs. This very property makes them

unsuitable for the use of simple computer techniques. We apply techniques from

coding theory to determine for which values of the parameters the graphs allow
cycle structures, semitransitive orientations, or rotary maps; all without recourse to

the use of computers.

1. Introduction

In [11], it was proved that a finite connected tetravalent arc-transitive graph either
has a relatively small symmetry group (in a sense that can be made precise) or it
belongs to a family of graphs, now known as the Praeger-Xu graphs.

Several standard methods for investigating structures in arc-transitive graphs
can efficiently be used only when the graph has a relatively small symmetry group.
Therefore, a family of graphs with large symmetry groups often needs to be ana-
lyzed with ad hoc techniques, tailored to the particular family.

The aim of this paper is to provide the techniques for analyzing cycle structures,
semitransitive orientations, and rotary maps underlying the Praeger-Xu graphs.

We do this in the following way:

In Section 2, we give three definitions (or models) for the Praeger-Xu graphs.
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In Section 3, we talk about general graph symmetries, after which we define sym-
metries of the Praeger-Xu graphs and show that their groups of symmetries are
almost always isomorphic to a semidirect product of a dihedral group with Zn2 .

In Section 4, we define three symmetric structures of particular interest with re-
gard to highly symmetric graphs: cycle structures (dart-transitive cycle decom-
positions), semitransitive orientations (orientations whose group is transitive on
both vertices and edges), and rotary maps (embeddings of the graph on a surface
whose symmetry groups include all possible rotational symmetries).

In Section 5, we discuss a connection between symmetry groups of the Praeger-
Xu graphs and dihedral codes. These are special cyclic codes which are invariant
both under reversals as well as cyclic shifts. By invoking the usual correspondence
between codewords and polynomials in a variable t, we show that dihedral codes
correspond one-to-one to certain palindromic polynomials. Moreover, the degree
of the polynomial determines the dimension of the code. We define sets Bk,i of all
codewords ending with k zeroes whose corresponding polynomials are palindromic
and divide tn−1

(t−1)i . Finally, we apply the coding theory to the symmetry groups of

the Praeger-Xu graphs.

In Section 6, we determine which Praeger-Xu graphs admit cycle structures. The
classification is based on the membership of generators in the Bk,i sets.

In Section 7, we similarly classify semitransitive orientations of Praeger-Xu graphs.
Finally, in Section 8, we classify rotary maps of these graphs and show that they
are all reflexible.

Section 9 is an appendix, in which we present the results for the special case n = 4.

2. Definitions and models

The Praeger-Xu graphs are the tetravalent case of the family that appeared in [13]
under the name C(m, r, s), where m, r and s are integers such that m ≥ 2, r ≥ 3
and s ≥ 1. The valence of C(m, r, s) is 2m. Due to their unique properties,
these graphs appeared in several later works by a number of researchers in many
different contexts [4, 10, 14, 16]. In the recent works, the notation PX(n, k) was
introduced to denote the tetravalent graph C(2, n, k).

The graph PX(n, k) is also described in [3] in two different ways and [8] presents
several different but equivalent definitions, which we will summarize here for com-
pleteness. Throughout the section, we assume that n and k are integers, n ≥ 3
and k ≥ 1.

2.1. The Bitstring Model

To give this construction of the graph, we need some notation about bitstrings.
A bitstring of length k is a word of length k over the alphabet Z2 = {0, 1}. We
also allow for the empty bitstring and say that it has length 0. For example x =
1011110 is a bitstring of length 7. If x is a bitstring of length k, then xi is its
i-th entry, and xi is the string obtained from x by changing the i-th symbol xi.
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Strings begin at position 0, so if x = 001, then x0 = 0, x1 = 0, and x2 = 1, while
x0 = 101, x1 = 011 and x2 = 000. Also, if x is of length k − 1, 1x is the string
of length k formed from x by placing a ‘1’ in front; similar definitions hold for the
k-strings 0x, x0, x1. Finally, the string x̄ is the reversal of x, so if x = 001, then
x̄ = 100.

The vertices of the graph PX(n, k) are the ordered pairs (i, x), where i ∈ Zn
and x is a bitstring of length k. Edges are the pairs of the form {(i, ax), (i+1, xb)},
where x is any bitstring of length k − 1 and a, b are elements of Z2. Thus, for
example in PX(5, 3), the vertex (2, 110) is adjacent to the four vertices (1, 011),
(1, 111), (3, 100), and (3, 101). We will refer to the set of vertices (i, x), for a fixed
i, as the ith fibre.

Each edge {(i, ax), (i+ 1, xb)} of Γ = PX(n, k) is associated with two directed
edges that we will refer to as darts: the dart (i, ax) → (i + 1, xb) and the dart
(i+ 1, xb) → (i, ax). It will be helpful to refer to the dart (i, ax) → (i+ 1, xb) as
forward facing and the second dart as backward facing.

We note that even though the Praeger-Xu graphs PX(n, k) are defined for all
integers n ≥ 3 and k ≥ 1, they are dart-transitive if and only if n > k [13,
Theorem 2.10]. We will restrict our attention to this case.

2.2. The Sausage Graph Model

The n-sausage graph or doubled cycle is the multigraph obtained from the n-
cycle by doubling each of its edges. It has n vertices u0, u1, u2, . . . , un−1, and
for each i ∈ Zn, there are two edges, called ai and bi, each joining ui to ui+1.
The vertices of the graph PX(n, k) can then be identified with the k-paths in the
n-sausage graph of the form ujcjuj+1cj+1uj+2 . . . cj+k−1uj+k, ci ∈ {ai, bi}, for
j ≤ i ≤ j + k − 1 (with indices taken modulo n). For brevity, we denote such
k-path by cjcj+1 . . . cj+k−1. The jth fibre is the set of vertices corresponding to
paths from uj to uj+k. A uj-to-uj+k path is adjacent to a uj+1-to-uj+1+k path if
they coincide in the last k − 1 edges of the first path and the first k − 1 edges of
the second path. For example, in PX(5, 3), the four neighbors of the path b2b3a4
(on vertices u2, u3, u4, u0) are the paths a1b2b3, b1b2b3, b3a4a0, and b3a4b0.

2.3. The Window Model

In this model, vertices are strings of length n over the alphabet {0, 1, ∗} such that
some window of k consecutive spaces are reserved for the symbols 0 and 1 while
the rest of the string contains only the symbol ∗. The last character is followed
by the first, so that the string is viewed as being circular, and the window can
bridge this gap. Two vertices are adjacent when their windows begin in spaces j
and j + 1 and agree on their overlap. The jth fibre consists of all vertices whose
windows begin at the jth space. To use the same example as above, in PX(5, 3),
the 5-string [∗∗110] is adjacent to the strings [∗011∗], [∗111∗], [0∗∗10], and [1∗∗10].
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Figure 1. PX(5, 3). Fibres are ordered clockwise, vertices within a fibre are in lexicographical

order from the outside to the inside.

2.4. Isomorphisms

It is easy to see that all three models describe the same graph, with the isomor-
phisms mapping the pair (i, x) from the bitstring model to the sausage graph
ui-to-ui+k path cici+1 . . . ci+k−1 where ci+j is ai+j if xj = 0 and bi+j otherwise,
and mapping (i, x) to the n-string y in which yi+j is xj if 0 ≤ j ≤ k − 1 and
yi+j = ∗ otherwise. Thus, in PX(5, 3), the path

(0, 110)− (1, 100)− (2, 001)− (3, 011)

in the bitstring model corresponds to the path

b0b1a2 − b1a2a3 − a2a3b4 − a3b4b0

in the sausage graph model and to the path

[110 ∗ ∗]− [∗100∗]− [∗ ∗ 001]− [1 ∗ ∗01]

in the window model.
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2.5. Cycles

There are three families of cycles that frequently occur in our analysis of the
Praeger-Xu graphs PX(n, k). First, there is the family of 4-cycles induced by
the vertices (i, 0x), (i + 1, x0), (i, 1x), (i + 1, x1) and connecting two consecutive
fibres, which we shall call the standard 4-cycles. Observe that, if n 6= 4 and
k ≥ 2, every 4-cycle in PX(n, k) is standard. The second family consists of the
n-cycles that visit each fibre exactly once; one representative of this family is
the ‘zero’ cycle Z induced by the n vertices of the form (i, 0k), i ∈ Zn, where
0k stands for the k-bitstring of all 0’s. We will call these cycles transversal n-
cycles. The third family consists of the 2n-cycles which wrap twice around the
n fibres of PX(n, k); a representative of this family being the 2n-cycle Z ′ in-
duced by the vertices (0, 0k), (1, 0k), . . . , (n − k, 0k), (n − k + 1, 0k−11), (n − k +
2, 0k−212), . . . , (n−1, 01k−1), (0, 1k), (1, 1k), . . . , (n−k, 1k), (n−k+1, 1k−10), (n−
k + 2, 1k−202), . . . , (n− 1, 1(0k−1)). We will call these transversal 2n-cycles.

