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STABLE EMBEDDINGS ON CLOSED SURFACES

WITH RESPECT TO MINIMUM LENGTH
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Abstract. An embedding of a graph on a closed surface with suitable metric is said
to be minimum-length embedding if the total sum of lengths of its edges measured
by the metric is the minimum among all embeddings isotopic to it and is said to
be stable with respect to minimum length if the limit of any convergent sequence
of minimum-length embeddings isotopic to it is an embedding of the graph. We
shall discuss these notions and shall decide which 4-regular quadrangulations and
which 6-regular triangulations on the torus have minimum-length embeddings and
are stable with respect to minimum length.

1. Introduction

Research on how to draw or represent a graph is one of streams in geometric graph
theory. The most classical theorem along this stream is Fáry’s theorem [2], which
shows that any plane graph can be deformed so that each edge becomes a straight
line segment and there have been many studies on geometric representations of
graphs, listed in [13]. Also Hubard and et al. [3] has discussed the existence of
Riemannian metrics over closed surfaces for which embedded graphs have a special
property, motivated by Negami’s conjecture [11] on joint crossing numbers. In this
paper, we shall discuss a kind of “stableness” of embeddings of graphs on closed
surfaces with respect to metrics, formulated below.

Suppose that a graph G has been embedded on a closed surface F 2 which has
a suitable metric, by an embedding map f : G → F 2. Then we can measure the
length of each edge f(e) according to the metric over F 2. We denote the length
of f(e) by |f(e)| and define the total length ‖f‖ of the embedding of G by:

‖f‖ = ‖f(G)‖ =
∑

e∈E(G)

|f(e)|

We would like to consider what happens when we minimize the total length
of an embedding over the surface; this question has appeared in [7]. For exam-
ple, Figure 1 shows two different embeddings of the complete graph K5 with five
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vertices on the torus. In the left one, four triangular faces incident to the vertex
placed at the center form a rhombus. The rhombus will shrink to a point when
we minimize the total length of this K5. Thus, the final form of this embedding
will not be an embedding of K5 at all. On the other hand, we can show that the
right one is an embedding of K5 which attains the minimum of its total length,
using our later arguments.
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Figure 1. Two embeddings of K5 on the torus.

We should prepare many things about topology and geometry to establish a
rigorous theory on this subject. However, we dare to carry out slightly intuitive
arguments meanwhile below.

Let F 2 be a closed surface which has a suitable metric and let G be a graph
embedded on F 2 by an embedding map f : G → F 2. Two embeddings f1 and
f2 : G → F 2 are said to be isotopic if a continuous deformation over F 2 modifies
f1(G) to f2(G), keeping it being an embedding of G. An embedding fmin : G→ F 2

is said to be minimum-length if it attains the infimum of the total lengths ‖f ′‖
taken over all embeddings f ′ : G → F 2 isotopic to f . We say simply that an
embedding of G or G itself has a minimum-length embedding if it is isotopic to an
minimum-length embedding of G.

We shall show an enough big class of graphs which have minimum-length em-
beddings on the torus. The torus is assumed to have a parabolic metric, defined
later, and such a torus is called a flat torus. The torus admits embeddings of
4-regular graphs which tessellates the torus into quadrilaterals. Such an embed-
ding of a 4-regular graph is called a 4-regular quadrangulation on the torus and
can be obtained from a rectangular grid of suitable size by identifying each pair
of parallel sides. We shall show the following fact on 4-regular quadrangulatoins
on the torus:

Theorem 1. Any 4-regular quadrangulation on a flat torus has a minimum-
length embedding.

There have been classified 4-regular quadrangulations on the torus with suitable
parameters, up to auto-homeomorphisms over the torus [6], as described in Sec-
tion 4. It should be noticed that an auto-homeomorphism over the torus changes
the total length of an embedding in general.
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As we shall show later, the minimum-length embedding of a 4-regular quadran-
gulation on the torus looks like a grid which consists of two sets of cycles placed
in parallel and we can slide one of cycles, not changing the total length of its
embedding. Thus, if a set of parallel cycles contains two or more cycles, then
we can find a sequence of embeddings f1, f2, . . . each of which is isotopic to the
original embeddings, but its limit is not. In general, an embedding of a graph on
a closed surface is said to be stable with respect to minimum length if the limit
of any convergent sequence of embeddings of G isotopic to the embedding is an
embedding of G.

