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REMARKS ON THE QUALITATIVE BEHAVIOR OF THE
UNDAMPED KLEIN-GORDON EQUATION ∗

JORGE A. ESQUIVEL-AVILA †

Abstract. We present sufficient conditions on the initial data of an undamped Klein-Gordon
equation in bounded domains with homogeneous Dirichlet boundary conditions to guarantee the
blow up of weak solutions. Our methodology is extended to a class of evolution equations of second
order in time. As an example, we consider a generalized Boussinesq equation. Our result is based on
a careful analysis of a differential inequality. We compare our results with the ones in the literature.
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1. Functional framework and previous results. For the Cauchy problem
associated to any evolution equation on a Banach space, we have the usual questions
in terms on the initial data:

• Existence and uniqueness of solutions.
• Non global existence: maximal time of existence ≡ TMAX <∞.
• Global existence: TMAX =∞.
• In the latter case, the behavior of the solution as time approaches infinity.

Here, we present a short overview paper presenting recent advances, published in
[1, 2], on the non global existence of solutions corresponding to a non-linear Klein-
Gordon equation and to abstract wave equations, in particular to a generalized Boussi-
nesq equation.

We shall first consider the following problem for a Klein-Gordon equation

(P)

 utt(x, t)−∆u(x, t) +m2u(x, t) = f(u(x, t)), (x, t) ∈ Ω× (0, T ),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Ω.

where m 6= 0 is a real constant, which is assumed to be equal to one without loss of
generality, and Ω ⊂ Rn is a bounded and open set with sufficiently smooth boundary.
We assume that the source term f , is locally Lipschitz continuous and satisfies

|f(s)| ≤ µ|s|r−1, sf(s)− rF (s) ≥ 0, ∀s ∈ R,

where F (s) ≡
∫ s

0
f(t)dt, and r > 2, µ > 0, are constants. For this problem, Ball [3, 4]

proved the following theorem about existence, uniqueness and continuation of weak
solutions.

Theorem 1.1. Assume that r ≤ 2(n − 1)/(n − 2) if n ≥ 3. For every initial
data (u0, v0) ∈ H ≡ H1

0 (Ω) × L2(Ω), there exists a unique (local) weak solution
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(u0, v0) 7→ (u(t), v(t)), v(t) ≡ d
dtu(t), of problem (P), that is

d

dt
(v(t), w)2 + (∇u(t),∇w)2 + (u(t), w)2 = (f(u(t)), w)2,

a. e. in (0,T) and for every w ∈ H1
0 (Ω), such that (u, v) ∈ C([0, T );H). Here, (·, ·)2

denotes the inner product in L2(Ω). Furthermore, the following energy equation holds

E(u(t0), v(t0)) = E(u(t), v(t)) ≡ 1

2
‖v(t)‖22 + J(u(t)), ∀t ≥ t0 ≥ 0,

J(u(t)) ≡ 1

2

(
‖u(t)‖22 + ‖∇u(t)‖22

)
−
∫

Ω

F (u(t))dx.

Here, ‖·‖q is the norm in Lq(Ω). Finally, if the maximal time of existence TMAX <∞,
then the solution blows up in finite time. That is,

lim
t↗TMAX

‖(u(t), v(t))‖2H ≡ lim
t↗TMAX

‖u(t)‖22 + ‖∇u(t)‖22 + ‖v(t)‖22 =∞.

Moreover, by the energy equation,

lim
t↗TMAX

‖u(t)‖r =∞.

Remark 1. Problem (P) is invariant if we reverse the time direction: t 7→ −t.
The solution backwards (u(t), v(t)), t < 0, with initial conditions (u0, v0) corresponds
to the solution forwards (u(−t),−v(−t)),−t > 0 with initial conditions (u0,−v0).
Then, the local existence and uniqueness Theorem 1.1 holds backwards and the re-
sults presented in this work for positive times have the corresponding for backwards
solutions.

If the solution u is independent of time, it is called an equilibrium and satisfies

(∇u,∇w)2 + (u,w)2 = (f(u), w)2,

for every w ∈ H1
0 (Ω). In particular, for w = u,

I(u) ≡ ‖∇u‖22 + ‖u‖22 − (f(u), u)2 = 0.

