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REPDIGITS AS PRODUCT OF TWO PELL

OR PELL-LUCAS NUMBERS

Z. ŞİAR, F. ERDUVAN and R. KESKIN

Abstract. Let Pn, Qn, Bn, and Cn denote, respectively Pell, Pell-Lucas, balanc-
ing, and Lucas-balancing numbers. In this study, we show that if PmPn is a repdigit,
then PmPn ∈ {0, 1, 2, 4, 5} and that if QmQn is a repdigit, then QmQn = 4. More-
over, we show that if BmBn is a repdigit, then BmBn ∈ {0, 1, 6} and that if CmCn

is a repdigit, then CmCn ∈ {1, 3, 9, 99}.

1. Introduction

Let (λ, δ) = (1/2
√

2,−1/2
√

2), (1, 1) and (α, β) = (1 +
√

2, 1−
√

2). For n ≥ 0, we
define En by

En = λαn + δβn .

It is clear that En = Pn, n-th Pell number for (λ, δ) =
(
1/2
√

2,−1/2
√

2
)

and
that En = Qn, n-th Pell-Lucas number for (λ, δ) = (1, 1). Let Bn = P2n/2 and
Cn = Q2n/2. Then Bn is n-th balancing number and Cn is n-th Lucas balancing
number. For more information about sequences of balancing and Lucas-balancing
numbers, see [7], [11], and [12]. Actually, En 6= 0 for n ≥ 1. It can be seen that
2 < α < 3 and −1 < β < 0. The inequalities

(1) αn−2 ≤ Pn ≤ αn−1

and

(2) Qn < 2αn,

are well known, where n ≥ 1. Thus, the inequality

(3) αn−2 ≤ En < 2αn

is always true for n ≥ 1. A repdigit is a non-negative integer whose digits are all
equal. Investigation of the repdigits in the second-order linear recurrence sequences
has been of interest to mathematicians. In [9], the authors found all Fibonacci
and Lucas numbers which are repdigits. The largest repdigits in the Fibonacci
and Lucas sequences are F5 = 55 and L5 = 11. After that, in [1], the authors
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showed that the largest Fibonacci number which is a sum of two repdigits is
F20 = 6765 = 6666 + 99. In [6], the authors found all Pell and Pell-Lucas numbers
which are repdigits. The largest repdigits in the Pell and Pell Lucas sequences are
P3 = 5 and Q2 = 6. In this paper, we consider the Diophantine equation

(4) EmEn =
d(10k − 1)

9
with d ∈ {1, 2, 3, . . . , 9, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36} . And thus, we solve the
equations

PmPn =
d(10k − 1)

9
,(5)

QmQn =
d(10k − 1)

9
,(6)

PmQn =
d(10k − 1)

9
.(7)

Furthermore, since Bn = P2n/2 and Cn = Q2n/2, we find that if BmBn is a
repdigit, then BmBn = 0, 1, 6, and if CmCn is a repdigit, then CmCn = 1, 3, 9, 99.
In Section 2, we introduce necessary lemmas and theorems. Then we prove our
main theorems in Section 3.

2. Auxiliary results

In [4], in order to solve Diophantine equations of the form (4), the authors used
Baker’s theory of lower bounds for a nonzero linear form in logarithms of algebraic
numbers. Since such bounds are of crucial importance in effectively solving of
Diophantine equations of this form, we start with recalling some basic notions
from algebraic number theory.

Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(
x− η(i)

)
∈ Z[x],

where the ai’s are relatively prime integers with a0 > 0 and η(i)’s are conjugates
of η. Then

(8) h(η) =
1

d

(
log a0 +

d∑
i=1

log
(

max
{
|η(i)|, 1

}))
is called the logarithmic height of η. In particularly, if η = a/b is a rational number
with gcd(a, b) = 1 and b > 1, then h(η) = log (max {|a|, b}) .