We shall show the following theorem on the stableness of minimum-length em-
beddings of 4-regular quadrangulations on the torus. By this theorem, we can
conclude that the right embedding of K5 on the torus is stable.

Theorem 2. A 4-regular quadrangulation G on a flat torus is stable with respect
to minimum length if and only if G can be obtained as an edge-disjoint union of
two hamilton cycles which cross each other at each vertex.

Adding a diagonal to each face of a 4-regular quadrangulation on the torus will
yield a 6-regular triangulation on the torus. Actually, it has been known that
any 6-regular triangulation on the torus can be obtained in such a way [1, 8], as
described in Section 4. We shall show the following theorem for it:

Theorem 3. Any 6-regular triangulation on a flat torus has a minimum-length
embedding which is stable with respect to minimum length.

In the next section, we shall develop a topological theory for minimum-length
embeddings, which guarantees our intuitive arguments later. In Section 3, we shall
formulate the torus having parabolic metric, using the universal covering space,
which is the Euclidean plane R2 with Euclidean distance. In Section 4, we shall
describe the classifications of 4-regular quadrangulations and 6-regular triangula-
tions on the torus and prove our three main theorems. This paper presents just
the first step for this topic and confines ourselves to arguments for embeddings on
the torus. In Section 5, we shall show some comments for further studies on this
topic under more general situation.

2. Minimum-length embeddings

We have introduced minimum-length embeddings and their stableness in an intu-
itive way in introduction. Here we shall show the formulation for those in terms
of topology. The reader unfamiliar to general topology may skip this section and
come back after reading later chapters if necessary.

First we shall discuss a simple necessary condition for an embedding of a graph
on a closed surface to have a minimum-length embedding. It is clear that any
embedding of any graph on the sphere shrinks to a point continuously and hence
it does not have a minimum-length embedding on the sphere. Thus, the surface
where a graph has been embedded must be a closed surface other than the sphere.
Furthermore, if an embedding of a graph G has a minimum-length embedding on
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the surface, then “a local planar part” as shown in Figure 2 must be excluded.
Shrink this part toward the central point in the figure. Then the edges placed radi-
ally toward the outside will be longer, but the total length of the whole embedding
will be shorter if there are enough many edges in the inner part. For example, the
embedding of K5 on the torus in the left of Figure 1 has such a local planar part
while the right one does not.

as shown in Figure 2 must be excluded. Shrink this part toward the central point in the
figure. Then the edges placed radially toward the outside will be longer, but the total
length of the whole embedding will be shorter if there are enough many edges in the inner
part. For example, the embedding of K5 on the torus in the left of Figure 1 has such a
local planar part while the right one does not.
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Figure 2: A local planar part in an embedding

To consider the stableness of embeddings, we need more delicate arguments, as follows.
Suppose that a graph G has a path uxv of length 2 passing through a vertex x of degree
2 and that it has been embedded on a closed surface F 2 by a map f0 : G → F 2 to be
minimum-length. Then we can define a sequence of embeddings ft : G → F 2 (t ∈ [0, 1)) so
that the image of each embedding ft coincides with that of f0 but that ft(x) approaches
to the point f0(v) (= ft(v)) along the path f0(uxv) with dF 2(ft(x), f0(v)) = (1 − t) ·
dF 2(f0(x), f0(v)), where dF 2(·, ·) denotes the distance between two points on the surface
F 2 induced by its metric. Since limt→1 dF 2(ft(x), ft(v)) = 0, the edge ft(xv) shrinks to
the point f0(v) in the limit of ft as t → 1 and the limit is not an embedding of G at all.

A similar phenomenon always happens even if G has no vertex of degree 2. Regard
the previous x as just the midpoint of an edge uv in G, not a vertex now, and consider
the same sequence of embeddings ft : G → F 2. The images ft(uv) of the edge uv form
the same set of points on F 2 and have the same length, but they are parameterized in
different ways. Each of ft’s is a minimum-length embedding of G and its limit also has
the same image as ft’s do. However, the limit is not an embedding as a map since one half
of the edge uv split at the point x covers the image of f0(uv) and the other half shrinks
to the point f0(v) in its image.

Thus, if we never set any restriction for embeddings, then any minimum-length em-
bedding could not be stable. To exclude this unexpected phenomenon, we should assume
that each edge must be mapped monotonically in proportion to arc length. Under this
assumption, we can discuss the length of each edge in an embedded graph, not taking
how it is mapped along its image into account. We shall assume it implicitly below.