3. Symmetries

3.1. Graph symmetries

For any graph Γ, a symmetry (often called an automorphism) of Γ is a permutation
of the vertices of Γ which preserves its set of edges. The collection of all symmetries
of Γ, called Aut(Γ), is then a group under composition. The group Aut(Γ) might
act transitively on the vertices of Γ, on its edges, or on its darts, in which case(s) we
say that Γ itself is vertex-transitive, edge-transitive or dart-transitive, respectively.

Let v0v1 . . . vr−1v0 be a cycle of a graph Γ, r ≥ 3. If there exists a symmetry σ of
Γ mapping vi to vi+1, for all i ∈ Zr, then the sequence [v0, v1, v2, . . . , vr−1] is called
a consistent cycle and σ is a shunt for this consistent cycle. The long-overlooked
result of Biggs and Conway [1] states that in every d-valent dart-transitive graph
Γ the set of consistent cycles splits into precisely d− 1 orbits under the action of
Aut(Γ). Notice that direction is important; the sequence [v0, v1, v2, . . . , vr−1] and
the reverse sequence [vr−1, vr−2, . . . , v2, v1, v0] need not be in the same orbit. If
they are in the same orbit, we refer to each of them as reflexible.

3.2. The symmetry groups of PX(n, k)

We define here some symmetries of PX(n, k) which preserve the set of fibres (map
fibres to fibres). The first two such symmetries are the symmetries ρ and µ given
in the bitstring model by (j, x)ρ = (j + 1, x) and (j, x)µ = (−j, x̄). Note that the
group 〈ρ, µ〉 is isomorphic to the dihedral group Dn of order 2n, and its induced
action on the fibres of PX(n, k) is permutation isomorphic to the ‘usual’ transitive
action of Dn on n points.

In the sausage graph model uiρ = ui+1, aiρ = ai+1 and biρ = bi+1, while µ
interchanges ui ↔ uk−i, ai ↔ ak−1−i, bi ↔ bk−1−i. In the window model, ρ
consists of shifting each character one step to the right, while µ is defined for each
string y, by: (yµ)i = yk−1−i, where the indices are taken mod n.
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We next define symmetries τi, i ∈ Zn, setwise fixing each fibre. These are
most easily seen in the sausage and window models: In the sausage graph model,
τi simply exchanges ai with bi, leaving all vertices and all other edges fixed. In
the window model, τi simply exchanges 0’s and 1’s in position i of each string,
leaving ∗ unchanged.

In the bitstring model, for i ∈ Zn, we define the symmetry τi to be the permu-
tation which interchanges (j, x) with (j, xi−j) for j = i−k+ 1, i−k+ 2, . . . , i, and
leaves all other vertices fixed.

Referring to the example from PX(5, 3), in subsection 2.4, applying τ2 to the
path shown in three ways there, the result is the path:

(0, 111)− (1, 110)− (2, 101)− (3, 011)

corresponding to
b0b1b2 − b1b2a3 − b2a3b4 − a3b4b0

corresponding to

[111 ∗ ∗]− [∗110∗]− [∗ ∗ 101]− [1 ∗ ∗01].

In general, τi permutes without fixed points the vertices inside each of the fibres
i− k + 1, i− k + 2, . . . , i, leaving all other vertices fixed. Notice how conjugation
works on the τi’s: τ

ρ
i = τi+1 and τµi = τk−1−i. Consequently, ρτi = ρτiτi+1.

If n > k, the symmetries τ0, τ1, . . . , τn−1 commute with each other and thus
generate a group K which is isomorphic to Zn2 . Hence, the group of symmetries
of PX(n, k) contains the group A generated by ρ, µ, τ0, which is isomorphic to a
semidirect product of Dn with K. Further, K is the kernel of the induced action
of A on the fibres of PX(n, k). Hence K is normal in A. For n 6= 4, the group
A is all of Aut(PX(n, k)) [13]. When n = 4 and k = 3, 2, 1, A has index 2, 3, 9,
respectively, in Aut(PX(n, k)). Results for the special case n = 4 will be reported
in the appendix, Section 9. In the rest of this paper, we will assume that n is
not 4.

Now, A acts dart-transitively on the graph, and so, by the result of Biggs and
Conway [1], A must have three orbits of consistent cycles. One orbit consists
of the standard 4-cycles; the symmetry τ0µρ is a shunt for the particular cycle
(0, 0k), (1, 0k−11), (0, 10k−1), (1, 0k). The symmetry ρ is a shunt for the cycle Z,
while ρ′ = ρτ0 is a shunt for the cycle Z ′. These are cycles of lengths n and
2n, and represent the other two orbits of consistent cycles, and hence, all three
orbits consist of reflexible consistent cycles. Notice that (ρ′)n is the all-swapper
α = τ0τ1τ2 . . . τn−1.

Lemma 3.1. Every element of the coset ρK in A is conjugate to either ρ or
ρ′ via an element in K.

Proof. Let L = 〈τiτi+1|i ∈ Zn〉 and observe that L is an index 2 subgroup of
K, with the other coset of L in K being τ0L. Since ρτi = ρτiτi+1, and since K
is generated by the τi’s, it follows that ρK = ρL, and ρ′K = (ρτ0)K = (ρτ0)L.
Therefore, ρK ∪ ρ′K = ρK. �

The proof of the following lemma is left to the reader:
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Lemma 3.2. The following hold in any PX(n, k) for n > k.

1. The subgroup Ki = 〈τi, τi+1, τi+2, . . . , τi+k−1〉 acts regularly on the vertices
of the i-th fibre.

2. The τj’s not in Ki generate the pointwise stabilizer of the ith fibre.
3. Any element of K which fixes one vertex in the ith fibre fixes every vertex

in the ith fibre.
4. Any non-trivial element of K moves vertices in at least k different fibres.
5. Any element of K fixing n − k or more vertices from different fibres must

be trivial.

4. Symmetric structures

Our aim is to investigate three ideas related to symmetry in the Praeger-Xu graphs.
These are the ideas of a cycle structure, a semitransitive orientation and a rotary
map.

4.1. Cycle structures

A cycle structure in a tetravalent graph Γ is a partition Y of its edges into cycles
such that the subgroup Aut(Y) of Aut(Γ) which preserves Y is transitive on the
darts of Γ. It follows that the cycles of Y must be consistent and all of the
same length; in fact, they must all be within the same orbit of consistent cycles
under Aut(Γ). For example, in K5, any 5-cycle and its complement form a cycle
structure. In the Octahedron, there is a cycle structure consisting of three 4-cycles,
and there is another consisting of four edge-disjoint 3-cycles. Among tetravalent
dart-transitive graphs, a surprising number admit cycle structures. See [9] for
more details.

Two cycle structures Y and Y ′ in a graph Γ are said to be isomorphic if there
exists a symmetry of Γ mapping the cycles in Y to the cycles in Y ′. We will
call a cycle structure bipartite provided that we can partition the cycles of Y into
two colors, red and green, so that each vertex belongs to one cycle of each color.
In our examples, the structure on K5 is bipartite, but neither of the above cycle
structures on the Octahedron is.

