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CROSS-DIFFUSION SYSTEMS WITH ENTROPY STRUCTURE∗

ANSGAR JÜNGEL†

Abstract. Some results on cross-diffusion systems with entropy structure are reviewed. The
focus is on local-in-time existence results for general systems with normally elliptic diffusion opera-
tors, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for
cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method
allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result
on the uniqueness of weak solutions is recalled, and some open problems are presented.
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1. Introduction. Multi-species systems from physics, biology, chemistry, etc.
can be modeled by reaction-diffusion equations. When the gradient of the density of
one species induces a flux of another species, cross diffusion occurs. Mathematically,
this means that the diffusion matrix involves nonvanishing off-diagonal elements. In
many applications, it turns out that the diffusion matrix is neither symmetric nor
positive definite, which considerably complicates the mathematical analysis (see the
examples in Section 2 and [25, Section 4.1]). In recent years, some progress has been
made in this analysis by identifying a structural condition, namely a formal gradient-
flow or entropy structure, allowing for a mathematical treatment. In this review, we
report on selected results obtained from several researchers.

The cross-diffusion equations have the form

∂tui −
n∑
j=1

div(Aij(u)∇uj) = fi(u) in Ω, t > 0, i = 1, . . . , n, (1.1)

where ui(x, t) is the density or concentration or volume fraction of the ith species of a
multicomponent mixture, u = (u1, . . . , un), Aij(u) are the diffusion coefficients, fi(u)
is the reaction term of the ith species, and Ω ⊂ Rd (d ≥ 1) is a bounded domain with
smooth boundary. We impose no-flux and initial conditions

n∑
j=1

Aij∇uj · ν = 0 on ∂Ω, t > 0, ui(0) = u0
i in Ω, i = 1, . . . , n, (1.2)

with the exterior normal unit vector ν on ∂Ω, but Dirichlet or mixed Dirichlet-
Neumann boundary conditions could be considered as well [20]. Setting A(u) =
(Aij(u)) and f(u) = (f1(u), . . . , fn(u)), we may write (1.1) more compactly as

∂tu− div(A(u)∇u) = f(u) in Ω, t > 0.
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In contrast to scalar parabolic equations, generally there do not exist maximum
principles or a regularity theory for diffusion systems. For instance, there exist Hölder
continuous solutions to certain parabolic systems that develop singularities in finite
time [37]. Here, the situation is even worse: The diffusion matrix A(u) is generally
neither symmetric nor positive definite such that coercivity theory cannot be applied.
Our approach is to assume a structure inspired from thermodynamics: We suppose
that there exists a convex function h : Rn → R, called an entropy density, such that
the (possibly nonsymmetric) matrix product h′′(u)A(u) is positive semidefinite (in
the sense z>h′′(u)A(u)z ≥ 0 for all z ∈ Rn). Here, h′′(u) denotes the Hessian of h
at the point u. We say that A has a strict entropy structure if h′′(u)A(u) is positive
definite for all u. Then the entropy H[u] =

∫
Ω
h(u)dx is a Lyapunov functional along

solutions to (1.1)-(1.2) if f(u) · h′(u) ≤ 0 for all u:

dH
dt

=

∫
Ω

∂tu · h′(u)dx = −
∫

Ω

∇u : h′′(u)A(u)∇udx+

∫
Ω

f(u) · h′(u)dx ≤ 0, (1.3)

where “:” denotes the Frobenius matrix product. If h′′(u)A(u) is positive definite,
this yields gradient estimates needed for the global existence analysis.

Introducing the entropy variables wi = ∂h/∂ui or w = h′(u), we may write (1.1)
equivalently as

∂tu(w)− div(B(w)∇w) = f(u(w)), B(w) := A(u(w))h′′(u(w))−1, (1.4)

where u(w) = (h′)−1(w) is interpreted as a function of w = (w1, . . . , wn) and h′′(u)−1

is the inverse of the Hessian of h. By assumption, B(w) is positive semidefinite, which
indicates a (nonstandard) parabolic structure.

The entropy structure will be made more explicit for two examples in Section 2.
In Sections 3 and 4, the local and global in time existence of solutions, respectively,
will be reviewed. Furthermore, we comment in Section 5 on uniqueness results, and
we close in Section 6 with some open problems.