We notice that u = 0 is an equilibrium. The set of equilibria u 6= 0, with minimal
energy is called the ground state, and the corresponding value of the energy is positive
and denoted by d. This number is the mountain pass level of the functional J , see [5].
For initial energies E(u0, v0) < d, a characterization of the qualitative properties of
the solutions in terms of the sign of I(u0) has been proved in [6] by the potential well
method. Indeed, if I(u0) ≥ 0, respectively I(u(t0)) < 0, the corresponding solution
is global and uniformly bounded in H, respectively the solution blows up in finite
time. For high values of the initial energy the sign of I(u0) is not sufficient in order
to prove qualitative properties of the solution. Certainly, for E(u0, v0) > d and for a
source term of the form f(u) ≡ |u|r−2u, r > 2, in [7] is proved that the solution blows
up if I(u0) < 0, (u0, v0)2 ≥ 0, and ‖u0‖2 ≥ sup {‖u‖2 : I(u)) = 0, J(u) ≤ E(u0, v0)}.
For E(u0, v0) = d and f(u) ≡ |u|r−2u, in [8] the following is proved: (i) the solution
blows up if I(u0) < 0 and (u0, v0)2 ≥ 0 and (ii) the solution is global and uniformly
bounded in H if I(u0) > 0. Recently, several works have proved blow up of solutions
with one o several source terms of the form |u|r−2u, under sufficient conditions that
involve upper bounds on the initial energy as follows.
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Theorem 1.2. For every solution of problem (P) with

(u0, v0)2 > 0, ‖u0‖2 > 0,

the solution blows up in finite time if one of the following holds:

(Wang [9]). E(u0, v0) ≤ r − 2

2r
‖u0‖22, I(u0) < 0,(1.1)

(Korpusov [10]). E(u0, v0) <
1

2
P (u0, v0),(1.2)

(Kutev, et al. [11]). E(u0, v0) <
r − 2

2r
‖u0‖22 +

1

2
P (u0, v0),(1.3)

(Dimova, et al. [12]). E(u0, v0) ≤ r − 2

2r
‖u0‖22 +

1

2
P (u0, v0)

+
‖u0‖22
r

[
1−

{
1 +

P (u0, v0)

‖u0‖22

}−( r−2
2 )
]
,(1.4)

where P (u0, v0) ≡ |(v0,u0)2|2
‖u0‖22

.

Remark 2. For the proof of anyone of the items in this theorem, some differen-
tial inequality is employed to prove that the solution only exists up to a finite time:
T < ∞. The estimate of the maximal time of existence by this means is not always
optimal, that is, T > TMAX . See [13, 3, 4] for more discussion. The technique de-
scribed above belongs to the so called functional method. That is, some functional in
terms of a norm of the solution well defined in the sense of Theorem 1.1, satisfies a
differential inequality that necessarily implies that such norm blows up in finite time.
Consequently, the solution can not be global. This method has been used for many
authors to show nonexistence of solutions, see for instance [14] for an early reference
where a concavity argument is used.

Remark 3. In [11] is proved that any one of the sufficient conditions (1.1) or
(1.2) imply (1.3), and that the contrary is not true. We notice that (1.3) implies (1.4)
but the opposite does not occur. In next section we easily show this implication and by
this means we propose a new condition to get blow up of the solution in finite time.

2. Main result. In this section we consider solutions with any positive value
of the initial energy, in particular with E(u0, v0) ≥ d. The understanding of the
complete dynamics in this case is an open question and very much complicated. Here,
we limit ourselves to study blow up and give sufficient conditions on (u0, v0) ∈ H and
E(u0, v0) > 0.

We first notice that the right hand-side of (1.3) and (1.4) have the following form

ηq(u, v) ≡ 1

2
Φ(u, v)− 1

r
Ψ(u)

(
Ψ(u)

Φ(u, v)

)q
,

where q ≥ 0 and

Φ(u, v) ≡ Ψ(u) + P (u, v), Ψ(u) ≡ ‖u‖22, P (u, v) ≡ |(v, u)2|2

‖u‖22
.

The functional P comes from the orthogonal decomposition of the velocity, introduced
in [11]. That is,

v =
(v, u)2

‖u‖22
u+ h, ‖v‖22 = ‖h‖22 + P (u, v),
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where (u, h)2 = 0. Indeed, the one in (1.4) is equal to η r−2
2

(u0, v0). We notice that

the function q 7→ ηq(u0, v0), is strictly increasing for q ≥ 0, whenever P (u0, v0) > 0,
and that η0(u0, v0) is equal to the right-hand side of condition (1.3). Hence, (1.4) is
implied by (1.3) but not the contrary. Now, we define a strictly decreasing function
λ 7→ µλ(u, v), for 0 < λ < 1, by

µλ(u, v) ≡ 1

2
Φ(u, v)− 1

r
Ψ(u, v)

(
r − 2

r − 2λ

Ψ(u)

Φ(u, v)

) r−2
2

,

with the property that µλ(u, v)→ η r−2
2

(u, v) if λ→ 1. That is, η r−2
2

(u, v) < µλ(u, v).