4.2. Semitransitive orientations

An orientation is a digraph ∆ such that for all vertices u and v, if the pair (u, v) is
a dart of ∆, then (v, u) is not a dart of ∆. If (u, v) is a dart in ∆, we say that the
vertex u is its tail and v is its head. A semitransitive orientation of a graph Γ is an
orientation ∆ such that the underlying graph of ∆ is Γ and Aut(∆) is transitive
on the vertices and on the darts of ∆ (and, so also transitive on the edges of Γ).
Any sequence of darts in an orientation ∆ of a graph Γ that induces a cycle in Γ
will be called a cycle in ∆. A cycle in ∆ is said to be consistent if there exists a
g ∈ Aut(∆) which is a shunt for its underlying cycle in Γ. Note that a consistent
cycle C in ∆ must have the property that each of its vertices must have one dart
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of C coming in and one dart of C coming out. We say that two semitransitive
orientations are isomorphic if there exists an automorphism of Γ that maps the
darts of the first one onto the darts of the second.

For example, in the Octahedron, if we choose the orientation of each edge
so that arrows around each face all point clockwise or all counterclockwise, we
get a semitransitive orientation. K5 on the other hand, has no semitransitive
orientation.

4.3. Rotary maps

A map is an embedding of a graph (or multigraph) Γ into a surface S so that each
connected component of S\Γ is, topologically, a disk; these components are the
faces of the map. If the surface S is orientable, we call the map orientable.

All the maps we will encounter in this paper are polytopal maps, which means
that no face is incident more than once with any edge or any vertex. We can
present a polytopal map as a pair (Γ,F) where Γ is a graph and F is a collection
of cycles of Γ, called faces, satisfying these two properties: (1) each edge of Γ
belongs to two faces, and (2) for any vertex v, the edges containing v can be put
into a circular order, such that any two consecutive edges in this order share a
face incident with v.

A symmetry of a map M is a symmetry of Γ which preserves F . The map
M is rotary provided that for some face f and some vertex v of f , Aut(M) has
elements R and S where R is a shunt of f and S acts as a rotation one step
about v. By replacing S with S−1 if necessary, we may assume that RS−1 fixes
an edge incident with both f and v, and is therefore an involution. Further, the
map M is reflexible provided that it is rotary and also has a symmetry X which
acts as a reflection fixing v and reversing f . We set Aut(M) to be the group of all
symmetries ofM and Aut+(M) to be the subgroup generated by R and S. IfM
is orientable and reflexible, then Aut+(M) has index 2 in Aut(M). Otherwise,
the two groups are the same. The group of symmetries Aut(M) contains at most
twice as many elements as does the set of darts of M, and M is reflexible if and
only if |Aut(M)| is exactly equal to twice the number of darts of M.

A Petrie path in the map M is a cycle C of Γ such that each two consecutive
edges of C are consecutive edges of a face, but no three consecutive edges are
consecutive edges of a face. One can view a Petrie path as a ‘zig-zag’ or ‘left-
right’ path: when following the path, one turns right at a vertex and then left at
the following vertex and then right again and then left and so on, until the cycle
closes. If M is reflexible, it has a symmetry T which is a shunt for some Petrie
path, namely T = RS−1X. It is not difficult to see that if we denote by P the
collection of Petrie paths of M = (Γ,F), the pair (Γ,P) also forms a map, called
the Petrie of M and denoted by P(M). The surface underlying P(M) is usually
not the same as the one underlyingM itself. The mapM is reflexible if and only
if P(M) is reflexible. If the map M has p-gonal faces and q of them meet at each
vertex, we say the map is of type {p, q}. Further, if the map has Petrie paths of
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length r, we say the map is of type {p, q}r. Then P(M) has type {r, q}p. See [15]
for more details.

Our primary results in this paper concern the above structures in the case of
Praeger-Xu graphs. They include Theorem 6.4 which classifies cycle structures in
these graphs, Theorems 7.1 and 7.2 which show a one-to-one correspondence be-
tween their bipartite semitransitive orientations and their cycle structures, Corol-
lary 7.4, which uses Theorems 7.1 and 7.2 to classify their semitransitive orienta-
tions, and Theorem 8.5 which classifies rotary maps of Praeger-Xu graphs.

5. Cyclic and dihedral codes

We have remarked that the kernel K of the induced action of the symmetry group
Aut(PX(n, k)) on the fibres of the graph is isomorphic to V = Zn2 . We wish to
make that isomorphism explicit and use it to exploit known facts about cyclic
codes in order to state and prove new facts about cycle structures, semitransitive
orientations and maps of PX(n, k).

Writing the elements of V in the form of bitstrings, we will associate the bit-
string u = u0u1u2 . . . un−1 ∈ V with the product û = τu0

0 τu1
1 . . . τ

un−1

n−1 ∈ K. In

particular, the all-swapper α is 1̂n.
The function sending u to û is an isomorphism between the additive group V and

the group K. The group (or vector space) V has an automorphism (or a linear op-
erator) named P , which maps u = u0u1u2 . . . un−1 to uP = un−1u0u1u2 . . . un−2.
This P is referred as a cyclic shift. Clearly, the n identities of the form τρi = τi+1

yield ûρ = ûP .
Similarly, we can define a linear operator M of V by letting u0u1u2 . . . un−1M =

uk−1uk−2 . . . u1u0un−1 . . . uk (where k is the parameter of PX(n, k)), and the iden-

tities τµi = τk−1−i yield ûµ = ûM .

If F is any subgroup of K invariant under conjugation by ρ, then F = Ĉ for
some subspace C of V invariant under P . A subspace C of V invariant under the
cyclic shift P is called a cyclic code (cyclic codes are not necessarily binary; we
shall, however, be concerned only with binary cyclic codes). Cyclic codes are well-
known objects introduced in coding theory while also of interest in other branches
of mathematics. If r is the largest number of consecutive 0’s in a non-identity
element of a cyclic code C then C contains a unique bitstring u which ends with
exactly r 0’s. We will call this u the generator bitstring of C and the first n − r
symbols of u the head of u. Then C is generated by u, uP, uP 2, . . . , uP r, which
are linearly independent, and so C consists of 2r+1 vectors.

On the other hand, for any x ∈ V , the subspace 〈x〈P 〉〉 = 〈x, xP, . . . , xPn−1〉
is a cyclic code. It is quite likely that the generator bitstring u of 〈x〈P 〉〉 is not
equal to any of the vectors x, xP, . . . , xPn−1. To find u given x, we rely on the
theory of cyclic codes. If we let each bitstring a = a0a1a2 . . . an−1 correspond to
the polynomial a(t) = a0 + a1t + a2t

2 + · · · + an−1t
n−1 in Z2[t], then an element

u of 〈x〈P 〉〉 is a generator bitstring for 〈x〈P 〉〉 if its corresponding polynomial is
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the unique polynomial of the smallest degree among all polynomials corresponding
to the elements of 〈x〈P 〉〉. One of the fundamental observations of the theory of
cyclic codes asserts that this smallest degree polynomial u(t) is a divisor of tn − 1
in Z2[t]. The polynomial u(t) is called the generator polynomial of 〈x〈P 〉〉. If u
ends with r 0’s, then the degree of u(t) is n − r − 1 and the dimension of 〈x〈P 〉〉
is r + 1; see for example [5]. It is then easy to see that the generator bitstring u
for 〈x〈P 〉〉 corresponds to the greatest common divisor of tn − 1 and x(t).

Lemma 5.1. If C1 and C2 are cyclic codes in Zn2 having generator bitstrings
u and v respectively, such that C2 is a subroup of C1 of index 2, then v = u+ uP
or, equivalently, v(t) = (t+ 1)u(t).

Proof. Suppose that the order of C2 is 2k; then the order of C1 is 2k+1, u ends
in k 0’s and v ends in k − 1 0’s. Note that v is the unique bitstring in C2 ending
in k − 1 0’s, while u+ uP also ends in k − 1 0’s, hence v = u+ uP . �

If C is invariant under both P and M , we call it a dihedral code. In this case, the
head of umust be a palindrome. Conversely, if x is any bitstring with a palindromic
‘head’, the subspace 〈x〈P 〉〉 will be a dihedral code; its generator bitstring need
not be x. More detailed information on dihedral codes may be found in [7].