The following properties of logarithmic height are found in many works stated
in the references:

h(η ± γ) ≤ h(η) + h(γ) + log 2,(9)

h(ηγ±1) ≤ h(η) + h(γ),(10)

h(ηm) = |m|h(η).(11)
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The following theorem is deduced from Corollary 2.3 of Matveev [10] and provides
a large upper bound for the subscripts n and m in the equation (4)(also see [3,
Theorem 9.4]).

Theorem 1. Assume that γ1, γ2, . . . , γt are positive real algebraic numbers in
a real algebraic number field K of degree D, b1, b2, . . . , bt are rational integers, and

Λ := γb11 . . . γbtt − 1

is not zero. Then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2 . . . At

)
,

where
B ≥ max {|b1|, . . . , |bt|} ,

and Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, . . . , t.

The following lemma was proved by Dujella and Pethő [5] and is a variation
of a lemma of Baker and Davenport [2]. This lemma is used to reduce the upper
bound for the subscripts n and m in the equation (4). Let the function ‖ ·‖ denote
the distance from x to the nearest integer. That is, ‖x‖ = min {|x− n| : n ∈ Z}
for any real number x. Then we have the following lemma.

Lemma 2. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational number γ such that q > 6M, and let A,B, µ be some real
numbers with A > 0 and B > 1. Let ε := ‖µq‖−M‖γq‖. If ε > 0, then there exists
no solution to the inequality

0 < |uγ − v + µ| < AB−w

in positive integers u, v, and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The following lemma can be found in [13].

Lemma 3. Let a, x ∈ R. If 0 < a < 1 and |x| < a, then

|log(1 + x)| < − log(1− a)

a
· |x|

and
|x| < a

1− e−a
· |ex−1| .

The following two lemmas are given in [6] and the third one in [8].

Lemma 4. The only repdigits in the Pell sequence are 0, 1, 2, 5.

Lemma 5. The only repdigits in the Pell-Lucas sequence are 2, 6.

Lemma 6. The only repdigits in the Balancing sequence are 0, 1, 6.

The following lemma is useful for the proof of Theorem 8.

Lemma 7. Let d ∈ {10, 12, 14, . . . , 36}. Then all nonnegative integer solutions

(n, d, k, En) of the equation En =
d(10k − 1)

9
are given by

(n, d, k, En) ∈ {(0, d, 0, 0), (4, 12, 1, 12), (3, 14, 1, 14), (4, 34, 1, 34), (6, 18, 2, 198)} .
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Proof. Assume that d ∈ {10, 12, 14, . . . , 36} and En =
d · (10k − 1)

9
. If k = 0,

then En = 0, which implies that n = 0. Let k ≥ 1. Then n ≥ 1. Since

10k−1 <
d(10k − 1)

9
= En < 2αn

by (3), it follows that k ≤ n. With the help of Mathematica program, we obtain
other solutions stated in Lemma 7 for n ≤ 60. Now we assume that n ≥ 61.

Rewriting the equation En =
d(10k − 1)

9
as

λαn − d · 10k

9
= −d

9
− δβn,

and taking absolute values of both sides of this equality, we get

(12)

∣∣∣∣λαn − d · 10k

9

∣∣∣∣ ≤ d

9
+ |δ| |β|n .

Dividing both sides of (12) by λαn, we obtain

(13)

∣∣∣∣1− d · α−n10k

9λ

∣∣∣∣ ≤ d

9λαn
+
|δ| |β|n

λαn
≤ 8
√

2

αn
+

1

αn
<

12.35

αn
.

Put γ1 := α, γ2 := 10, γ3 := d/9λ, and b1 := −n, b2 := k, b3 := 1. Note that
the numbers γ1, γ2, and γ3 are positive real numbers and elements of the field
K = Q(

√
2). The degree of the field K is 2. So D = 2. Let

Λ = 1− d · α−n10k

9λ
.

If Λ = 0, then it follows that λαn = d·10k
9 . Conjugating this relation in Q(

√
2), we

get δβn = d·10k
9 . Thus we have

En = λαn + δβn =
2d · 10k

9
>
d · (10k − 1)

9
= En,

a contradiction. Therefore, Λ 6= 0. Since

h(γ1) = h(α) =
logα

2
=

0.8813 . . .