2. Examples. We present two prototypic examples.
Example 1 (Maxwell-Stefan equations). The dynamics of a fluid mixture of

n = 3 components with volume fractions u1, u2, u3 = 1 − u1 − u2 can be described
by the Maxwell-Stefan equations [38], defined by (1.1) with

A(u) =
1

a(u)

(
d2 + (d0 − d2)u1 (d0 − d1)u1

(d0 − d2)u2 d1 + (d0 − d1)u2

)
,

where di > 0 and a(u) = d1d2(1− u1 − u2) + d0(d1u1 + d2u2) > 0. The model can be
generalized to n ≥ 3 components; see [4, 26]. For simplicity, we set f ≡ 0. Define the
entropy density

h(u) =

2∑
i=1

ui(log ui − 1) + (1− u1 − u2)
(

log(1− u1 − u2)− 1
)
,

where u = (u1, u2), and the entropy H[u] =
∫

Ω
h(u)dx. A formal computation shows

that

dH
dt

+

∫
Ω

1

a(u)

(
d2
|∇u1|2

u1
+ d1

|∇u2|2

u2
+ d0

|∇(u1 + u2)|2

1− u1 − u2

)
dx = 0,
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and in particular, h′′(u)A(u) is positive definite for ui > 0. The entropy variables
become wi = ∂h/∂ui = log(ui/(1−u1−u2)) with inverse ui(w) = ewi/(1+ew1 +ew2),
which lies in the triangle G = {u ∈ R2 : u1, u2 > 0, 1− u1 − u2 > 0}. This property
makes sense since ui are volume fractions and they are expected to be bounded. This
property can be exploited in the existence analysis to obtain bounded solutions without
using a maximum principle (which generally cannot be applied). �

Example 2 (Population model). The evolution of two interacting species may
be modeled by equations (1.1) with the diffusion matrix

A(u) =

(
a10 + a11u1 + a12u2 a12u1

a21u2 a20 + a21u1 + a22u2

)
,

where aij ≥ 0 [36]. We neglect the environmental potential and source terms, so
f ≡ 0. The entropy is given by H[u] =

∫
Ω
h(u)dx, where h(u) = a21u1(log u1 − 1) +

a12u2(log u2 − 1). A formal computation shows that

dH
dt

+

∫
Ω

{(
a10

u1
+ a21a11

)
|∇u1|2 +

(
a20

u2
+ a12a22

)
|∇u2|2 + 4|∇

√
u1u2|2

}
dx = 0.

(2.1)
The entropy variables are w1 = a21 log u1, w0 = a12 log u2. Then the population
densities are u1 = ew1/a21 , u2 = ew2/a12 > 0. An upper bound cannot be expected.

The model can be generalized to n ≥ 2 species with diffusion coefficients

Aij(u) = δij

(
ai0 +

n∑
k=1

aikuk

)
+ aijui, i, j = 1, . . . , n. (2.2)

The entropy structure is more delicate than in the two-species case. Indeed, assume
that there exist numbers πi > 0 such that the equations

πiaij = πjaji, i, j = 1, . . . , n, (2.3)

are satisfied. Then h(u) =
∑n
i=1 πiui(log ui − 1) is an entropy density, i.e. dH/dt ≤ 0

[8]. Equations (2.3) are recognized as the detailed-balance condition for the Markov
chain with transition rates aij , and π = (π1, . . . , πn) is the corresponding invariant
measure [25, Section 5.1]. �

3. Local existence of classical solutions. A very general result on the local-
in-time existence of classical solutions to diffusion systems was proved by Amann (see
[2, Section 1] or [3, Theorem 14.1]). A special version reads as follows.

Theorem 3.1 (Amann [2]). Let G ⊂ Rn be open, Aij, fi ∈ C∞(G), all eigenval-
ues of A(u) have positive real parts for all u ∈ G, and u0 ∈ V := {v ∈ W 1,p(Ω;Rn) :
v(Ω) ⊂ G}, where p > d. Then there exists a unique maximal solution u to (1.1)-(1.2)
satisfying u ∈ C0([0, T ∗);V ) ∩ C∞(Ω× (0, T ∗);Rn), where 0 < T ∗ ≤ ∞.

An elliptic operator u 7→ div(A(u)∇u) with the property that all eigenvalues of
A(u) have positive real parts is called normally elliptic. We claim that any cross-
diffusion system with strict entropy structure is normally elliptic.

