Hermite-Hadamard type inequalities obtained via Riemann-Liouville fractional calculus

Main Article Content

Flavia-Corina Mitroi Marcela V. Mihai

Abstract

We extend some inequalities obtained by M. A. Latif to the framework of Riemann-Liouville fractional calculus.

Article Details

How to Cite
MITROI, Flavia-Corina; MIHAI, Marcela V.. Hermite-Hadamard type inequalities obtained via Riemann-Liouville fractional calculus. Acta Mathematica Universitatis Comenianae, [S.l.], v. 83, n. 2, p. 209-215, may 2014. ISSN 0862-9544. Available at: <http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/88>. Date accessed: 22 oct. 2017.
Section
Articles

References

[1] S. S. Dragomir, C. E. M. Pearce, Selected Topic on Hermite-Hadamard Inequalities and Applications, Melbourne and Adelaide, December, 2000.

[2] R. Goren‡o, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Frac-tional order, Springer Verlag, Wien, 1997.

[3] H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, arXiv: 1006.1593v1[math. CA].

[4] M. A. Latif, New inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications, RGMIA Research Report Collection, 15 (2012), Article 35, 13 pp.

[5] C. P. Niculescu, L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach. CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.