Furthermore, we should define a topology over the set of embeddings to consider “the
limit” of a sequence of embeddings. Let f0 : G → F 2 be an embedding of a graph G
to a closed surface F 2. Another embedding f1 : G → F 2 is said to be isotopic to f0

on F 2 if there exists a continuous map H : G × [0, 1] → F 2 such that H(x, 0) = f0(x),

4

Figure 2. A local planar part in an embedding.

To consider the stableness of embeddings, we need more delicate arguments,
as follows. Suppose that a graph G has a path uxv of length 2 passing through
a vertex x of degree 2 and that it has been embedded on a closed surface F 2

by a map f0 : G → F 2 to be minimum-length. Then we can define a sequence
of embeddings ft : G → F 2 (t ∈ [0, 1)) so that the image of each embedding ft
coincides with that of f0 but that ft(x) approaches to the point f0(v) (= ft(v))
along the path f0(uxv) with dF 2(ft(x), f0(v)) = (1 − t) · dF 2(f0(x), f0(v)), where
dF 2(·, ·) denotes the distance between two points on the surface F 2 induced by its
metric. Since limt→1 dF 2(ft(x), ft(v)) = 0, the edge ft(xv) shrinks to the point
f0(v) in the limit of ft as t→ 1 and the limit is not an embedding of G at all.

A similar phenomenon always happens even if G has no vertex of degree 2.
Regard the previous x as just the midpoint of an edge uv in G, not a vertex now,
and consider the same sequence of embeddings ft : G→ F 2. The images ft(uv) of
the edge uv form the same set of points on F 2 and have the same length, but they
are parameterized in different ways. Each of ft’s is a minimum-length embedding
of G and its limit also has the same image as ft’s do. However, the limit is not an
embedding as a map since one half of the edge uv split at the point x covers the
image of f0(uv) and the other half shrinks to the point f0(v) in its image.

Thus, if we never set any restriction for embeddings, then any minimum-length
embedding could not be stable. To exclude this unexpected phenomenon, we
should assume that each edge must be mapped monotonically in proportion to arc
length. Under this assumption, we can discuss the length of each edge in an
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embedded graph, not taking how it is mapped along its image into account. We
shall assume it implicitly below.

Furthermore, we should define a topology over the set of embeddings to consider
“the limit” of a sequence of embeddings. Let f0 : G → F 2 be an embedding of a
graph G to a closed surface F 2. Another embedding f1 : G → F 2 is said to be
isotopic to f0 on F 2 if there exists a continuous map H : G× [0, 1]→ F 2 such that
H(x, 0) = f0(x), H(x, 1) = f1(x) for all x ∈ G and that ft = H(·, t) : G → F 2

is an embedding of G. Roughly speaking, the image of an embedding f1 isotopic
to f0 on F 2 can be obtained from that of f0 by continuous deformation over the
surface through ft’s. If we don’t force each of ft’s to be an embedding of G in the
definition, then f1 will be said to be homotopic to f0 on F 2.

Let If0 be the set of embeddings isotopic to f0 on F 2, called the isotopy class
of f0. That is, If0 includes all embeddings of G obtained by deforming f0 con-
tinuously on F 2, as the elements belonging to the set. Then we can define the
distance d(f, f ′) between two embeddings f and f ′ in If0 by:

d(f, f ′) = sup{dF 2(f(x), f ′(x)) : x ∈ G},
where x ranges over all points in the 1-dimensional topological space G. This is
the standard way to define the distance over a set of functions. It makes If0 a
metric space and naturally induces its topology.

Suppose that an infinite sequence of embeddings f1, f2, . . . is a Cauchy sequence
in If0 , that is, limn,m→∞ d(fn, fm) = 0. Roughly speaking, embeddings fn with
sufficiently large numbers n are very close to each other and look almost the same.
Since dF 2(fn(x), fm(x)) ≤ d(fn, fm), the sequence of points f1(x), f2(x), . . . for
any point x ∈ G must be a Cauchy sequence on the surface F 2. Since F 2 is closed
and compact, it must be a complete metric space and the Cauchy sequence of
points converges to a point f∞(x) on F 2 by a general theory on complete metric
spaces. These limit points {f∞(x) : x ∈ G} induce a continuous map f∞ : G→ F 2.
This is the limit of embeddings f1, f2, . . ., but it may not be an embedding of G,
that is, f∞ = limn→∞ fn 6∈ If0 in such a case.