Lemma 3.2 (Eigenvalues of A). Let A ∈ Rn×n. We assume that there exists a
symmetric, positive definite matrix H ∈ Rn×n such that HA is positive definite. Then
every eigenvalue of A has a positive real part.

In the context of cross-diffusion systems, H stands for the Hessian h′′(u).
Proof. Let λ = ξ + iη with ξ, η ∈ R be an eigenvalue of A with eigenvector

u = v + iw, where v, w ∈ Rn with v 6= 0 or w 6= 0. It follows from Au = λu
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that Av = ξv − ηw, Aw = ηv + ξw. We multiply both equations by v>H, w>H,
respectively:

0 < v>HAv = ξv>Hv − ηv>Hw, 0 < w>HAw = ηw>Hv + ξw>Hw.

Since H is symmetric, we have v>Hw = w>Hv. Therefore, adding both identities,

0 < v>HAv + w>HAw = ξ(v>Hv + w>Hw).

We infer from the positive definiteness of H that ξ > 0, proving the claim.

4. Global existence of weak solutions. The classical solution of Amann can
be continued for all time under some assumptions [3, Theorem 15.3].

Theorem 4.1 (Amann [3]). Let u be the classical maximal solution to (1.1)-(1.2)
on [0, T ∗). Assume that u|[0,T ] is bounded away from ∂G for each T > 0 and that
there exists α > 0 such that ‖u(t)‖C0,α ≤ C(T ) for all 0 ≤ t ≤ T <∞, t < T ∗. Then
T ∗ =∞.

Unfortunately, it is not easy to derive a uniform bound in the Hölder norm.
A possibility is to show that the gradient ∇ui(t) satisfies some higher integrability,
namely Lp(Ω) for p > d, since W 1,p(Ω) embeds continuously into C0,α(Ω) for α =
1 − p/d > 0. Estimates in the W 1,p norm with p > d for a particular system were
derived in, e.g., [23, 29].

Another approach is to find weak solutions using the entropy method as outlined
in the introduction. The key elements of the existence proof are the definition of an
approximate problem and a compactness argument. We are aware of two approaches
in the literature. In both approaches, the time derivative is replaced by the implicit
Euler discretization. This avoids issues with the (low) time regularity. To define
the change of unknowns u(w), we need bounded approximate solutions w. The first
approach regularizes the equations by adding a weak form of ε((−∆)sw + w). Since
Hs(Ω) ↪→ L∞(Ω) for s > d/2, this yields bounded weak solutions. The second
approach formulates the implicit Euler scheme as a fixed-point equation involving the
solution operator (M −∆)−1 for sufficiently large M > 0. This allows one to exploit
the regularization property of the solution operator (M −∆)−1 : Lp(Ω) → W 2,p(Ω),
and the continuous embedding W 2,p(Ω) ↪→ L∞(Ω) for p > d yields bounded solutions.
We detail both approaches in the following subsections.

4.1. Boundedness-by-entropy method. This method does not only give the
global existence of solutions but it also yields L∞ bounds. It was first used in [5] and
made systematic in [24]. The first key assumption is that the derivative h′ : G→ Rn
is invertible, where G ⊂ Rn is a bounded set. Then u(w(x, t)) = (h′)−1(w(x, t)) ∈ G
yields lower and upper bounds for the densities ui; see Example 1. The second key
assumption is the positive definiteness of h′′(u)A(u). Applications indicate that this
property does not hold uniformly in u. Therefore, we impose a weaker condition.
(H1) h ∈ C2(G; [0,∞)) is convex with invertible derivative h′ : G→ Rn.
(H2) G ⊂ (0, 1)n and for z = (z1, . . . , zn)> ∈ Rn and u = (u1, . . . , un) ∈ G,

z>h′′(u)A(u)z ≥ κ
n∑
i=1

u2m−2
i z2

i , where m ≥ 1

2
, κ > 0. (4.1)

(H3) A = (Aij) ∈ C0(G;Rn×n) and |Aij(u)| ≤ CA|uj |a for all u ∈ G, i, j = 1, . . . , n,
where CA, a > 0.

