k-generalized Fibonacci numbers close to the form 2^a + 3^b + 5^c

Main Article Content

Nurettin Irmak Murat Alp

Abstract

The k-generalized Fibonacci sequence {F_n^{(k)}}_{n\geq 0} is dened as the sum of the k proceeding terms and initial conditions are 0, . . ., 1 (k terms). In this paper, we solve the diophantine equation F_n^{(k)} n = 2^a + 3^b + 5^c + \delta where a, b, c, \delta and are nonnegative integers with max{a; b}\leq c and 0 \leq \delta \leq 5. This work generalizes a recent Marques [9] and rst author, Szalay [6] results.

Article Details

How to Cite
Irmak, N., & Alp, M. (2017). k-generalized Fibonacci numbers close to the form 2^a + 3^b + 5^c. Acta Mathematica Universitatis Comenianae, 86(2), 279-286. Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/454/479
Section
Articles

References

1. Bugeaud Y., Mignotte M. and Siksek S., Classical and modular approaches to exponential Diophantine equation. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006) no. 3, 969-1018.

2. Bravo J. J. and Luca F., Powers of two in generalized Fibonacci sequence, Rev. Colombiana Math. 46 (2012), 67-79.

3. Bravo J. J. and Luca F., On a conjecture about repdigits in k-generalized Fibonacci sequences. Publ. Math. Debrecen 82, n0.3-4(2013), 623-639.

4. Dresden G. P. and Du Z., A simplified Binet formula for K-generalized Fibonacci numbers. J. Integer Seq. 17 (2014), no. 4, Article 14.4.7, 9 pp.

5. Dujella A. and Petho A., A Generalization of a Theorem of Baker and Davenport, Quart. J. Math. Oxford 49 (1998), no. 3, 291-306.

6. Irmak N. and Szalay L., Tribonacci numbers close to the sum 2a + 3b + 5c; Mathematica Scandinavica 118 (1), 2016, 27-32.

7. Luca F. and Szalay L., Fibonacci numbers of the form pa pb + 1; Fibonacci Quart., 45 (2007), 98-103.

8. Marques D. and Togbe A., Fibonacci and Lucas numbers of the form 2a + 3b + 5c, Proc. Japan Acad., 89, Ser. A (2013),47-50.

9. Marques M., Generalized Fibonacci numbers of the form 2a + 3b + 5c, Bull Braz Math Soc, New Series 45(3), (2014), 543-557.

10. Matveev E. M., An Explicit Lower Bound for a Homogeneous Rational Linear Form in the Logarithms of Algebraic Numbers, Izv. Math. 64 (2000), no. 6, 1217-1269.