New properties of prolongations of Linear connections on Weil bundles

Main Article Content

Basile Guy Richard Bossoto

Abstract

Let M be a paracompact smooth manifold, A a Weil algebra and MA the associated Weil bundle. If \nabla is a linear connection on M, we give equivalent denition and the properties of the prolongation \nabla^A to M^A equivalent to the prolongationdened by Morimoto. When (M; g) is a pseudo-riemannian manifold, we show that the symmetric tensor g^A of type (0; 2) dened by Okassa is nondegenerated. At the end, we show that , if \nabla is a Levi-Civita connection on (M; g), then \nabla^A istorsion-free and g^A is parallel with respect to \nabla^A.

Article Details

How to Cite
Bossoto, B. (2016). New properties of prolongations of Linear connections on Weil bundles. Acta Mathematica Universitatis Comenianae, 85(1), 69-80. Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/131/286
Section
Articles

References

[1] Bossoto, B.G.R., Structures de Jacobi sur une variété des points proches, Math. Vesnik. 62, 2 (2010), 155-167.

[2] Bossoto, B.G.R., Okassa, E., Champs de vecteurs et formes di¤érentielles sur une variété des points proches, Archivum mathematicum (BRNO), Tomus44 (2008),159-
171.

[3] Helgason, S., Di¤erential Geometry and symmetric spaces, New York; Academic Press, 1962.

[4] Koszul, J.L., Ramanan, S., Lectures On Fibre Bundles and Di¤erential Geometry, Tata Institute of Fundamental Research, Bombay 1960.

[5] Morimoto, A., Prolongation of connections to bundles of infinitely near points, J. Di¤. Geom, 11 (1976), 479-498

[6] Nkou B. V., Bossoto, B.G.R., Okassa, E., Characterization of vector fields on Weil bundles, to appear

[7] Okassa, E., Relèvements de structures symplectiques et pseudo-riemanniennes à des variétés de points proches, Nagoya Math. J.115 (1989), 63-71.

[8] Okassa, E., Prolongement des champs de vecteurs à des variétés des points prohes, Ann. Fac. Sci. Toulouse Math. VIII (3) (1986-1987), 346-366.

[9] Pham-Ham-Mau-Quan, F., Introduction à la géométrie des variétés di¤érentiables, Dunod Paris, 1969.

[10] Weil, A., Théorie des points proches sur les variétés différentiables, Colloq. Géom. Diff. Strasbourg (1953), 111-117