(H4) f ∈ C0(G;Rn) and ∃ Cf > 0: ∀ u ∈ G: f(u) · h′(u) ≤ Cf (1 + h(u)).
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Hypothesis (4.1) is satisfied with m = 1
2 in Examples 1 and 2 if a10 > 0, a20 > 0

and m = 1 in Example 2 if a11 > 0, a22 > 0. The following theorem is proved in [24,
Theorem 2]; also see [25, Section 4.4].

Theorem 4.2 (Global existence [24]). Let (H1)-(H4) hold and let u0 ∈ L1(Ω;Rn)
be such that u0(Ω) ⊂ G. Then there exists a bounded weak solution u to (1.1)-
(1.2) satisfying u(Ω, t) ⊂ G for all t > 0 and u ∈ L2

loc(0,∞;H1(Ω;Rn)), ∂tu ∈
L2

loc(0,∞;H1(Ω;Rn)′), for all T > 0 and φ ∈ L2(0, T ;H1(Ω;Rn)),∫ T

0

〈∂tu, φ〉dt+

∫ T

0

∫
Ω

∇φ : A(u)∇udxdt =

∫ T

0

∫
Ω

f(u) · φdxdt,

where 〈·, ·〉 denotes the dual pairing of H1(Ω)′, and u(0) = u0 holds in H1(Ω;Rn)′.

The idea of the proof is to solve first for given uk−1 the regularized problem

1

τ

∫
Ω

(
u(wk)− u(wk−1)

)
· φdx+

∫
Ω

∇φ : B(wk)∇wkdx

+

∫
Ω

( ∑
|α|=s

Dαwk ·Dαφ+ wk · φ
)
dx =

∫
Ω

f(u(wk)) · φdx
(4.2)

for φ ∈ Hs(Ω;Rn), where s > d/2, α = (α1, . . . , αn) ∈ Nn0 with |α| = α1 + · · ·+αn = s
is a multiindex, Dα = ∂s/(∂xα1

1 · · · ∂xαnn ) is a partial derivative of order m, u(w) :=
(h′)−1(w), and wk is an approximation of w(·, kτ) with the time step τ > 0. This
problem is solved by the Leray-Schauder theorem. Uniform estimates are derived
from a discrete version of the entropy-production identity (1.3) and Hypothesis (H2).

Let u(τ)(x, t) = u(wk(x)) for x ∈ Ω and t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N , be
piecewise constant functions in time. If t = 0, we set u(τ)(·, 0) = u0. We also need
the time shift operator (στu

(τ))(·, t) = u(wk−1) for t ∈ ((k − 1)τ, kτ ]. It follows from
the boundedness and the discrete entropy-production inequality that [25, Section 4.4]

‖u(τ)‖L∞(0,T ;L1(Ω)) ≤ C, (4.3)

τ−1‖u(τ) − στu(τ)‖L2(0,T ;Hs(Ω)′) + ‖(u(τ))m‖L2(0,T ;H1(Ω)) ≤ C, (4.4)

where C > 0 is independent of ε and τ . (In fact, we have even a bound for (u(τ))
in L∞(0, T ;L∞(Ω)).) If m = 1, we deduce relative compactness for (u(τ)) in L2(QT )
(where QT = Ω× (0, T )) from the discrete Aubin-Lions lemma in the version of [15].
When m 6= 1, we need the nonlinear version of [8, 11, 39].

Lemma 4.3 (Nonlinear Aubin-Lions). Let T > 0, m > 0, and let (u(τ)) be a
family of nonnegative functions that are piecewise constant in time with uniform time
step τ > 0. Assume that there exists C > 0 such that (4.4) holds for all τ > 0.

• Let m > 1 and let (u(τ)) be bounded in L∞(QT ). Then (u(τ)) is relatively compact
in Lp(QT ) for any p <∞ [39, Lemma 9].

• Let 1/2 ≤ m ≤ 1. Then (u(τ)) is relatively compact in L2m(0, T ;Lpm(Ω)), where
p ≥ 1/m and H1(Ω) ↪→ Lp(Ω) is continuous [11, Theorem 3].

• Let max{0, 1/2 − 1/d} < m < 1/2 and let (4.3) hold. Then (u(τ)) is relatively
compact in L1(0, T ;Ld/(d−1)(Ω)) [8, Theorem 22].

Another version of the nonlinear Aubin-Lions lemma is shown in [31].