5.1. The sets Bk,i

Define Bk,i to be the set of all bitstrings u of any length satisfying the following
properties: (1) u ends with exactly k 0’s (the remainder of u is a bitstring, which we
shall call the head of u; it begins and ends with 1), (2) the head of u is palindromic,
and (3) (t− 1)iu(t) divides tn − 1 in Z2[t], where n is the length of u.

For example, B1,0 consists of bitstrings of length n ≥ 2 that have a 0 in the last
position while the first n−1 positions correspond to the coefficients of palindromic
divisors of tn − 1 of degree n − 2 (which can be obtained by dividing tn − 1 by
a palindromic divisor of degree 2). Thus, B1,0 contains 10, 110 as well as 1010,
101010, 10101010, . . . , and 110110, 110110110, etc. It is not hard to see that
all of these bitstrings are formed by repeating the bitstring 10 or repeating the
bitstring 110. We will abbreviate and say that B1,0 = {10}+ ∪ {110}+. Similarly,
B1,1 = B1,2 = {10}+. In what follows, we will only need the sets Bk,0, Bk,1 and
Bk,2. Table 1 shows the representative bitstrings for these sets for 1 ≤ k ≤ 5.

6. Cycle structures in PX(n, k)

We have mentioned that in PX(n, k), the standard 4-cycles are consistent. As they
are edge-disjoint, and cover all the edges of PX(n, k), they form a partition of the
edge set. Since we assume n 6= 4, it is easy to see that this partition is invariant
under A = Aut(PX(n, k)), and hence it is a cycle structure. We denote this cycle
structure by Y∗.
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Table 1. The representative bitstrings for Bk,0, Bk,1, and Bk,2, for k ∈ {1, 2, 3, 4, 5}.

k Bk,0 Bk,1 Bk,2

1 10, 110 10 10
2 100, 1100 100, 1100 1100
3 1000, 11000, 1000, 1000,

101000, 111000 111000 111000
4 10000, 110000, 10000, 110000, 11110000,

11110000, 101111010000 11110000, 101111010000 101111010000
5 100000, 1100000, 100000, 100000,

10100000, 100100000, 10100000, 10100000,
1111100000, 111011100000, 1111100000, 1111100000,
110101100000, 101100110100000 110101100000 110101100000

Let Z be the ‘zero’ cycle in PX(n, k) defined in Section 2.5, i.e., the cycle induced
by the vertices of the form (i, 0k), i ∈ Zn, where 0k stands for the k-bitstring of
all 0’s. This is a consistent cycle with shunt ρ. Similarly, let Z ′ be the transversal
2n-cycle defined in Section 2.5, whose vertices form the orbit of (0, 0k) under the
group generated by ρ′ = ρτ0. Notice that, by Lemma 3.2, the pointwise stabilizer
in A of Z or of Z ′ must be trivial. Then Z is reversed by the symmetry µ, and Z ′

is reversed by the symmetry

µ′ = µτk+1τk+2 . . . τn−1.

Construction 6.1. For any u in Zn2 , let C = 〈u〈P 〉〉, and let Yu be the orbit

of Z under Ĉ.

Construction 6.2. For any u in Zn2 , let C = 〈u〈P 〉〉, and let Y ′u be the orbit

of Z ′ under Ĉ.

We will state and prove criteria for each of these to be a cycle structure, and
to be bipartite. We will then show that every cycle structure on PX(n, k) is equal
to Y∗ or it is isomorphic to some Yu or Y ′u.

We begin by showing which of the cycle sets coming from Constructions 6.1
and 6.2 are cycle structures.

Theorem 6.3. The following hold:

1. If u is a bitstring in Bk,0 ∩ Zn2 , then Yu is a cycle structure in PX(n, k).
2. For u in Bk,0 ∩Zn2 , Yu is a bipartite cycle structure in PX(n, k) if and only

if u ∈ Bk,1.
3. If u is a bitstring in Bk,1 ∩ Zn2 , then Y ′u is a cycle structure in PX(n, k).
4. For u in Bk,1 ∩Zn2 , Y ′u is a bipartite cycle structure in PX(n, k) if and only

if u ∈ Bk,2.

Proof. (1) The fact that u is a bitstring in Bk,0 ∩ Zn2 tells us a lot about C =
〈u〈P 〉〉. First, C is a dihedral code of order 2k+1. Second, no non-trivial element
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of C has any more than k consecutive 0’s. While an element of F = Ĉ might
fix a vertex (and hence every vertex in its fibre), no element of F other than the
identity can fix, pointwise, an edge of the graph. Because the stabilizer of Z under
F is trivial, the orbit Yu of Z under F consists of 2k+1 edge-disjoint n-cycles. This
shows that Yu is a cycle decomposition.

Since C is a dihedral code, we know that F = Ĉ is normalized by ρ and µ, and,
so G = 〈ρ, µ, û〉 is a group of order n2k+2 which acts on Yu and its kernel G ∩K
is just F . Because 〈ρ, µ〉 acts transitively on the darts of Z, G acts transitively on
the darts of Yu, making Yu a cycle structure.

(2) For u in Bk,0 ∩Zn2 , Yu is a cycle structure by part (1). Suppose that u ∈ Bk,1,
and let v = u + uP . Then v ends in a 1 followed by k − 1 consecutive 0’s, and
has a palindromic head, so D = 〈v〈P 〉〉 is a dihedral code of index 2 in C. Thus

E = D̂ has index 2 in F and no non-trivial element of E fixes any vertex. We
denote by R the orbit of Z under E and by G its complement in Yu. Then R is a
collection vertex-disjoint cycles, as is G, making Yu bipartite.

Conversely, for u ∈ Bk,0 ∩ Zn2 , if Yu is bipartite, then the color-preserving
subgroup E of F must have index 2 in F . As ρ and µ preserve colors, they must

conjugate E to itself. Then E = D̂ for some dihedral code D. If v is the generating
bitstring for D, then v(t) must divide tn−1, and v(t) = (1 + t)u(t) by Lemma 5.1.
That implies that u is in Bk,1.

(3) If u is a bitstring in Bk,1∩Zn2 , then what do we know about C = 〈u〈P 〉〉? First,
C is a dihedral code of order 2k+1. Second, no non-trivial element of C has any

more than k consecutive 0’s. While an element of F = Ĉ might fix a vertex (and
hence every vertex in its fibre), no element of F other than the identity can fix,
pointwise, an edge of the graph. Now, the stabilizer of Z ′ under F is non-trivial,
as it contains (and is generated by) α. Thus, the orbit Y ′u of Z ′ under F consists of
2k+1/2 = 2k edge-disjoint 2n-cycles. This shows that Y ′u is a cycle decomposition.

Since C is a dihedral code, we know that F = Ĉ is normalized by ρ′ and
µ′. Because F ∩ 〈ρ′, µ′〉 = 〈α〉, of order 2, G = 〈ρ′, µ′, û〉 is a group of order
(2k+1)(4n)/2 = n2k+2 which acts on Y ′u, and its kernel G ∩K is just F . Because
〈ρ′, µ′〉 acts transitively on the darts of Z, G acts transitively on the darts of Y ′u,
making Y ′u a cycle structure.

(4) Given that u ∈ Bk,1∩Zn2 , let v = u+uP,C = 〈u〈P 〉〉, D = 〈v〈P 〉〉, F = Ĉ, E =

D̂. Then C and D are dihedral codes, with D of index 2 in C.
If we now require that u be in Bk,2, then 1n ∈ D, forcing α ∈ E. Then the

stabilizer of Z ′ in F is the same as in E. By the Orbit-Stabilizer Theorem, this
implies that the orbit Z ′E is half the size of Yu = Z ′F . Color the cycles in Z ′E
red and those not in Z ′E green. Some vertex must meet a green and a red cycle,
and since E is transitive on vertices, every vertex meets both red and green cycles.
Thus Yu is bipartite.