One might wonder if the total length ‖ · ‖ : If0 → R would be a continuous
function. However, it is not. Let f be an embedding of G which is a point in If0 ,
and take any positive real number ε > 0. If ‖ ·‖ were continuous, then there would
be a positive real number δ > 0 such that if d(f ′, f) < δ, then | ‖f ′‖ − ‖f‖ | < ε.
If f ′(x) belongs to the δ-open neighborhood of f(x) for all x ∈ G, then we have
d(f ′, f) < δ according to the definition. For example, replace the image of f(uv)
for an edge uv in G with a waving curve of amplitude less than δ joining f(u)
and f(v), like the sine curve, and let f ′ be the embedding f so deformed. Then
d(f ′, f) < δ, but we can make f ′(uv) arbitrarily long by waving it as many times
as we want, and hence ‖f ′‖ is arbitrarily larger than ‖f‖, which is contrary to the
assumption of | ‖f ′‖ − ‖f‖ | < ε. Therefore, the function ‖ · ‖ is not continuous.

If we restrict the whole set of embeddings to that of embeddings such that each
edge is mapped to a geodesic joining the images of its two ends, then ‖ · ‖ will be
continuous. As another idea, we may change the topology over If0 itself, replacing
the distance d(f, f ′) between two embeddings with

d̃(f, f ′) =
√
d(f, f ′)2 + (‖f‖ − ‖f ′‖)2.
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Then ‖ · ‖ will be continuous, too. In particular, if both f and f ′ are minimum-

length embeddings, then we have d̃(f, f ′) = d(f, f) since ‖f‖ = ‖f ′‖. Thus, the
stableness of minimum-length embeddings does not change for this new topology.
However, these arguments are not so important for our later arguments in this
paper and hence we shall omit them.

3. Flat tori

It is well-known that the torus can be obtained from a square or a rectangle by
identifying each pair of parallel edges and is also obtained as the quotient space
of an action of parallel moves over the plane R2. We shall introduce a way to give
a metric for the torus.

The Euclidean plane R2 has what is called the Euclidean metric, which can be
calculated in a usual way by xy-coordinates. A translation over the plane R2 is
called an isometry if it preserves the distance between any two points in the plane.
A parallel shift induced by one vector is a typical isometry over the plane.

Let ~x and ~y be two independent vectors in R2 based at the origin O = (0, 0)
and let Ω be the parallelogram determined by these two vectors ~x and ~y. Then the
isometry group Γ generated by two parallel shifts corresponding to ~x and ~y acts
on the plane and the parallel copies of Ω tessellate the whole plane. The original
parallelogram Ω is often called a fundamental region of this group action.

If two points on the plane can be transfered to each other by the action of Γ,
then they are said to be equivalent (under the action of Γ). It is easy to see that
every point on the plane is equivalent to a point in Ω and that two distinct points
inside Ω are not equivalent. These imply that the quotient space of this group
action can be obtained from the parallelogram Ω by identifying each pair of its
parallel sides and is homeomorphic to a torus.

A flat torus is a torus so obtained and its local metric of such a flat torus can
be derived as a local copy of the Euclidean metric over R2. Any two flat tori are
homeomorphic to each other, but they have different metric and different area,
depending on the group actions over R2. However, all flat tori have curvature 0
everywhere in the sense of differential geometry.

Let q : R2 → T 2 be the natural projection from the plane to a flat torus T 2,
which maps all mutually equivalent points to the same point on T 2. Both q = qΓ

and T 2 = T 2
Γ depend on the isometry group Γ, but we omit “Γ” to simplify their

notations. The plane R2 with this projection q is called the universal covering
space of the torus T 2 in topology. (Refer to [12] for the notions in algebraic
topology).

Put p0 = q(O). The sides of Ω corresponding to ~x and ~y are projected to simple
closed curves on T 2 based at p0. These closed curves are often called a longitude
and a meridian. We denote them by L and M and regard them as two generators
of the fundamental group π1(T 2, p0) of T 2. Thus, any closed curve on T 2 based
at p0, or its homotopy class precisely, can be expressed as a linear combination
of L and M , say λ · L + µ ·M with integers λ and µ since π1(T 2, p0) ∼= Z ⊕ Z is
an abelian group. Such a closed curve γ is lifted to a curve on R2 starting at the



STABLE EMBEDDINGS ON CLOSED SURFACES 299

origin O = (0, 0) and ending at the point P indicated by λ · ~x + µ · ~y. It is clear
that we can deform the curve joining two points O and P continuously into the
line segment OP , not moving its two ends. This implies that the closed curve γ is
homotopic to the closed curve on T 2 obtained as q(OP ).