Theorem 4.2 can be directly applied to the Maxwell-Stefan equations from Ex-
ample 1 yielding the global existence of bounded weak solutions.
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4.2. Cross-diffusion system with Laplace structure. Theorem 4.2 can be
only applied to situations in which the densities are bounded (volume fractions).
However, the method of proof can be adapted to cases, in which the domain G is not
bounded. The main difference is that we cannot work in L∞(Ω) anymore but only in
Lp(Ω) for suitable p <∞. The precise value of p depends on m in Hypothesis (H2),
and a global existence result can be proved under certain growth conditions on Aij(u)
and fi(u). As an example, consider the population model from Example 2 for n ≥ 2
species. The following theorem was proved in [8].

Theorem 4.4 (Population model, linear Aij [8]). Let u0
i ≥ 0 be such that∫

Ω
h(u0)dx < ∞ and let the detailed-balance condition (2.3) and aii > 0 hold. Then

there exists a weak solution u = (u1, . . . , un) to (1.1)-(1.2) with diffusion matrix (2.2)

satisfying ui ≥ 0 in Ω, t > 0, and ui ∈ L2
loc(0,∞;H1(Ω)), ∂tui ∈ Lq

′

loc(0, T ;W 1,q(Ω)′),
where q = 2d+ 2 and q′ = (2d+ 2)/(2d+ 1).

We have assumed that there is self-diffusion aii > 0, yielding an L2 estimate for
∇ui, which is stronger than the L2 estimate for ∇umi with m < 1. An existence
result with vanishing self-diffusion aii = 0 was shown in [7] for the two-species model.
Here, we only have an L2 bound for ∇√ui. The lack of regularity for ∇ui can be
compensated by exploiting the gradient estimate for ∇√u1u2 in (2.1) and an L2 logL2

estimate coming from the Lotka-Volterra reaction terms.
The detailed-balance condition can be replaced by a “weak cross-diffusion” as-

sumption which is automatically satisfied if (Aij) is symmetric; see [8, Formula (12)].
Another generalization concerns nonlinear diffusion coefficients

Aij(u) = δij

(
ai0 +

n∑
k=1

aiku
sk
k

)
+ sjaijuiu

sj−1
j , i, j = 1, . . . , n, (4.5)

for si ≥ 0. The corresponding cross-diffusion system can be analyzed by the method
of the previous subsection. However, improved results can be obtained by exploiting
the Laplace structure, meaning that (1.1) with (4.5) writes as

∂tui −∆(uipi(u)) = fi(u), where pi(u) = αi0 +

n∑
j=1

αiju
sj
j , (4.6)

and αij = aij for i 6= j and αii = (si + 1)aii. Let aii > 0 and si ≤ 2. Then, by

the entropy-production inequality, ∇usi/2i is bounded in L2(QT ), and the Gagliardo-
Nirenberg inequality with q = 2 + 4/(dsi) and θ = dsi/(2 + dsi) shows that

‖usi/2i ‖qLq(QT ) =

∫ T

0

‖usi/2i ‖qLq(Ω)dt ≤
∫ T

0

‖usi/2i ‖qθH1(Ω)‖u
si/2
i ‖q(1−θ)

L2/si (Ω)
dt

≤ ‖ui‖qsi(1−θ)/2L∞(0,T ;L1(Ω))

∫ T

0

‖usi/2i ‖2H1(Ω)dt ≤ C.

We deduce that ui is bounded in Lsi+2/d(QT ). Using the duality method of Pierre
[35], an improved regularity result can be derived. Indeed, set ū =

∑n
i=1 ui and

µ =
∑n
i=1 uipi(u)/ū. If fi(u) grows at most linearly in ui, we find that ū solves

∂tū − ∆(µū) ≤ Cū for some constant C > 0 depending on fi. Then (see, e.g., [30,
Lemma 1.2] or the review [34])∫ T

0

∫
Ω

µū2dxdt ≤ C(T, u0). (4.7)
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We infer that u2
i pi(u) is uniformly bounded in L1(QT ), giving a bound for ui in

Lsi+2(QT ). For d > 1, this bound is better than the bound in Lsi+2/d(QT ) derived
above. The improved regularity is a key element in proving the global existence of
solutions [30, Theorem 1.10] (also see the precursor versions in [12, 13]). We define
the entropy density h(u) =

∑n
i=1 hi(ui), where

hi(ui) =

{
(usii − siui + si − 1)/(si − 1) if si 6= 1,
ui(log ui − 1) + 1 if si = 1.