Conversely, if Yu is bipartite, then the color-preserving subgroup E′ of F must
have index 2 in F . As ρ′ and µ′ preserve Z ′, they must preserve colors, and so

they must conjugate E′ to itself. Then E′ = D̂′ for some dihedral code D′. If v′ is
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the generating bitstring for D, then v′(t) must divide tn−1, and v′(t) = (1+t)u(t)
by Lemma 5.1. Thus v′ = u+ uP = v and so D′ = D and E′ = E. Now α = ρ′n

preserves colors, so that α ∈ E′ which forces a = 1n ∈ D. Then v(t) divides

a(t) = tn−1
t−1 . That implies that u is in Bk,2. �

Theorem 6.4. If Y is a cycle structure in Γ = PX(n, k), n 6= 4, then exactly
one of these three things must happen:

1. Y = Y∗.
2. Y is isomorphic to Yu, where u is a bitstring in Bk,0 ∩ Zn2 .
3. Y is isomorphic to Y ′u, where u is a bitstring in Bk,1 ∩ Zn2 .

Proof. The cycles in Y must be 4-cycles, n-cycles or 2n-cycles. If they are
4-cycles, since n is not 4, there are no consistent 4-cycles other than those in Y∗
and so case (1) must hold.

If the cycles in Y are n-cycles, then Y is isomorphic to a cycle structure that
contains Z. Hence, we assume that Z is in Y, and under that assumption, we will
show that Y is Yu for some u ∈ Bk,0.

Let G = Aut(Y). Set F = G ∩ K and observe that F is normal in G. Then

F = Ĉ for some code C. Consider the 2k+1 forward-facing darts leading from a
vertex in the 0th fibre to the 1st fibre. The group G = Aut(Y) is transitive on
this set. Moreover, any symmetry sending one dart in this set to another must
preserve the 0th and 1st fibres; it must then preserve all fibres and so be in F .
Thus F is transitive on these darts. Because each such dart belongs to exactly
one element of Y, F is transitive on the cycles of Y. Because the stabilizer in F
of any transversal cycle is trivial, F acts regularly on the cycles and so its order
is 2k+1. Now, Y is a cycle structure and Z is one of its cycles. Therefore Aut(Y)
must contain a shunt for Z. As ρ and ρ−1 are the only shunts for Z, ρ must be
in Aut(Y). Similarly, µ ∈ Aut(Y). Then F is normalized by both ρ and µ, and
so C is a dihedral code of order 2k+1. If u is the generating bitstring for C, then
u must end in k zeroes and thus must be in Bk,0. As Y is the orbit of Z under

F = Ĉ, Y must be identical to Yu.
Finally, suppose that the cycle structure Y on PX(n, k) has cycles of length 2n.

Without loss of generality, we may assume that one of the cycles is Z ′. Then the
cycles of Y use up the n2k+1 edges of Γ, and so there are 2k such cycles. Again,

let G be Aut(Y) and set F = G∩K. Then F = Ĉ for some code C. Consider the
2k+1 forward-facing darts leading from a vertex in the 0th fibre to one in the 1st

fibre. The group G = Aut(Y) is transitive on this set. Moreover, any symmetry
sending one dart in this set to another must preserve the 0th and 1st fibres; it
must then preserve all fibres and so be in F . Thus F is transitive on these darts.
Because each such dart belongs to exactly one element of Y, F is transitive on the
cycles of Y. Because the stabilizer in F of any transversal cycle is 〈α〉, the order
of F is 2k+1.

Now, Y is a cycle structure and Z ′ is one of its cycles. Therefore Aut(Y) must
contain a shunt for Z ′. As ρ′ and its inverse are the only shunts for Z ′, ρ′ must be
in Aut(Y). Similarly, µ′ ∈ Aut(Y). Then F is normalized by both ρ′ and µ′, and
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so C is a dihedral code of order 2k+1. If u is the generating bitstring for C, then
u must end in k zeroes and thus must be in Bk,0. As Y is the orbit of Z ′ under

F = Ĉ, Y must be identical to Y ′u.
Since ρ′ ∈ G, so is (ρ′)n, which is the all-swapper α = τ0τ1τ2 . . . τn−1 = â, where

a = 1n and so a(t) = tn−1
t−1 . Thus a must belong to C, and so u(t) must divide

tn−1
t−1 , putting u in Bk,1. �

7. Semitransitive orientations in PX(n, k)

Recall that each edge {(i, ax), (i + 1, xb)} of Γ = PX(n, k) is associated with two
darts: the dart (i, ax) → (i + 1, xb) and the dart (i + 1, xb) → (i, ax); which we
call forward facing and backward facing, respectively.

We begin this section with two orientations, one consisting of the set of all
forward facing darts of Γ, called the Flow, and the other consisting of the set of all
backward facing darts of Γ, called the Reverse Flow. As µ interchanges these two,
we see that they are isomorphic. The group generated by ρ and K preserves the
Flow and is transitive on edges, and so the Flow and the Reverse Flow are clearly
semitransitive orientations. In the paper [2], the authors show that in a 4-valent
semitransitive orientation ∆, there are exactly two Aut(∆)-orbits of consistent
cycles. In the Flow and in the Reverse Flow, the two orbits of consistent cycles
consist of the transversal n-cycles and the transversal 2n-cycles. Furthermore, it
is not hard to see that if ∆ is a semitransitive orientation of Γ in which a standard
4-cycle is not consistent, all darts in ∆ must be forward facing (or all darts must
be backward facing), and so ∆ must be the Flow (or the Reverse Flow).

Conversely, if a semitransitive orientation ∆ contains a 4-cycle that is consistent,
it must be a standard 4-cycle. Therefore, ∆ is neither the Flow nor the Reverse
Flow, and there exists a vertex v that is the head of one forward facing and
one backward facing dart in ∆ as well as the tail of one forward facing and one
backward facing dart in ∆. By the vertex-transitivity of Aut(∆), this must be
true for every vertex of Γ. Furthermore, for any vertex v of Γ, the symmetry σ
sending the forward facing dart in ∆ the head of which is v to the forward facing
dart in ∆ the tail of which is v is a shunt for some cycle at v, and that cycle must
be a transversal cycle of length n or 2n.

The following theorem establishes a link between the concepts of cycle structure
and semitransitive orientation:

Theorem 7.1. Let Γ = PX(n, k) and suppose that Y is a bipartite cycle struc-
ture on Γ with cycles of length n or 2n. Then the orientation ∆ that consists of the
forward facing green darts and the backward facing red darts is a semitransitive
orientation of Γ.

Proof. Let G = Aut(Y), let H1 be the subgroup of G preserving the Flow and
let H2 be the subgroup of G fixing the set of green cycles (and hence the set
of red cycles). As these are normal subgroups of index 2 in G, the set H3 =
(H1 ∩H2) ∪ ((GrH1) ∩ (GrH2)) is also a subgroup of G, also of index 2. Any
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element of H3 which preserves the colors also preserves the Flow orientation, while
any element of H3 which interchanges colors also reverses the Flow. Hence every
element of H3 preserves the orientation ∆ defined in the theorem. Now, H1 is
transitive on all of the darts of the Flow, and so H1 ∩ H2 is transitive on all of
the green darts of the Flow, and thus is transitive on all the green darts of ∆.
Its complement in H3 sends those darts to the red darts of ∆, and hence H3 is
transitive on the darts of ∆, making ∆ a semitransitive orientation of Γ. �

In fact, the converse of Theorem 7.1 also holds:

Theorem 7.2. If ∆ is a semitransitive orientation of Γ = PX(n, k) in which
a 4-cycle is consistent, then the standard 4-cycles form an Aut(∆)-orbit of con-
sistent cycles. The other Aut(∆)-orbit of consistent cycles forms a bipartite cycle
structure in Γ.

Proof. Suppose that ∆ is a semitransitive orientation of Γ = PX(n, k) contain-
ing a consistent 4-cycle, and let G = Aut(∆). Then by the transitivity of G on
edges, every 4-cycle of ∆ is consistent, and all 4-cycles of Γ are in the same orbit,
proving the first claim of the theorem.