A geodesic between two points on a surface F 2, closed or open, having a metric
is a curve joining them whose length cannot be shorter by local deformation in
general. For example, any geodesic on the Euclidean plane R2 is nothing but a
straight line segment and any geodesic between two points on a flat torus can be
lifted to a straight line segment on R2. A closed geodesic also is defined similarly
as a locally shortest closed curve on a surface. A geodesic (or a closed geodesic)
on a surface F 2 can be regarded as the image of a continuous map γ : [0, 1]→ F 2

(or γ : S1 → F 2), where S1 is the unit circle. They are said to be simple if these
maps γ are injective. Notice that if a geodesic goes over a closed surface globally,
it may cross itself and that a closed geodesic may run along a simple closed curve
more than one times via the map γ. In these cases, they are not simple.

Proposition 4. Any closed curve on a flat torus T 2 expressed as λ ·L+µ ·M in
π1(T 2, p0) is homotopic to a closed geodesic whose length is equal to |λ · ~x+µ · ~y |.
In particular, if λ and µ are relatively prime, then the geodesic is a simple closed
curve on T 2.

Proof. We can slide a given closed curve γ on the flat torus without changing
its length so that it contains the base point p0 afterward and lift it to a curve γ̃
between the origin O and the point P indicated by λ · ~x + µ · ~y on the plane R2.
As described in the previous, we can deform the path γ̃ into the line segment OP
continuously, fixing its end points. Thus γ is homotopic to the closed geodesic
q(OP ) based at p0.

The closed geodesic q(OP ) on the torus forms one simple closed geodesic as
a point set although the projection of OP goes along it many times in general,
say d times. If d ≥ 2, then the closed geodesic q(OP ) is not simple and d − 1
points in q−1(p0) become intermediate points of the line segment OP placed at
equal intervals. Since these points are copies of the origin O, they can be indicated
by a linear combination of ~x and ~y with integral coefficients. This implies that
d becomes a common divisor of λ and µ. Thus, if λ and µ are relatively prime,
then we have d = 1 and the projection of OP goes along q(OP ) exactly once.
Therefore, the closed geodesic q(OP ) is simple. �

If a graph G has been embedded on a surface, then a cycle in G can be regarded
as a simple closed curve on the surface and it happens that such a cycle becomes
a simple closed geodesic on the surface. In this case, we call it a geodesic cycle.
Each edge in a geodesic cycle must be a geodesic between its ends. If the two
geodesics along two such edges meet at a common end, then they make a corner
of 180◦ since they form a part of the closed geodesic and have the same tangent
at the common end. The following lemma gives us a criterion for an embedding
of a graph to be minimum-length.

Lemma 5. If an embedding f of a graph G on a flat torus decomposes into an
edge-disjoint union of geodesic cycles, then it is a minimum-length embedding.
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Proof. Let C1, . . . , Ck be mutually edge-disjoint cycles whose union forms the
whole of G and let |f(Ci)| denote the summation of lengths of edges f(e) lying
along f(Ci) on the flat torus. Then we have:

‖f‖ = |f(C1)|+ · · ·+ |f(Ck)|
Since a closed geodesic is the shortest among all closed curves homotopic to it, if
each f(Ci) is a geodesic cycle, then we cannot improve the above total length ‖f‖.
Thus, the embedding f must be a minimum-length embedding. �

4. Regular maps on the torus

The 4-regular quadrangulations and the 6-regular triangulations on the torus form
two well-classified families of graphs embedded on the torus with suitable param-
eters as shown below and we can apply Lemma 5 to them. Their detailed descrip-
tions can be found in [6] for example. In particular, the 6-regular triangulations
on the torus have been classified in [1] and [8] under different contexts.

Prepare a (p + 1) × (r + 1) rectangular grid, which can be obtained as the
Cartesian product Pp × Pr of two paths of lengths p and r. The vertices in this
grid can be labeled by v(i,j) so that v(i,0)v(i,1) · · · v(i,p) forms a vertical path of
length p and that v(0,j)v(1,j) · · · v(r,j) forms a horizontal path of length r. First,
identify the pair of parallel sides at the top and the bottom to construct a cylinder
Cp × Pr where v(i,0) = v(i,p) for i = 0, 1, . . . , r. Thus, the second component j in
the subscript of v(i,j) should be taken modulo p. Next, identify the two ends of
this cylinder to make a torus so that v(r,j) coincides with v(0,j+q) (see Figure 3).

