The size-Ramsey number of powers of bounded degree trees

Main Article Content

Sören Berger Yoshiharu Kohayakawa Giulia Satiko Maesaka Taísa Martins Walner Mendonça Guilherme Oliveira Mota Olaf Parczyk

Abstract

Given an integer~$s \ge 1$, the \textit{$s$-colour size-Ramsey number} of a graph~$H$ is the smallest integer~$m$ such that there exists a graph~$G$ with~$m$ edges with the property that, in any colouring of~$E(G)$ with~$s$ colours, there is a monochromatic copy of~$H$. We prove that, for any positive integers~$k$ and~$s$, the $s$-colour size Ramsey number of the $k$th power of any $n$-vertex bounded degree tree is linear in~$n$.

Article Details

How to Cite
Berger, S., Kohayakawa, Y., Maesaka, G., Martins, T., Mendonça, W., Mota, G., & Parczyk, O. (2019). The size-Ramsey number of powers of bounded degree trees. Acta Mathematica Universitatis Comenianae, 88(3), 451-456. Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281/679
Section
EUROCOMB 2019