As explained in the paragraphs preceding Theorem 7.1, the set of forward facing
darts of ∆ forms a collection of vertex-disjoint consistent transversal cycles (that
we consider green), and so does the set of backward facing darts (which we consider
red). Let Y be the collection of these green and red (undirected) consistent cycles.
The set Y is clearly a bipartite cycle decomposition of Γ. As G is contained in
the group Aut(Y) of symmetries of Γ that preserve Y, G acts transitively on the
vertices and edges of Y.

To complete the proof of the theorem, it remains to show that some γ ∈ Aut(Y)
sends some dart in ∆ to a dart not in ∆. We will do this in two steps: we will
first argue that we can assume that either Z is a green cycle in Y, or that Z ′ is.
We will then show that under either the first or the second assumption, µ, or µ′

respectively, is in Aut(Y).
To argue that we may assume that either Z or Z ′ is green, note that all cycles

in Y are in the same Aut(Γ)-orbit and that must be the orbit of Z or of Z ′.
Because all consistent cycles in Γ are reflexible, for any cycle D of Y, there must
be a σ in Aut(Γ) sending the darts of D in ∆ to the forward-facing darts of Z or
Z ′. Replacing ∆ by ∆σ, we can assume that Z or Z ′ is a green cycle in Y.

To show that either µ or µ′ belong to Aut(Y) (depending on whether Z or Z ′

is assumed to be green), note first that because ρ is the only shunt for Z which
sends (0, 0k) to (1, 0k), ρ must be in G if Z ∈ Y. Similarly, ρ′ ∈ G if Z ′ ∈ Y. We
claim that in the first case Aut(Y) contains µ, and in the second case it contains µ′

(with µ reversing Z and µ′ reversing Z ′). Arguing this claim will complete the
proof.

Note that, in either case, F = G ∩ K is transitive on each fibre. To see this,
consider any pair of vertices of the same fibre. Each of them is the tail of a unique
green dart, and since G acts transitively on the darts of ∆, G contains an element
that maps the first green dart to the second. This element necessarily fixes two
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consecutive fibres, and thus it fixes setwise every fibre. Hence, it belongs to F ,
which proves that F acts transitively on each fibre.

We claim further that F acts transitively on the green cycles as well as on the red
cycles. This is due to the facts that every green cycle and every red cycle intersects
every fibre, while F acts transitively on each fibre and preserves colors. Since the
pointwise stabilizer of the cycle Z and the pointwise stabilizer of the cycle Z ′ are
trivial in A, the action of F on each fibre is regular. This means, in particular,
that the order of F is 2k. Recall that F is invariant under the conjugation by ρ,

and thus, F = Ĉ for some cyclic code C whose generator bitstring v ends with
exactly k − 1 0’s.

Having shown the above two claims, which hold regardless of whether Z or Z ′

is green, we can now return to the main line of the proof. As argued already, we
have two possibilities to consider.

First, suppose that Z is a green cycle in Y and ρ belongs to G. Since G is
transitive on the darts of ∆, there exists an element of G fixing (0, 0k) and sending
Z to the unique red cycle through (0, 0k). If there were two such elements, their
product would fix Z pointwise and would have to be trivial. This says that the
symmetry must be unique and that its square is trivial. This symmetry must then
be of the form µû for some u ∈ V . Then, 1A = (µû)2 = µûµû = ûµû. Thus,
ûµ = û, and the bitstring uM must be u itself. It also follows that conjugation
by µ fixes µû. Furthermore, the symmetry µûv̂ fixes, setwise, the fibre containing
(0, 0k) and reverses orientation, so its square must be in F . Thus F contains
(µûv̂)2 = ûµv̂µûv̂ = ûv̂µûv̂ = v̂µv̂, and v̂µ belongs to F , and so vM belongs to
C. It is obvious that the longest block of consecutive 0’s in vM must be of the
same length as the longest block of consecutive 0’s in v. Since v is the generator
bitstring of C, vM must be equal to vP i, for some i ∈ Zn. It follows that G is
generated by ρ, µû and v̂, and thus is normalized by µ. Since Y is the orbit of Z
under G, and since µ normalizes G and preserves Z, it preserves Y, as claimed.

Next suppose that Z ′ is a green cycle in Y and ρ′ is in G. As in the previous
case, G contains an element fixing (0, 0k) and sending Z ′ to the unique red cycle
through (0, 0k). As above, this symmetry must be an involution, and it also

must be of the form µ′û for some u ∈ V . Then, ûµ
′

= û. The symmetry µ′ûv̂
fixes the fibre containing (0, 0k) and reverses orientation, and therefore its square

must belong to F . Thus, F contains (µ′ûv̂)2 = v̂µ
′
v̂, and thus v̂µ

′
must be in

F . But v̂µ
′

= τn−1τn−2 . . . τk+1µv̂µτk+1 . . . τn−2τn−1. Since µv̂µ ∈ K, and K is

abelian, this product equals µv̂µ = v̂µ = v̂M , and hence vM is in C. Again, the
longest block of consecutive 0’s in vM is of the same length as the longest block of
consecutive 0’s in v. Since v is the generator bitstring of C, vM must be equal to
vP i, for some i ∈ Zn. Similarly as in the previous case, G is generated by ρ′, µ′û
and v̂, and thus is normalized by µ′. Since Y is the orbit of Z ′ under G, and since
µ′ normalizes G and preserves Z ′, it preserves Y, as claimed. �

Thus, every semitransitive orientation in PX(n, k) other than the Flow and the
Reverse Flow arises from a bipartite cycle structure, all of which are classified in
Theorem 6.4. Applying Theorem 6.4, we see that every semitransitive orientation
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of PX(n, k) other than the Flow and the Reverse is isomorphic to one given by the
following construction:

Construction 7.3. For u ∈ Bk,1 ∩ Z2
n, let v = u + uP , and let ∆u be the

digraph whose dart-set is the orbit of the dart d = ((0, 0k), (1, 0k)) under 〈ρ, v̂, µû〉.
If, in addition, u ∈ Bk,2, define ∆′u to be the orbit of the dart d under 〈ρ′, v̂, µ′û〉.

The following corollary summarizes the discussion of this section:

Corollary 7.4. Each ∆u and ∆′u given by Construction 7.3 is a semitransitive
orientation of PX(n, k), and every semitransitive orientation of PX(n, k) is either
isomorphic to the Flow, the Reverse Flow, or to one of the orientations ∆u,∆

′
u

given by Construction 7.3.

Finally, it is natural to ask whether or when are the orientations ∆u,∆
′
u iso-

morphic. Notice that if u1 and u2 are distinct elements of Bk,1 ∩ Z2
n, then ∆u1

has consistent cycles of lengths 4 and n, while ∆′u2
has consistent cycles of lengths

4 and 2n. Thus, the two orientations are never isomorphic.
Furthermore, when considering the consistent forward-facing cycles in ∆u1

which share a vertex with Z, the ones that share the most vertices are those of the
form Zû1ρ

j . Thus ∆u1 and ∆u2 with distinct u1 and u2 cannot be isomorphic.

8. Rotary maps for PX(n, k)

We first present two constructions for maps with underlying graphs Γ = PX(n, k).
We then provide conditions under which these constructions yield rotary maps.
We show those maps to be reflexible and determine conditions for the maps to be
orientable and determine the lengths of their Petrie paths. Finally, we show that
any rotary map on Γ must be isomorphic to one arising from these constructions.

Construction 8.1. For integers n ≥ 3 and n > k ≥ 1, and for a bitstring u of
length n, let G = 〈ρ, µ, û〉 ≤ Aut(PX(n, k)) and let F be the orbit of the cycle Z
under G. Let Mn,k,u denote the pair (PX(n, k),F).

Construction 8.2. For integers n ≥ 3 and n > k ≥ 1, and for a bitstring u of
length n, let G′ = 〈ρ,′ µ′, û〉 ≤ Aut(PX(n, k)) and let F ′ be the orbit of the cycle
Z ′ under G′. Let M′n,k,u denote the pair (PX(n, k),F ′).