Theorem 4.5 (Population model, nonlinear Aij [30]). Assume that si > 0,
sisj ≤ 1 for i 6= j, let the detailed-balance condition (2.3) hold, and fi(u) = bi0 −∑n
j=1 biju

αij
j for bij ≥ 0 and αij < 1. Finally, let u0

i ∈ L1(Ω) ∩H1(Ω)′,
∫

Ω
hi(u

0
i ) <

∞. Then there exists an integrable solution ui ≥ 0 to (4.6) and (1.2) such that for
all smooth test functions φ satisfying ∇φi · ν = 0 on ∂Ω,

−
∫ ∞

0

∫
Ω

u · ∂tφdxdt−
∫ ∞

0

∫
Ω

n∑
i=1

uipi(u)∆φidxdt

=

∫ ∞
0

∫
Ω

f(u) · φdxdt+

∫
Ω

u0(x) · φ(x, 0)dx.

It is an open problem to show the same result for arbitrary si > 0.
The key idea of the proof is to formulate the implicit Euler scheme

τ−1(uki − uk−1
i ) = ∆Fi(u

k) + fi(u
k), where Fi(u

k) = uki pi(u
k),

as the fixed-point equation

uk = F−1
(

(M −∆)−1
(
uk−1 − uk +MF (uk)

))
,

where F = (F1, . . . , Fn) and M > 0 is a sufficiently large number. In fact, if M is
large and uk−1

i > 0, we can show that v := uk−1
i − uki + MFi(u

k
i ) > 0, and by the

maximum principle, (M − ∆)−1v > 0. Then, if F is a homeomorphism on [0,∞)n,
uki > 0, which yields positivity. Moreover, elliptic regularity theory implies that for
v ∈ Lp(Ω) with p > d/2, we have (M −∆)−1v ∈W 2,p(Ω) ↪→ L∞(Ω). This shows that
uki is bounded in L∞ and it defines a fixed-point operator on L∞(Ω;Rn).

The main assumption is that F is a homeomorphism. Under this assumption,
Theorem 4.5 can be considerably generalized; see [30, Theorem 1.7] for details.

5. Uniqueness of weak solutions. The uniqueness of weak solutions to diffu-
sion systems is a delicate topic. One of the first uniqueness results was shown in [1],
assuming that the elliptic operator is linear and the time derivative of ui is integrable.
The latter hypothesis was relaxed in [32] allowing for finite-energy solutions but to
scalar equations only. The uniqueness of solutions was shown in [33] for a cross-
diffusion system with a strictly positive definite diffusion matrix. For cross-diffusion
systems with entropy structure (and not necessarily positive definite A(u)), there are
much less papers. The first result was for a special two-species population model [27],
later extended to a volume-filling system [39], and generalized in [9] for a class of
cross-diffusion systems. In this section, we report on the result of [9].

We allow for cross-diffusion systems involving drift terms,

∂tui = div

n∑
j=1

(
Aij(u)∇uj +Bij(u)∇φ

)
, i = 1, . . . , n, (5.1)
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where φ is a potential solving the Poisson equation

−∆φ = u0 − f(x) in Ω, u0 :=

n∑
i=1

aiui, (5.2)

ai ≥ 0 are some constants, and f(x) is a given background density. The equations
are complemented by (1.2) and ∇φ · ν = 0 on ∂Ω, t > 0. For consistency, we need to
impose the condition

∫
Ω

∑n
i=1 aiu

0
i dx =

∫
Ω
f(x)dx.

The uniqueness proof only works for a special class of coefficients, namely

Aij(u) = p(u0)δij + ajuiq(u0), Bij(u) = r(u0)uiδij , i, j = 1, . . . , n, (5.3)

for some functions p, q, and r. The main result is as follows.
Theorem 5.1 (Uniqueness of bounded weak solutions [9]). Let u0 ∈ L∞(Ω) and

f ∈ L2(Ω). Let (u, φ) be a weak solution to (5.1)-(5.3), (1.2) such that u0(Ω, t) ⊂ [0, L]
for some L > 0. Assume that there exists M > 0 such that for all s ∈ [0, L],

p(s) ≥ 0, p(s) + q(s)s ≥ 0, (5.4)

r(s)s ∈ C1([0, L]),
(r(s) + r′(s)s)2

p(s) + q(s)s
≤M. (5.5)