2
, h(γ2) = h(10) = log 10 < 2.31,

and

h( γ3) = h(d/9λ) ≤ h(9) + h(d) + h(λ) ≤ log 9 + log 36 +
log 8

2
≤ 6.83

by (10), we can take A1 := 1, A2 := 4.7, and A3 := 14. Also, since k ≤ n and
B ≥ max {| − n|, |k|, |1|}, we can take B := n. Thus, taking into account the
inequality (13) and using Theorem 1, we obtain

n logα− log (12.35) < 1.4 · 306 · 34.5 · 22 · (1 + log 2)(1 + log n) · 4.7 · 14.

A computer calculation with Mathematica gives that n < 2.65 · 1015.
Let

z := k log 10− n logα+ log(d/9λ)
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and x := ez −1. Then

|x| = |1− ez| < 12.35

αn
<

1

2

by (13). Choosing a :=
1

2
, we get the inequality

|z| = |log(x+ 1)| < log 2

(1/2)
· 12.35

αn

by Lemma 3. Thus, it follows that

0 < |k log 10− n logα+ log(d/9λ)| < (17.13) · α−n.

Dividing this inequality by logα, we get

(14) 0 <

∣∣∣∣k log 10

logα
− n+

log(d/9λ)

logα

∣∣∣∣ < 19.5 · α−n.

Take γ :=
log 10

logα
/∈ Q and M := 2.65 · 1015. Then q42 = 920197043232024959, the

denominator of the 42th convergent of γ exceeds 6M. Now put

µ :=
log(d/9λ)

logα
with λ ∈

{
1/2
√

2, 1
}
.

In this case, a quick computation with Mathematica gives us the inequality 0 <
ε = ε(λ) := ‖µq42‖ −M‖γq42‖ for λ ∈

{
1/2
√

2, 1
}

. Let A := 19.5, B := α, and
w := n in Lemma 2. Thus, with the help of Mathematica, we can say that if the
inequality (14) has a solution, then

n = w ≤ log(Aq42/ε)

logB
≤ 55.88.

This contradicts our assumption that n ≥ 61. Thus the proof is completed. �

3. Main Theorems

Theorem 8. Let d ∈ {1, 2, 3, . . . , 9, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36}. Then
all nonnegative integer solutions (n,m, d, k, EmEn) of the equation (4) are the
elements of the set

{(0,m, d, 0, 0) , (n, 0, d, 0, 0) , (0, 0, 4, 1, 4), (1, 0, 4, 1, 4) , (1, 0, 2, 1, 2) ,
(1, 1, 1, 1, 1) , (1, 1, 2, 1, 2) , (1, 1, 4, 1, 4) , (2, 0, 4, 1, 4), (2, 0, 12, 1, 12) ,
(2, 1, 2, 1, 2) , (2, 1, 12, 1, 12) , (2, 1, 6, 1, 6) , (2, 2, 12, 1, 12) , (2, 2, 4, 1, 4) ,
(2, 2, 36, 1, 36) , (3, 0, 10, 1, 10) , (3, 0, 28, 1, 28) , (3, 1, 10, 1, 10) , (3, 1, 28, 1, 28) ,
(3, 1, 5, 1, 5) , (3, 1, 14, 1, 14) , (3, 2, 28, 1, 28) , (3, 2, 10, 1, 10) , (4, 0, 24, 1, 24) ,
(4, 1, 12, 1, 12) , (4, 1, 24, 1, 24) , (4, 2, 24, 1, 24) , (6, 0, 36, 2, 396) , (6, 1, 18, 2, 198) ,
(6, 1, 36, 2, 396) , (6, 2, 36, 2, 396) , (0, 1, 2, 1, 2) , (0, 1, 4, 1, 4) , (0, 2, 12, 1, 12) ,
(0, 3, 28, 1, 28) , (0, 6, 36, 2, 396) , (0, 2, 4, 1, 4) , (0, 3, 10, 1, 10) , (0, 4, 24, 1, 24) ,
(1, 2, 4, 1, 4) , (1, 2, 2, 1, 2) , (1, 2, 6, 1, 6) , (1, 2, 12, 1, 12) , (1, 3, 5, 1, 5) ,
(1, 3, 10, 1, 10) , (1, 3, 14, 1, 14) , (1, 3, 28, 1, 28) , (1, 4, 12, 1, 12) , (1, 4, 24, 1, 24) ,
(1, 6, 18, 2, 198) , (1, 6, 36, 2, 396) , (2, 3, 10, 1, 10) , (2, 4, 24, 1, 24) , (2, 3, 28, 1, 28) ,
(2, 6, 36, 2, 396)}.
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Proof. Let d ∈ {1, 2, 3, . . . , 9, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36} and the equa-
tion (4) holds. If k = 0, then EmEn = 0. Assume that k ≥ 1. Then EmEn 6= 0. If

