On strong variations of Weyl type theorems

Main Article Content

Jose Sanabria Luis Vasquez Carlos Carpintero Ennis Rosas Orlando Garcia

Abstract

An operator T acting on a Banach space X satises the property (UWE) if \sigma_a(T) n SF \setminus \sigma{SF_+^-} = E(T), where a(T) is the aproximate point spectrum of T, SF_+^-(T) is the upper semi-Weyl spectrum of T and E(T) is the set of all eigenvalues of T that are isolated in the spectrum \sigma(T) of T. In this paper we introduce and study two new spectral properties, namely (V_E) and (V_{Ea} ), in connection with Weyl type theorems. Among other results, we have that T satises property(VE) if and only if T satises property (UWE) and \sigma (T) = \sigma_a (T).

Article Details

How to Cite
Sanabria, J., Vasquez, L., Carpintero, C., Rosas, E., & Garcia, O. (2017). On strong variations of Weyl type theorems. Acta Mathematica Universitatis Comenianae, 86(2), 345-356. Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/532/478
Section
Articles

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004.

[2] P. Aiena, Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged) 73 (2007), 251-263.

[3] P. Aiena, E. Aponte and E. Balzan, Weyl type Theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (2010), 1-20.

[4] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839-2848.

[5] P. Aiena, C. Carpintero and E. Rosas, Some characterization of operators satisfying a-Browder's theorem, J. Math. Anal. Appl. 311 (2005), 530-544.

[6] M. Amouch and M. Berkani, On the property (gw), Mediterr. J. Math. 5 (2008), 371-378.

[7] M. Amouch and H. Zguitti, On the equivalence of Browder's theorem and generalized Browder's theorem, Glasgow Math. J. 48 (2006), 179-185.

[8] M. Berkani and M. Kachad, New Weyl-type Theorems - I, Funct. Anal. Approx. Comput. 4 (2) (2012), 41-47.

[9] M. Berkani and M. Kachad, New Browder and Weyl type theorems, Bull. Korean Math. Soc. 52 (2) (2015), 439-452.

[10] M. Berkani, M. Kachad, H. Zariouh and H. Zguitti, Variations on a-Browder-type theorems, Sarajevo J. Math. 9 (2013), 271-281.

[11] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.

[12] M. Berkani, M. Sarih and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399-409.

[13] M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica 134 (2009), 369-378.

[14] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik 62 (2010), 145-154.

[15] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.

[16] S. V. Djordjevic and Y. M. Han, Browder's theorems and spectral continuity, Glasgow Math. J. 42 (2000), 479-486.

[17] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.

[18] A. Gupta and N. Kashayap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl. 3 (2011), 1-7.

[19] R. Harte and W. Y. Lee, Another note on Weyls theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.

[20] V. Rakocevic, On a class of operators, Mat. Vesnik 37 (1985), 423-426.

[21] V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.

[22] M. H. M. Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math. 11 (2014), 729-744.

[23] M. H. M. Rashid and T. Prasad, Variations of Weyl type theorems, Ann Funct. Anal. Math. 4 (2013), 40-52.

[24] M. H. M. Rashid and T. Prasad, Property (Sw) for bounded linear operators, Asia-European J. Math. 8 (2015), [14 pages] DOI: 10.1142/S1793557115500126.

[25] J. Sanabria, C. Carpintero, E. Rosas and O. Garca, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141-154.

[26] J. Sanabria, C. Carpintero, E. Rosas and O. Garca, On property (Saw) and others spectral properties type Weyl-Browder theorems, Submitted.

[27] H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik 65 (2013), 94-103.

[28] H. Zariouh, New version of property (az), Mat. Vesnik 66 (2014), 317-322.

[29] H. Zariouh, On the property (ZEa), Rend. Circ. Mat. Palermo, II. Ser (2016) 65: 323. doi:10.1007/s12215-016-0236-z.

[30] H. Zariouh and H. Zguitti, Variations on Browder's theorem, Acta Math. Univ. Comenianae 81 (2012), 255-264.