The size-Ramsey number of powers of bounded degree trees
Main Article Content
Abstract
Given an integer~$s \ge 1$, the \textit{$s$-colour size-Ramsey number} of a graph~$H$ is the smallest integer~$m$ such that there exists a graph~$G$ with~$m$ edges with the property that, in any colouring of~$E(G)$ with~$s$ colours, there is a monochromatic copy of~$H$. We prove that, for any positive integers~$k$ and~$s$, the $s$-colour size Ramsey number of the $k$th power of any $n$-vertex bounded degree tree is linear in~$n$.
Article Details
How to Cite
Berger, S., Kohayakawa, Y., Maesaka, G., Martins, T., Mendonça, W., Mota, G., & Parczyk, O.
(2019).
The size-Ramsey number of powers of bounded degree trees.
Acta Mathematica Universitatis Comenianae, 88(3), 451-456.
Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1281/679
Issue
Section
EUROCOMB 2019