m=0, then we get En = r(10k−1)
9 , where r=d/2∈{1, 2, 3, . . . , 9, 10, 12, 14, 16, 18} .

This implies that EmEn ∈ {2, 4, 10, 12, 24, 28, 68, 396} by Lemmas 4, 5, and 7. If

m = 1 or m = 2 and Em = P2, then we have En = d(10k−1)
9 or En = r(10k−1)

9 ,
where r = d/2 ∈ {1, 2, 3, . . . , 9, 10, 12, 14, 16, 18} . Similarly, we obtain EmEn ∈
{1, 2, 4, 5, 6, 10, 12, 14, 24, 28, 34, 68, 198, 396} by Lemmas 4, 5, and 7. Since Em

and En are symmetric, EmEn has the same values for the cases n = 0, n = 1, or
n = 2, and En = P2. Now assume that m,n ≥ 2. Note that we consider only the
case Em = Q2 or En = Q2 when m = 2 or n = 2. From (3), we obtain

10k−1 ≤ d(10k − 1)

9
= EmEn < 4 · αn+m.

Making necessary calculations, we see that k < m+ n. On the other hand, we
can rewrite equation (4) as

(λ1α
m + δ1β

m) (λ2α
n + δ2β

n) =
d(10k − 1)

9
,

where (λi, δi) ∈
{(

1/2
√

2,−1/2
√

2
)
, (1, 1)

}
for i = 1, 2. Thus

(15) λ1λ2α
m+n − d · 10k

9
= −d

9
− λ1δ2αmβn − δ1λ2βmαn − δ1δ2βm+n.

Taking absolute values of both sides of (15), we get∣∣∣∣λ1λ2αm+n − d · 10k

9

∣∣∣∣ ≤ d

9
+ λ1α

m |δ2| |β|n + λ2 |δ1| |β|m αn + |δ1δ2| |β|m+n
.

Dividing both sides of this inequality by λ1λ2α
m+n, we obtain∣∣∣∣1− d · 10k

9λ1λ2 · αn+m

∣∣∣∣ ≤ d

9λ1λ2 · αn+m
+
|δ2| |β|n

λ2αn
+
|δ1| |β|m

λ1αm
+
|δ1δ2| |β|m+n

λ1λ2αn+m

<
d

9λ1λ2 · αn+m
+

1

α2n
+

1

α2m
+

1

αm+n
.

It follows that
(16)∣∣∣∣1− α−(n+m) · 10kd

9λ1λ2

∣∣∣∣ <


35 ·max{α−2m, α−2n} if both Em

and En are Pell numbers,

15 ·max{α−2m, α−2n} otherwise.

Now, let us apply Theorem 1 with γ1 := α, γ2 := 10, γ3 := d/9λ1λ2, and b1 :=
−(n+m), b2 := k, b3 := 1. Note that the numbers γ1, γ2, and γ3 are positive real

numbers and elements of the field K = Q(
√

2). The degree of the field K is 2. So
D = 2. Now, we show that

Λ1 := 1− α−(n+m) · 10kd

9λ1λ2

is nonzero. On the contrary, assume that Λ1 = 0. Then αn+m = d · 10k/9λ1λ2.