8.1. Properties of maps Mn,k,u and M′n,k,u
Theorem 8.3. If u ∈ Bk+1,0∩Zn2 , thenMn,k,u is a reflexible map of PX(n, k),

and has Petrie paths of length n or 2n, depending on whether the sum of the digits
in u is even or odd, respectively. The map Mn,k,u is orientable if and only if
u ∈ Bk+1,1.

Proof. Our proof uses the vertex z = (0, 0k) in PX(n, k) and its four neighbors.
We write each of these five vertices in the bitstring as well as in the window
notation:
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x = (−1, 10k−1) = [0 . . . 00 ∗ ∗ − − ∗ ∗1],
y = (−1, 0k) = [0 . . . 00 ∗ ∗ − − ∗ ∗0],
z = (0, 0k) = [00 . . . 00 ∗ ∗ − − ∗ ∗],
a = (1, 0k) = [∗00 . . . 00 ∗ ∗ − −∗],
b = (1, 0k−11) = [∗00 . . . 01 ∗ ∗ − −∗].

In the bitstring notation, “0j” stands for a string of j 0’s. In the window
notation we adopt the convention that the dots stand for a string of 0’s, the
dashes stand for a string of asterisks, with a total of k 0’s and 1’s, and n − k
asterisks.

Let v = uP k, so that v begins with k 0’s followed by a 1, and ends in 10, and
let w = vP , so that it begins with k + 1 0’s followed by a 1 and ends in a 1. The
symmetries v̂, ŵ and µ permute the five vertices x, y, z, a, b among themselves, and
on those vertices, have the following action:

(1) v̂ = (a b), ŵ = (x y), µ = (a y)(b x).

To prove the theorem, we first must show that Construction 8.1 actually yields
a map, i.e., we must show that each edge of Mn,k,u belongs to exactly two faces,
and that the faces at each vertex form a cycle.

Lemma 5.1 and our choice of u yield that the subspace generated by u and its

images under 〈P 〉 constitutes a dihedral code C of order 2k+2. Thus, Ĉ is a normal
subgroup of the group G = 〈ρ, µ, û〉, and therefore |G| = n2k+3. The stabilizer in

G of Z is 〈ρ, µ〉 of order 2n, and so the G-orbit F of Z consists of n2k+3

2n = 2k+2

faces of face length n. Furthermore, G is transitive on edges, and so each edge
must belong to the same number, m, of faces. Counting in two ways the number of
edge-face incidences implies n|F| = m|E|, i.e., n(2k+2) = m(2n2k). Thus, m = 2,
as required.

Since the face Z contains consecutively the vertices y, yρ = z, and zρ = a, its
image A = Zv̂, contains the vertices yv̂ = y, zv̂ = z, av̂ = b, its image B = Zŵ
contains the vertices x, z, a, and its image C = Bv̂ = Aŵ contains the vertices
x, z, b; in that order. It follows that the four faces A,B,C,Z ∈ F share the vertex
z, and contain vertices as shown in Figure 2. Since G is transitive on the vertices
of PX(n, k), and the faces in F are all images of Z under G, the cyclic order of the
faces A,B,C,Z around the vertex z determines the cyclic order of faces around
each vertex of PX(n, k), and Mn,k,u is indeed a map.

It is easy to see that all symmetries in G preserve the vertex-edge-face inci-
dences of Mn,k,u, and are therefore map symmetries of Mn,k,u as well. Hence,
the symmetry group of Mn,k,u consists of at least |G| = n2k+3 elements. Since
the number of darts in Mn,k,u is n2k+2, which is one half of the order of G, G is
the full symmetry group ofMn,k,u, andMn,k,u is a reflexible map. In particular,
note that the symmetry ŵ fixes the directed edge (z, a) and moves the face Z
to the adjacent face B. The symmetry ρ acts as rotation R about face Z, while
S = µŵ fixes z but not a, sending Z to A, and so acts as rotation about z (these
symmetries show again that the map is rotary). Further, µ acts as a reflection X
fixing both Z (setwise) and z (showing again that the map is reflexible).
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x

b

Figure 2. The neigborhoood of z = (0, 0k) in Mn,k,u.

We now consider Petrie paths in Mn,k,u. Let us denote the length of a Petrie
path by r, and let s ∈ Z2 be the sum of the entries in u mod 2. Since v = uP k, s
is also the sum of the entries in v. The symmetry which moves the map one step
along the Petrie path . . . y z a . . . is T = RS−1X = ρŵµµ = ρŵ, and r is the order

of T . Note that T 2 = ρŵρŵ = ρ2ŵρ
−1

ŵ, and similarly, T 3 = ρ3ŵρ
−2

ŵρ
−1

ŵ. Due
to the power of ρ at the front of this expression, the order of T is necessarily a
multiple of the order n of ρ. Hence, the smallest positive power of T elligible to be

the identity is the n-th power, i.e., Tn = ρnŵρŵρ
2

. . . ŵρ
−2

ŵρ
−1

ŵ. If we denote the

product ŵρŵρ
2

. . . ŵρ
−2

ŵρ
−1

ŵ by ĥ, then h = wP+wP 2+· · ·+wPn−2+wPn−1+w
(with the addition in Zn2 ). Each entry in w (and thus each entry in u) appears once
in each columnar position in that sum and so h = s(1n), and Tn = αs. Clearly,
the order of Tn is 1 if s = 0 and is 2 if s = 1 (mod 2). The claim about Petrie
paths follows directly from this.

If we assign to each edge its forward facing dart, then when viewed from within
each face, darts point consistently around that face. In adjacent faces, the darts
point in different directions (clockwise when viewed from inside of one of the faces,
and counterclockwise from inside the other). If the map is orientable, half of the
faces are oriented clockwise and half counterclockwise, implying that the map is
face-bipartite. Conversely, if the map is face-bipartite, we can define ’clockwise’
globally by having it agree with the Flow on white faces and disagree on black
faces. Thus M =Mn,k,u is orientable if and only if it is face-bipartite.

This can happen if and only if G (the full symmetry group ofM) has a subgroup
H (the face-color preserving group) of index 2 containing ρ and µ but not ŵ. The
kernel L of H must be of index 2 in F , and since H contains ρ and µ, L must

be D̂ for some dihedral code D of index 2 in C. The generator bitstring g of
D must end in k 0’s and have a palindromic head. By Lemma 5.1, g must be
equal to uP + u. Since g is a generator, g(t) must divide tn − 1. And since
g(t) = u(t) + tu(t) = (1 + t)u(t), the final claim of the theorem follows. �
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Theorem 8.4. If u ∈ Bk+1,1, then M′n,k,u is a reflexible map of PX(n, k), and
has Petrie paths of length 2n or n, depending on whether the sum of the digits
in u is even or odd, respectively. The map M′n,k,u is orientable if and only if
u ∈ Bk+1,2.

The proof of this claim is very similar to the previous one and it is left to the
reader.

8.2. Rotary maps on PX(n, k) must be isomorphic to Mn,k,u or M′n,k,u
We prove in this section that the rotary maps constructed using Constructions 8.1
and 8.2 are the only rotary embeddings of the Praeger-Xu graphs.

Suppose that M is a rotary map with underlying graph Γ = PX(n, k). As
observed in Section 4.3, the faces ofM must be consistent cycles in Γ, and so they
must all be of length 4, all be of length n, or all be of length 2n. However, each
edge of Γ belongs to exactly one standard 4-cycle, which are the only consistent
4-cycles in Γ (recall that we assume n 6= 4), and thus the faces ofM cannot consist
of 4-cycles.

Theorem 8.5. If M is a rotary map with underlying graph PX(n, k), n 6= 4,
then M must be isomorphic to Mn,k,u or M′n,k,u for some n, k, u satisfing the
hypotheses of Theorems 8.3 or 8.4, respectively.