The resulting quadrangulation on the torus is denoted by Q(p, q, r). Any 4-
regular quadrangulation on the torus can be obtained as Q(p, q, r) with suitable pa-
rameters p, q and r, up to auto-homeomorphism over the torus. Add the diagonal
v(i,j)v(i+1,j+1) in each quadrilateral face v(i,j)v(i+1,j)v(i+1,j+1)v(i,j+1) of Q(p, q, r).
Then we obtain the 6-regular triangulation T (p, q, r) on the torus. Any 6-regular
triangulation on the torus is isomorphic to T (p, q, r) for suitable values of p, q
and r. Note that each of Q(p, q, r) and T (p, q, r) presents a unique embedding on
the torus, up to auto-homeomorphism over the torus, but it has many different
embeddings if we take the metric over the torus into account. We shall describe
those in our proofs below.

Theorem 6. Any embedding of a 4-regular quadrangulation Q(p, q, r) on a flat
torus has a minimum-length embedding.

Proof. The 4-regular quadrangulation Q(p, q, r) decomposes into two sets of
disjoint cycles. One consists of r copies of Cp placed in parallel. Thus, each of them
can be expressed as a cyclic sequence v(i,0)v(i,1) · · · v(i,p−1) for i = 0, 1, . . . , r − 1;
we call it “a vertical cycle” here.

The other set consists of cycles obtained by joining “horizontal paths” corre-
sponding to Pr. One goes from v(0,0) to v(r,0) along the bottom horizontal path.
After arriving at v(r,0), he jumps to v(0,q) according to the identification of vertical
sides and goes along another horizontal path. Continuing this process as far as
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v(0,0)

v(0,1)

v(0,q)

...

v(0,0) = v(0,p)

v(r,0) = v(0,q)

v(r,p−q) = v(0,0)

v(r,p) = v(r,0)

...

Figure 3: The 4-regular quadrangulation Q(p, q, r) on the torus

3. Regular maps on the torus

The 4-regular quadrangulations and the 6-regular triangulations on the torus form
two well-classified families of graphs embedded on the torus with suitable parameters as
shown below and we can apply Lemma 5 to them. Their detailed descriptions can be
found in [6] for example. In particular, the 6-regular triangulations on the torus have
been classified in [1] and [8] under different contexts.

Prepare a (p + 1) × (r + 1) rectangular grid, which can be obtained as the Cartesian
product Pp×Pr of two paths of lengths p and r. The vertices in this grid can be labeled by
v(i,j) so that v(i,0)v(i,1) · · · v(i,p) forms a vertical path of length p and that v(0,j)v(1,j) · · · v(r,j)

forms a horizontal path of length r. First, identify the pair of parallel sides at the top
and the bottom to construct a cylinder Cp × Pr where v(i,0) = v(i,p) for i = 0, 1, . . . , r.
Thus, the second component j in the subscript of v(i,j) should be taken modulo p. Next,
identify the two ends of this cylinder to make a torus so that v(r,j) coincides with v(0,j+q)

(see Figure 3).
The resulting quadrangulation on the torus is denoted by Q(p, q, r). Any 4-regular

quadrangulation on the torus can be obtained as Q(p, q, r) with suitable parameters p,
q and r, up to auto-homeomorphism over the torus. Add the diagonal v(i,j)v(i+1,j+1) in
each quadrilateral face v(i,j)v(i+1,j)v(i+1,j+1)v(i,j+1) of Q(p, q, r). Then we obtain the 6-
regular triangulation T (p, q, r) on the torus. Any 6-regular triangulation on the torus is
isomorphic to T (p, q, r) for suitable values of p, q and r. Note that each of Q(p, q, r) and
T (p, q, r) presents a unique embedding on the torus, up to auto-homeomorphism over the
torus, but it has many different embeddings if we take the metric over the torus into
account. We shall describe those in our proofs below.

THEOREM 6. Any embedding of a 4-regular quadrangulation Q(p, q, r) on a flat torus
has a minimum-length embedding.

Proof. The 4-regular quadrangulation Q(p, q, r) decomposes into two sets of disjoint
cycles. One consists of r copies of Cp placed in parallel. Thus, each of them can be
expressed as a cyclic sequence v(i,0)v(i,1) · · · v(i,p−1) for i = 0, 1, . . . , r − 1; we call it “a
vertical cycle” here.