Conjugating this in Q(
√

2), we get βn+m = d · 10k/9δ1δ2. This implies that
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10/9 ≤ d · 10k/9 |δ1δ2| = |β|n+m ≤ 1, which is impossible. Since

h(γ1) = h(α) =
logα

2
=

0.8813 . . .

2
, h(γ2) = h(10) = log 10,

and
h(γ3) = h(d/9λ1λ2) ≤ h(9) + h(d) + h(λ1) + h(λ2)

≤ log 9 + log 36 +
log 8

2
+

log 8

2
≤ 7.87

by (10), we can take A1 := 1, A2 := 4.7, and A3 := 16. Also, since k < n + m
and B ≥ max {| − (n+m)|, |k|, |1|}, we can take B := n + m. Thus, taking into
account the inequality (16) and using Theorem 1, we obtain

35 ·max
{
α−2m, α−2n

}
> |Λ1| > exp

(
−1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log(n+m))(4.7)(16)

)
.

By a simple computation, it follows that

(17) min {2m logα, 2n logα} < 7.3 · 1013 · (1 + log(n+m)).

Rearranging the equation (4) as

(18) λ2α
n − d · 10k

9Em
= δ2β

n − d

9Em

and taking absolute values of both sides of (18), we get

(19)

∣∣∣∣λ2αn − d · 10k

9Em

∣∣∣∣ ≤ |δ2| |β|n +
d

9Em
.

Dividing both sides of (19) by λ2α
n, we obtain

(20)

∣∣∣∣1− α−n10kd

9λ2Em

∣∣∣∣ ≤ |δ2| |β|nλ2αn
+

d

9λ2Emαn
≤ 1

α2n
+

8
√

2

αn
<

12.35

αn
.

Taking γ1 := α, γ2 := 10, γ3 := d/9λ2Em, and b1 := −n, b2 := k, b3 := 1, we
can apply Theorem 1. The numbers γ1, γ2, and γ3 are positive real numbers and
elements of the field K = Q(

√
2), and so D = 2. Now, we show that

Λ2 := 1− α−n10kd

9λ2Em

is nonzero. Indeed, if Λ2 = 0, then αn = 10kd/9λ2Em. Conjugating in Q(
√

2)

gives us βn = 10kd/9δ2Em, and so EnEm = 2d ·10k/9 > d(10k−1)
9 , a contradiction.

Since h(γ1) =
logα

2
=

0.8813 . . .

2
, h( γ2) = log 10, and

h(γ3) = h (d/9λ2Em) ≤ h(d) + h(9) + h(λ2) + h(Em)

≤ log(36) + log(9) +
log 8

2
+ log 2 +m logα < 7.52 +m logα

by (10), we can take A1 := 1, A2 := 4.7, and A3 := 16.1 + 2m logα. Since
k < n+m and B ≥ max {| − n|, |k|, |−1|}, we can take B := n+m. Thus, taking
into account the inequality (20) and using Theorem 1, we obtain

(12.35)·α−n > |Λ2| > exp (C · (1 + log 2)(1 + log(n+m)) (4.7) (16.1 + 2m logα)) ,
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where C = −1.4 · 306 · 34.5 · 22. So we get

(21) n logα < 4.6 · 1012 · (1 + log(n+m)) (16.1 + 2m logα) .

In a similar way, it can be easily seen that

(22) m logα < 4.6 · 1012 · (1 + log(n+m)) (16.1 + 2n logα) .

Using the inequalities (17), (21), and (22), a computer search with Mathematica
gives us that n < 1.95 · 1030 if n ≥ m, and that m < 1.95 · 1030 if m ≥ n. From
now on, we divide the proof into two cases.

Case 1. Assume that n ≥ m. So, n < 1.95 · 1030. Let 2 ≤ m ≤ n ≤ 60 and let
(n,m, d, k, EmEn) be a solution of the equation (4). Then by using Mathematica
program, it can be seen that this equation has only solutions for m = 2. Note that
Em = Q2 = 6 when m = 2. In this case, EmEn = 12, 36. We may assume that
n > 60.