Proof. Let M be a rotary map for Γ = PX(n, k) with automorphisms R and
S as defined in Section 4.3, and suppose first that the faces of M are consistent
n-cycles. Since consistent n-cycles constitute a single orbit under the action of
the automorphism group of Γ, we can assume with no loss of generality that Z
is a face of M and that the shunt R of Z is equal to ρ. Choosing z, x, y, a, b as
in (1) at the beginning of Section 8.1, we see that the faces around z must be as
in Figure 2. Now S must reverse the Flow. Since it also fixes z, and hence the
0th fibre, it must be of the form S = µŵ, for some w ∈ Zn2 . Note that S and µ
act locally as (x a y b) and (x a)(y b), respectively, and therefore ŵ acts on these
vertices as (x y). Because ŵ fixes a, b, z, the bitstring w must have 0’s in positions
0, 1, 2, . . . , k − 1, k. Because ŵ interchanges a and y, wn−1 must be 1.

Since M is assumed to be rotary, RS−1 is an involution, and so the identity

1〈R,S〉 = (RS−1)2 = (ρŵµ)2 = ρŵµρŵµ = ρŵρµŵµ = ρŵρ−1ŵµ = ŵρ
−1

ŵµ, and

hence ŵρ
−1

= ŵµ. It follows that the substring wk+1wk+2 . . . wn−2wn−1 must be
palindromic, and u = wP−k−1 is a bitstring with palindromic head beginning
with 1 and ending with 1 followed by k + 1 0’s.

Let G+ = Aut+(M) = 〈R,S〉 and let F = G+ ∩K be the kernel of the action
of G+ on the fibres. Let W = {ω ∈ K|µω ∈ G+}. Clearly, ŵ ∈ W , and hence
the coset ŵF is contained in W . If we let S0 stand for the stabilizer in G+ of the
0th fibre, then F must be S0 ∩ K, and so has index 2 in S0. This implies that
the coset of F in S0 has size |F | and must contain µW , of size at least |F |. Thus,
µW = µŵF , and so W = ŵF .

It follows that S0 = F ∪ µW = F ∪ µŵF , and therefore every element g of G+

must have a unique expression of the form g = ρj(µŵ)εf for some j ∈ Zn, ε ∈ Z2,
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and f ∈ F . Consider, in particular, g = ρ2µŵ ∈ G+. Then gρ = ρ2(µρŵρ) is also
in G+. Recall that 〈ρ, µ〉 is isomorphic to Dn, and hence µρ = ρ−2µ. Then gρ is
µŵρ, and so ŵρ ∈W . Since F is invariant under conjugation by ρ, W is invariant

under conjugation by ρ. In addition, ŵµ = ŵρ
−1

, and so W is also invariant
under conjugation by µ. Further, S0 is invariant under conjugation by µ. Thus
G+ = 〈ρ, S0〉 is invariant under conjugation by µ.

To finish the proof, we first need to prove the following lemma:

Lemma 8.6. If M is a rotary map with underlying graph PX(n, k) and having
n-gonal faces, then M is reflexible.

Proof. Assume, as above, that Z is a face ofM, that the shunt R of Z is equal
to ρ, that z, x, y, a, b are as in (1) from the beginning of Section 8.1, and that the
faces around z are as in Figure 2. We first claim that µ acts as a symmetry ofM.
We know that µ is a symmetry of PX(n, k) and so we need only to show that µ
sends faces to faces. Consider any face f of M. Since G+ is transitive on faces,
there is some g ∈ G+ such that f = Zg. Then fµ = Zgµ = Zµµgµ = Zµ(gµ),
and since Zµ = Z, this is Zg′ for some g′ ∈ G+, which is a face of M because
g′ ∈ G+. So µ acts as a symmetry of M, and it acts on Z as a reflection about
the diameter through x. Thus M is reflexible. �

Because G+ is generated by R = ρ and S = µŵ, G = Aut(M) is generated by
ρ, û, and µ. SinceM is reflexible, the order of G is four times the number of edges

of PX(n, k), namely n2k+3. Let Ĥ be the kernel of the action of G on the fibres.

Then Ĥ = G ∩K, and G/Ĥ is isomorphic to Dn, which yields that the order of
H is 2k+2. The bitstring u belongs to H and ends in k + 1 0’s, and thus must be
the generator bitstring for H. Then u(t) must divide tn− 1, and we conclude that
the parameters n, k, u satisfy the hypotheses of Theorem 8.3 andM is isomorphic
to Mn,k,u.

To complete the proof of the theorem, a very similar proof can be devised
to show that if the faces of M are consistent 2n-cycles, then n, k, u satisfy the
hypotheses of Theorem 8.4 and M is isomorphic to M′n,k,u. �

8.3. Open questions about rotary maps for PX(n, k)

Two interesting questions about the maps Mn,k,u and M′n,k,u remain open and
would be worth considering:

1. It is well-known that for any map M, the maps M and its Petrie P(M) have
the same underlying graph, and P(M) is reflexible if and only if M is. Thus,
the Petrie P(Mn,k,u) is a reflexible map for PX(n, k) again, and is therefore
isomorphic to Mn,k,v or M′n,k,v for some v. How can we determine the map
for given n, k, u?

Some indication may be deduced by considering the sum s of the entries in
u. If s is even thenMn,k,u andM′n,k,u are of types {n, 4}n and {2n, 4}2n, while

if s is odd, they are of types {n, 4}2n and {2n, 4}n. In the first case it might
be reasonable to guess that both maps are self-Petrie, while in the second case,
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we might assume that each map is the Petrie dual of the other. But we cannot
know this for sure.

2. If u1 6= u2, canMn,k,u1
be isomorphic toMn,k,u2

or canM′n,k,u1
be isomorphic

to M′n,k,u2
? Can we classify the maps Mn,k,u and the maps M′n,k,u up to

isomorphism?

9. Appendix: The special case n = 4

For the sake of completeness, we give here the results for the Praeger-Xu graphs
Γ = PX(n, k) in which the order of Aut(Γ) is not n2n+1. These are the graphs
PX(4, k) for 1 ≤ k < 4, which are different because when n = 4, there are more
4-cycles than in the standard case. To be more precise, when n = 4, every edge
belongs to at least two consistent 4-cycles and the graph underlies a toroidal map
of type {4, 4}.

9.1. Case k = 1.

The graph Γ1 = PX(4, 1) is isomorphic to K4,4, to the toroidal graph {4, 4}2,2, and
to the circulant graph C8(1, 3). Its symmetry group has order 2732. Its consistent
cycles are of length 4, 6, 8. It has two (isomorphism classes of) cycle structures,
one of four 4-gons and one of two 8-gons. Both of these are bipartite. It has
two non-isomorphic semitransitive orientations, both circulant. It has only one
rotary embedding. That embedding is on the torus as the reflexible self-Petrie
map {4, 4}2,2.

9.2. Case k = 2.

The graph Γ2 = PX(4, 2) is isomorphic to the Rose Window graph R8(6, 5) [6], to
Q4 (the skeleton of the 4-cube), and to the toroidal graph {4, 4}4,0. Its symmetry
group has order 273. Its consistent cycles are of length 4, 6, 8. It has two cycle
structures, one of eight 4-gons and one of four 8-gons. Both of these are bipartite.
It has two non-isomorphic semitransitive orientations. It has two rotary embed-
dings, one on the torus as {4, 4}4,0. The second embedding is the Petrie of the
first and is of type {8, 4}4 on the orientable surface of genus 5.

9.3. Case k = 3.

The graph Γ3 = PX(4, 3) is isomorphic to the toroidal graph {4, 4}4,4. Its symme-
try group has order 28. It has consistent cycles of length 4 and two orbits of cycles
of length 8. It has two cycle structures, one of sixteen 4-gons and one of eight
8-gons. Both of these are bipartite. It has three non-isomorphic semitransitive
orientations. It has two rotary embeddings, one on the torus as {4, 4}4,4. The
second embedding is the Petrie of the first, and is of type {8, 4}4 on the orientable
surface of genus 9.
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9. Miklavič S., Potočnik P. and Wilson S., Arc-transitive cycle decompositions of tetravalent

graphs, J. Combin. Theory, Ser. B. 98(6) (2008), 1181–1192.
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