Nearly orthogonal vectors and small antipodal spherical codes
Main Article Content
Abstract
How can $d+k$ vectors in $\mathbb{R}^d$ be arranged so that they are as close to orthogonal as possible? In particular, define $\theta(d,k):=\min_X\max_{x\neq y\in X}|\langle x,y\rangle|$ where the minimum is taken over all collections of $d+k$ unit vectors $X\subseteq\mathbb{R}^d$. In this work, we focus on the case where $k$ is fixed and $d\to\infty$. In establishing bounds on $\theta(d,k)$, we find an intimate connection to the existence of systems of ${k+1\choose 2}$ equiangular lines in $\R^k$. Using this connection, we are able to pin down $\theta(d,k)$ whenever $k\in\{1,2,3,7,23\}$ and establish asymptotics for general $k$. The main tool is an upper bound on $\mathbb{E}_{x,y\sim\mu}|\langle x,y\rangle|$ whenever $\mu$ is an isotropic probability mass on $\mathbb{R}^k$, which may be of independent interest. Our results translate naturally to the analogous question in $\C^d$. In this case, the question relates to the existence of systems of $k^2$ equiangular lines in $\mathbb{C}^k$, also known as SIC-POVM in physics literature.
Article Details
How to Cite
Bukh, B., & Cox, C.
(2019).
Nearly orthogonal vectors and small antipodal spherical codes.
Acta Mathematica Universitatis Comenianae, 88(3), 511-514.
Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1290/689
Issue
Section
EUROCOMB 2019