Now, let us try to reduce the upper bound on n by applying Lemma 2. Let

z1 := k log 10− (n+m) logα+ log(d/9λ1λ2).

Put x := ez1 −1. Firstly, let m = 2. In this case, since Em = Q2, it follows that

|x| = |1− ez1 | < 15 · α−2m <
1

2
by (16). If m ≥ 3, then |x| = |1− ez1 | <

35 ·α−2m <
1

4
by (16). Hence, inequality |x| < 1

2
is always true. Choosing a :=

1

2
,

we get the inequality

|z1| < |log(x+ 1)| < − log(1/2)

1/2
|x| < − log(1/2)

1/2
· 35α−2m < 49 · α−2m

by (16) and Lemma 3. That is,

0 < |k log 10− (n+m) logα+ log(d/9λ1λ2)| < 49 · α−2m.

Dividing this inequality by logα, we get

(23) 0 <
∣∣∣k( log 10

logα

)
− (n+m) +

( log(d/9λ1λ2)

logα

)∣∣∣ < 56 · α−2m.

Take γ :=
log 10

logα
/∈ Q and M := 3.9 · 1030. Then q73, the denominator of the 73-th

convergent of γ exceeds 6M. Now take

µ :=
log(d/9λ1λ2)

logα
.

In this case, a quick computation with Mathematica gives us the inequality 0 <
ε = ε(µ) := ‖µq73‖ − M‖γq73‖ for all values of d. Let A := 56, B := α, and
w := 2m in Lemma 2. Thus, with the help of Mathematica, we can say that if the
inequality (23) has a solution, then

2m = w ≤ log(Aq73/ε)

logB
≤ 96.26.

So, if the inequality (23) has a solution, then

m ≤ 48.

Substituting this upper bound for m into (21), we obtain n < (2.1) · 1016.
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Now, let
z2 := k log 10− n logα+ log (d/9λ2Em)

and x := ez2 −1. Then we can see that

|x| = |1− ez2 | < 12.35

αn
< 0.07

by (20) as n > 60. Put a := 0.07. Then, by Lemma 3, we get

|z2| = |log(x+ 1)| < − log(0.93)

0.07
· 12.35

αn
<

12.81

αn
.

Therefore,

0 < |k log 10− n logα+ log (d/9λ2Em)| < (12.81) · α−n.

Dividing both sides of the above inequality by logα, we get

(24) 0 <
∣∣∣k( log 10

logα

)
− n+

log (d/9λ2Em)

logα

∣∣∣ < (14.55) · α−n.

Let γ :=
log 10

logα
and M := (4.2) · 1016. Then the denominator of the 45-th conver-

gent of γ exceeds 6M. Taking

µ :=
log (d/9λ2Em)

logα

and considering the fact that m ≤ 48, a quick computation with Mathematica
gives us the inequality 0 < ε = ε(µ) = ‖µq45‖ −M‖γq45‖ for all values of µ. Let
A := 14.55, B := α, and w := n in Lemma 2. Thus, with the help of Mathematica,
we can say that if the inequality (24) has a solution, then

n = w ≤ log(Aq45/ε)

logB
≤ 57.15.

This contradicts our assumption that n > 60.
Case 2. A similar proof can be done for the case m ≥ n, and therefore, we omit

it. This completes the proof. �

Now we can give the following results.

Corollary 9. If PmPn is a repdigit, then PmPn ∈ {0, 1, 2, 4, 5} .

Corollary 10. If QmQn is a repdigit, then QmQn = 4.

Corollary 11. If PmQn is a repdigit, then PmQn ∈ {0, 2, 4, 6} .

Since Bn = P2n/2 and Cn = Q2n/2, if BmBn or CmCn is a repdigit, then d
given in Theorem 8 must be a multiple of 4. Thus, we can deduce the following
results from Theorem 8.

Corollary 12. If BmBn is a repdigit, then BmBn ∈ {0, 1, 6} .

Corollary 13. If CmCn is a repdigit, then CmCn ∈ {1, 3, 9, 99} .

Corollary 14. If CmBn is a repdigit, then CmBn ∈ {1, 3, 6, 99} .
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