Then (u, φ) is unique in the class of solutions satisfying
∫

Ω
φdx = 0, ∇φ ∈ L∞(0, T ;

L∞(Ω)), and ui ∈ L2(0, T ;H1(Ω)), ∂tui ∈ L2(0, T ;H1(Ω)′) for i = 1, . . . , n. In
the case r ≡ 0, the boundedness of u0 is not needed, provided that

√
p(u0)∇ui,√

|q(u0)|∇ui ∈ L2(Ω× (0, T )).
The proof is based on the H−1 method and the entropy method of Gajewski [19].

First, we show the uniqueness of u0 =
∑n
i=1 aiui, solving

∂tu0 = div
(
∇Q(u0) +R(u0)∇φ

)
,

where Q(s) =
∫ s

0
(p(z) + q(z)z)dz and R(s) = r(s)s. Sine Q is nondecreasing, the

use of the H−1 technique seems to be natural. Given two solutions (u, φ) and (v, ψ),
the idea is to use the test function χ that solves the dual problem −∆χ = u0 − v0

in Ω, ∇χ · ν = 0 on ∂Ω and to show that d
dt‖∇χ‖

2
L2(Ω) ≤ C‖∇χ‖2L2(Ω), using the

monotonicity of Q. This implies that u0 = v0 and φ = ψ. Second, we differentiate (a
regularized version of) the semimetric

d(u, v) =

n∑
i=1

∫
Ω

(
h(ui) + h(vi)− 2h

(
ui + vi

2

))
dx,

where h(s) = s(log s− 1) + 1. Computing the time derivative of d(u(t), v(t)), it turns
out that the drift terms cancel and we end up with d

dtd(u, v) ≤ 0 implying that u = v.
Gajewski’s semimetric is related to the relative entropy or Kullback-Leibler en-

tropy H[u|v] = H[u] − H[v] − H′[v] · H(u − v) used in statistics [28]. In fact, the
proof of Theorem 5.1 can be performed as well with the symmetrized relative entropy
d0(u, v) = H[u|v] + H[v|u]. Both distances d(u, v) and d0(u, v) behave like |u − v|2
for “small” |u − v|, but they lead to different expressions when computed explic-
itly. The Kullback-Leibler entropy was also employed to derive explicit exponential
convergence rates to equilibrium [6] and to prove weak-strong uniqueness results for
(diagonal) reaction-diffusion systems [18].
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6. Open problems. We mention some open questions.

• Reaction terms: Hypothesis (H4) excludes reaction terms which grow superlin-
early. The global existence of solutions to cross-diffusion systems with, for instance,
quadratic reactions is an open problem. One approach could be to consider renor-
malized instead of weak solutions, as done in [17] for (diagonal) reaction-diffusion
systems. This is currently under development [9]. Another idea is to exploit the
entropy techniques devised for reaction-diffusion systems [16].

• n-species population model: It is an open problem to find global solutions to the
population model with diffusion matrix (2.2) and n ≥ 3 without detailed balance
or “weak cross-diffusion”. Numerical experiments indicate that standard choices
like the Boltzmann entropy, relative entropy, etc. are not Lyapunov functionals.
So, the problem to find a priori estimates is open.

• Uniqueness of solutions: The uniqueness result presented in Theorem 5.1 is rather
particular. One may ask whether weak-strong uniqueness of solutions can be shown
like in [18] for diagonal diffusion systems. In fact, uniqueness of weak solutions is
known to be delicate even for drift-diffusion equations; see, e.g., [14].

• Regularity theory: The duality method yields global Lp regularity results for cross-
diffusion systems with Laplace structure (see (4.7)). Another approach is to apply
maximal Lp regularity theory as done in [21] for Maxwell-Stefan systems, at least
for local solutions. The (open) question is to what extent this theory can be applied
to general systems with entropy structure?

• Entropies: Given a cross-diffusion system, a major open question is how an entropy
structure can be detected. In thermodynamics, often the entropy (more precisely:
free energy) and entropy production are given and the system of partial differen-
tial equations follows from these quantities. Furthermore, it is an open question
how large is the class of cross-diffusion systems with entropy structure. Are there
diffusion systems with normally elliptic operator, which have no entropy structure?
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