Next we present our blow up result whose proof is based on a careful analysis of a
differential inequality satisfied by Ψ(u), and where P (u, v) and µλ(u, v) are essential
to improve the previous results given in Theorem 1.2.

Theorem 2.1. (Esquivel-Avila [1]). Consider any solution of problem (P).
Assume that

‖u0‖2 > 0, (u0, v0)2 > 0.(2.1)

Hence, P (u0, v0) > 0, and there exists a nonempty interval

IP (u0,v0) ≡
(
αP (u0,v0), βP (u0,v0)

)
⊂
(

0,
1

2
Φ(u0, v0)

)
,

such that if E(u0, v0) ∈ IP (u0,v0), then the solution blows up in finite time. Moreover,
for fixed Ψ(u0),

lim
P (u0,v0)→∞

∣∣∣∣βP (u0,v0) −
1

2
Φ(u0, v0)

∣∣∣∣ = 0 = lim
P (u0,v0)→∞

αP (u0,v0).

Remark 4. We observe that βP (u0,v0) = µλ∗(u0, v0), where λ∗ ∈ (0, 1), is
uniquely defined by

λ∗ ≡
(

Ψ(u0)

Φ(u0, v0)

) r
2
(

r − 2

r − 2λ∗

) r−2
2

.

Hence, Theorem 2.1 improves the condition on the upper bound of the initial energy
given in Theorem 1.2, (1.1)-(1.4).

If µλ∗(u0, v0) ≤ E(u0, v0) ≤ µλ(u0, v0), for λ ≤ λ∗, the qualitative behavior of
the solution is unknown. However, given any positive value of the initial energy, if
(2.1) holds and P (u0, v0) is large enough, then we can always have that E(u0, v0) ∈
IP (u0,v0). Consequently, the corresponding solution blows up in finite time.

Remark 5. For small energies, the result in [6] characterizes blow up of any solu-
tion under the condition I(u0) < 0. For high energies, blow up follows from I(u0) < 0
and additional conditions on the initial data, see [7]-[9]. Under the hypotheses of
Theorem 2.1, I(u0) < 0 follows if P (u0, v0) > 0 is sufficiently large, see [1].
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3. Evolution equations of second order in time. We extend Theorem 2.1
to the following class of abstract wave equations:

(PM)

{
Mutt(t) +Au(t) = F(u(t)), t ∈ (0, T ),
u(0) = u0, ut(0) = v0,

where M : HM → H
′

M and A : V → V
′
, are linear, positive and symmetric operators,

and V ⊂ HM ⊂ H are linear subspaces of the Hilbert space H with inner product
(·, ·) and norm ‖ · ‖, and H = H

′ ⊂ H
′

M ⊂ V ′ are the dual spaces. Hence, we define
the bilinear forms and corresponding inner products and norms

M : HM ×HM → R, M(u,w) ≡ (Mu,w)HM×H′M ,

(u,w)M ≡M(u,w), ‖u‖2M ≡ (u, u)M, ∀u,w ∈ HM

and

A : V × V → R, A(u,w) ≡ (Au,w)V×V ′ ,

(u,w)V ≡ A(u,w), ‖u‖2V ≡ (u,w)V , ∀u,w ∈ V.

We assume that there exists some constant c > 0, such that

‖u‖2V ≥ c‖u‖2M, ∀u ∈ V.(3.1)

Also, we assume that the nonlinear term F : V ⊂ H → H, is a potential operator
with potential G : V → R, and

F(0) = 0, (F(u), u)− rG(u) ≥ 0, ∀u ∈ V,(3.2)

where r > 2 is a constant.

We consider solutions in the following functional framework.

For every initial data (u0, v0) ∈ H ≡ V ×HM, there exists T > 0, and a unique
local solution (u0, v0) 7→ (u, v) ∈ C([0, T );H), v(t) ≡ d

dtu(t), of the problem (PM) in
the following sense

d

dt
M(v(t), w) +A(u(t), w) = (F(u(t)), w),

a. e. in (0, T ) and for every w ∈ V . Furthermore, the following energy equation holds

E(u(t0), v(t0)) = E(u(t), v(t)) ≡ 1

2
‖v(t)‖2M + J(u(t)), t ∈ [t0, T ), t0 ≥ 0,

J(u(t)) ≡ 1

2
‖u(t)‖2V − G(u(t)).

