A Lower Bound of normalized scalar curvature for bi-slant submanifolds in generalized Sasakian space forms using Casorati curvatures

Main Article Content

Aliya Naaz Siddiqui Mohammad Hasan Shahid

Abstract

In this paper, we prove two optimal inequalities between the generalized normalized $\delta-$Casorati curvatures and the normalized scalar curvature for bi-slant submanifolds in a generalized Sasakian space form. Moreover, we show that the equality at all points characterizes the invariantly quasi-umbilical submanifolds in both cases.

Article Details

How to Cite
Siddiqui, A., & Shahid, M. (2018). A Lower Bound of normalized scalar curvature for bi-slant submanifolds in generalized Sasakian space forms using Casorati curvatures. Acta Mathematica Universitatis Comenianae, 87(1), 127-140. Retrieved from http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/623/572
Section
Articles

References

\bibitem{alerge} Alegre P., Blair D. E., Carriazo A., {\em Generalized Sasakian-space-forms}, Israel J. Math., {\bf141} (2004), 157--183.

\bibitem{bihai2} Cabrerizo J. L., Carriazo A., Fernandez L. M. and Fernandez M., {\em Semi-slant submanifolds of a Sasakian manifold}, Geom. Dedicata, {\bf78} (1999) 183--199.

\bibitem{bihai1} Cabrerizo J. L., Carriazo A., Fernandez L. M. and Fernandez M., {\em Slant submanifolds in Sasakian manifolds}, Glasgow Math. J., {\bf42} (2000), 125--138.

\bibitem{chen3} Chen B. Y., {\em Relationship between Ricci curvature and shape operator for submanifolds with arbitrary codimensions}, Glasgow. Math. J., {\bf41} (1999), 33--41.

\bibitem{chen4} Chen B. Y., {\em Some pinching and classification theorems for minimal submanifolds}, Arch. math., {\bf60} (1993), 568--578.

\bibitem{decu1} Decu S., Haesen S. and Verstralelen L., {\em Optimal inequalities involving Casorati curvatures}, Bull. Transylv. Univ. Brasov, Ser B, {\bf14} (2007), 85--93.

\bibitem{decu2} Decu S., Haesen S; Verstralelen L., {\em Optimal inequalities characterizing quasi-umbilical submanifolds}, J. Inequalities Pure. Appl. Math, {\bf9} (2008), Article ID 79, 7pp.

\bibitem{ghisoiu} Ghisoiu V., {\em Inequalities for thr Casorati curvatures of the slant submanifolds in complex space forms}, Riemannian geometry and applications. Proceedings RIGA 2011, ed. Univ. Bucuresti, Bucharest, (2011), 145--150.

\bibitem{bihai3} Khan V. A. and Khan M. A., {\em Pseudo-slant submanifolds of a Sasakian manifold}, Indian J. Pure Appl. Math., {\bf38} (2007), 31--42.

\bibitem{kowalczyk} Kowalczyk D., {\em Casorati curvatures}, Bull. Transilvania Univ. Brasov Ser. III, {\bf50(1)} (2008), 2009--2013.

\bibitem{lee1} Lee C. W., Lee J. W., Vilcu G. E. and Yoon D. W., {\em Optimal inequalities for the Casorati curvatures of the submanifolds of generalized space form endowed with semi-symmetric metric connections}, Bull. Korean Math. Soc. {\bf52} (2015), 1631--1647.

\bibitem{lee3} Lee C. W., Yoon D. W. and Lee J. W., {\em Optimal inequalities for the Casorati curvatures of submanifolds of real space forms endowed with semi-symmetric metric connections}, J. Inequal. Appl. (2014), 2014:327, 9 pp. MR 3344114.

\bibitem{lee2} Lee J. W. and Vilcu G. E., {\em Inequalities for generalized normalized $\delta$-Casorati curvatures of slant submanifolds in quaternion space forms}, Taiwanese J. Math., {\bf19} (2015), 691--702.

\bibitem{tripathi} Tripathi M. M., {\em Inequalities for algebraic Casorati curvatures and their applications}, arXiv:1607.05828v1 [math.DG] 20 Jul 2016.

\bibitem{verstraelen1} Verstralelen L., {\em Geometry of submanifolds I, The first Casorati curvature indicatrices}, Kragujevac J. Math., {\bf37} (2013), 5--23.

\bibitem{verstraelen2} Verstralelen L., {\em The geometry of eye and brain}, Soochow J. Math., {\bf30} (2004), 367--376.

\bibitem{article.1} Yano K. and Kon M., {\em Differential geometry of CR-submanifolds}, Geometria Dedicata, {\bf10} (1981), 369--391.

\bibitem{article.9} Yano K. and Kon M., {\em Structures on manifolds}, Worlds Scientific, Singapore (1984).