The other set consists of cycles obtained by joining “horizontal paths” corresponding
to Pr. One goes from v(0,0) to v(r,0) along the bottom horizontal path. After arriving at
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Figure 3. The 4-regular quadrangulation Q(p, q, r) on the torus.

possible, he will come back to v(0,0) finally and get a cycle. This cycle may not
cover all horizontal paths in general. In such a case, the cycles obtained similarly
are placed in parallel to the first one. It is not so difficult to see that the number
of these “horizontal cycles” is equal to gcd(p, q), which stands for the greatest
common divisor of integers p and q.

Now suppose that Q(p, q, r) has been embedded on a flat torus T 2 in one way
and consider the universal covering q : R2 → T 2 which induces the metric over
T 2. We may assume that the origin O = (0, 0) projects to v(0,0) placed on T 2.
Then the vertical cycle v(0,0)v(0,1) · · · v(0,p)(= v(0,0)) is lifted to a simple curve
joining O to another preimage of v(0,0), say P . We can deform such a simple

curve into the line segment OP continuously on the plane R2, fixing its ends.
This deformation induces an isotopic deformation for Q(p, q, r) embedded on the
flat torus, which moves the vertical cycle to a closed geodesic and arranges the
positions of v(0,0), v(0,1), . . . , v(0,p−1) so that they lie along the closed geodesic at
equal intervals afterward.

Similarly, we can deform the other vertical cycles into closed geodesics so that
they are lifted to a set of parallel lines on the plane. Although each of horizontal
paths in Q(p, q, r) may be lifted to a broken line yet, we can modify the positions of
v(i,j)’s with i 6= 0 along the geodesics so that each of horizontal paths also becomes
a geodesic and the horizontal cycles form closed geodesics on the flat torus. Then
we will find a (p+ 1)× (r+ 1) parallelogram grid on the plane R2 but it may not
be a rectangle in general.

Now Q(p, q, r) embedded on the flat torus has been deformed into an embedding
which decomposes into two sets of closed geodesics, vertical cycles and horizontal
cycles. Therefore, this is a minimum-length embedding by Lemma 5. �

One might wonder if the parallelogram obtained as the lift of the rectangular
grid prepared to define Q(p, q, r) would be a fundamental region since its copies
tessellate the plane. However, this region may not coincide with the fundamental
region Ω used to define the flat torus and the infinite grid obtained as the frame of
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such a tessellation is not 4-regular if q 6= 0. Consider the parallelogram which has
the four points corresponding to v(0,0, v(0,p), v(r,−q) and v(r,p−q) as its vertices.
The parallel shifts of this parallelogram form a tessellation of the plane with a
4-regular grid and it induces the same group action over R2 as Ω does. However, the
parallelogram may be different from Ω, depending on how Q(p, q, r) is embedded
on the flat torus.

Notice that the point P appearing in the previous proof depends on the embed-
ding of Q(p, q, r) on a flat torus, or on the homotopy class of its vertical cycle. The
length |OP | will be an invariant for minimum-length embeddings of Q(p, q, r) up
to isotopy. Thus, two embeddings having different values of |OP | are not isotopic
on a fixed flat torus.

Since any 4-regular quadrangulation on a flat torus can be regarded as an
embedding of Q(p, q, r) on the torus, Theorem 6 immediately implies Theorem 1.
To prove Theorem 2, it suffices to count the number of parallel geodesic cycles in
Q(p, q, r) on a flat torus.

Theorem 7. An embedding of a 4-regular quadrangulation Q(p, q, r) on a flat
torus is stable with respect to minimum length if and only if r=1 and gcd(p, q)=1.

Proof. By the previous proof, we have already known that the number of vertical
cycles in Q(p, q, r) is equal to r while the number of horizontal cycles in it is equal
to gcd(p, q). If at least one of r and gcd(p, q) is more than 1, then we find a pair of
geodesic cycles in the minimum-length embedding of Q(p, q, r) placed in parallel
on the flat torus and can slide one of the geodesic cycles onto the other. This
deformation derives a sequence of minimum-length embeddings of Q(p, q, r) whose
limit is not an embedding at all. Therefore, the minimum-length embedding of
Q(p, q, r) is not stable.

On the other hand, if r = 1 and gcd(p, q) = 1, then Q(p, q, r) has exactly one
vertical cycle and one horizontal cycle, say CV and CH . Both CV and CH must
be closed geodesics in any minimum-length embedding of Q(p, q, r) on a flat torus
T 2. Then the preimage of CV by the projection q : R2 → T 2 consists of parallel
lines and these lines contain all vertices which project to the vertices of Q(p, q, r).
If the distances between consecutive vertices on these lines were not constant, then
the preimage of CH would be broken lines and hence they would be longer than
one consisting only of geodesics. Thus, the edges lying along CV have the same
length and so do the edges along CH similarly. This implies that any sequence of
minimum-length embeddings of Q(p, q, r) shrinks no edge to a point. Therefore,
such a minimum-length embedding is stable. �

Using the previous arguments on Q(p, q, r), we can discuss minimum-length
embeddings on T (p, q, r) as follows:

Theorem 8. Any embedding of the 6-regular triangulation T (p, q, r) on a flat
torus has a minimum-length embedding and is stable with respect to minimum
length.

Proof. The 6-regular triangulation T (p, q, r) on the torus contains Q(p, q, r)
naturally and can be decomposed into three sets of parallel cycles, vertical cycles,
horizontal cycles and “slope 1 cycles” consisting of the diagonals. Suppose that
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we have an embedding of T (p, q, r) on a flat torus. We can deform it so that
Q(p, q, r) becomes minimum-length and that the edges lying on the vertical cycles
or on the horizontal cycles have the same length, respectively, as shown in the
proof of Theorem 6. It is easy to see that not only the vertical and horizontal
cycles contained in Q(p, q, r) but also the slope 1 cycles become closed geodesics
in such an embedding on the flat torus since they are covered by straight lines on
the plane via the projection q : R2 → T 2. By Lemma 5, such an embedding of
T (p, q, r) is minimum-length. Therefore, any embedding of T (p, q, r) is isotopic to
a minimum-length embedding.

Now suppose that we have a minimum-length embedding of T (p, q, r) on a flat
torus. Since any closed curve cannot be shorter than a geodesic homotopic to it,
the vertical, horizontal and slope 1 cycles in the embedding of T (p, q, r) must be
all geodesics. As we have seen in the previous proof, the part corresponding to
Q(p, q, r) consists of the set of vertical cycles and the set of horizontal cycles and
they are placed in parallel in each set. If they were not placed at equal interval,
then the faces of Q(p, q, r) would be parallelograms of different shapes and some
of slope 1 cycles would be broken lines and not be geodesic, a contradiction. Thus,
each of vertical cycles and horizontal cycles are placed at equal intervals and
hence the minimum-length embedding of T (p, q, r) has a unique form. Therefore,
the limits of any sequence of minimum-length embeddings of T (p, q, r) becomes an
embedding isotopic to the unique form and hence any minimum-length embedding
of T (p, q, r) is stable. �

When r = 1 and gcd(p, q) = 1, both the unique vertical cycle and the unique
horizontal cycle in Q(p, q, r) are hamilton cycles and they cross each other trans-
versely at all vertices. Thus, the condition given in Theorem 2 is equivalent to
that in Theorem 7. Therefore, Theorem 2 follows. Also Theorem 3 follows from
Theorem 8 on T (p, q, r).

5. Further studies

The basic idea given in this paper will work for other surfaces. For example, we can
define a flat Klein bottle as the quotient space of an action of an isometry group
over the Euclidean plane R2. However, such an isometry group consists of not
only parallel shifts and is not isomorphic to Z⊕Z. Furthermore, the classification
of 4-regular quadrangulations and 6-regular triangulations on the Klein bottle is
slightly complicated more than those on the torus, as given in [4, 6, 9, 10]; they
are not of only one type as well as those on the torus. Also when we consider the
stableness of minimum-length embeddings on the Klein bottle, we have to discuss
“shrinking a Möbius band”. Since we need enough long description for minimum-
length embeddings on the Klein bottle, we shall prepare another paper [5] for
them.

If we try to discuss the case of hyperbolic surfaces of negative constant curva-
ture, we will need knowledge on what is called “hyperbolic geometry”, where there
are infinitely many lines parallel to a given line and passing through a given point.
Furthermore, if the metric over a closed surface induces a non-constant curvature,
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we cannot use standard arguments like the elementary geometry. So we expect
someone to list up a kind of “axioms” of the local differential geometry, that is,
basic logics that we can use freely within enough small area, not taking care about
the metric of a closed surface into account. Using such axioms, we would like to
establish the characterization of graphs embedded on a closed surface that have
minimum-length embedding in a combinatorial way, like exclusion of local planar
parts described in Section 2 for example.
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