We define

Φ(u, v) ≡ cΨ(u) + PM(u, v), Ψ(u) ≡ ‖u‖2M, PM(u, v) ≡ |M(v, u)|2

‖u‖2M
.

Then, we have the following result.

Theorem 3.1. (Esquivel-Avila [2]). Consider any solution of problem (PM).
Assume that

‖u0‖M > 0, M(u0, v0) > 0.(3.3)
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Then, there exists a nonempty open interval

IPM(u0,v0) ≡
(
αPM(u0,v0), βPM(u0,v0)

)
⊂
(

0,
1

2
Φ(u0, v0)

)
,

such that if E(u0, v0) ∈ IPM(u0,v0), then the solution is not global. Moreover, for fixed
Ψ(u0),

lim
PM(u0,v0)→∞

∣∣∣∣βPM(u0,v0) −
1

2
Φ(u0, v0)

∣∣∣∣ = 0 = lim
PM(u0,v0)→∞

αPM(u0,v0).

Here, βPM(u0,v0) = µλ∗(u0, v0), where λ∗ ∈ (0, 1) is uniquely defined by

λ∗ ≡
(
cΨ(u0)

Φ(u0, v0)

) r
2
(

r − 2

r − 2λ∗

) r−2
2

,

and

µλ(u0, v0) ≡ 1

2
Φ(u0, v0)− c

r
Ψ(u0, v0)

(
r − 2

r − 2λ

cΨ(u0)

Φ(u0, v0)

) r−2
2

.

Furthermore, given any positive value of the initial energy we can always find initial
data satisfying (3.3) with PM(u0, v0) sufficiently large so that E(u0, v0) ∈ IPM(u0,v0)

and hence the corresponding solution exists only up to a finite time.

We can apply Theorem 3.1 to several problems, in particular here we present the
following Cauchy problem associated to a generalized Boussinesq equation.

(PB)

 utt(x, t)− β1∆u(x, t)− β2∆utt(x, t) + β3∆2u(x, t)
+mu(x, t) + ∆F(u(x, t)) = 0, (x, t) ∈ Rn × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Rn,

where βi > 0, i = 1, 2, 3, m > 0 are constants and the source term, that satisfies
(3.2), is

F(u) ≡ µ|u|r−2u, µ > 0, r > 2.

Applying (−∆)−1 to the equation above, we obtain the form of the problem (PM),
where we identify the operators

Mu = ((−∆)−1 + β2Id)u, Au = (−β3∆ +m(−∆)−1 + β1Id)u,

and the spaces

H = L2(Rn), HM = {u ∈ L2(Rn) : (−∆)−
1
2u ∈ L2(Rn)},

and

V = {u ∈ H1(Rn) : (−∆)−
1
2u ∈ L2(Rn)}.

If

(u,w)∗ ≡ ((−∆)−
1
2u, (−∆)−

1
2w)2, ‖u‖2∗ ≡ (u, u)∗,
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then the bilinear forms, inner products and norms are

(u,w)M ≡M(u,w) ≡ (u,w)∗ + β2(u,w)2, ‖u‖2M ≡ (u, u)M,

and

(u,w)V ≡ A(u,w) ≡ β3(∇u,∇w)2 +m(u,w)∗ + β1(u,w)2, ‖u‖2V ≡ (u, u)V .

Hence, (3.1) holds with c ≡ min{m, β1

β2
}. Fortunately, there exists an existence and

uniqueness result in our functional framework and nonexistence of global solutions is
due to blow up, see for instance [15, 16]. Then, by Theorem 3.1, if the initial data
satisfy

‖u0‖2∗ + β2‖u0‖22 > 0, (u0, v0)∗ + β2(u0, v0)2 > 0,(3.4)

and the initial energy is such that E(u0, v0) ∈ IPM(u0,v0), where

E(u, v) ≡ 1

2

(
‖v‖2∗ + β2‖v‖22 + β3‖∇u‖22 +m‖u‖2∗ + β1‖u‖22

)
− µ

r
‖u‖rr,

then the solution blows up in finite time in the norm of H and, by the energy equation,
also in the Lr(R

n) norm. This result improves the ones known in the literature in the
following sense. In [17, 18] blow up is proved by means of the analysis of a differential
inequality and by the construction of invariant sets, if (3.4) holds and the initial energy
is such that

E(u0, v0) ≤ η0(u0, v0) ≡ r − 2

2r
c
(
‖u0‖2∗ + β2‖u0‖22

)
+

1

2

|(u0, v0)∗ + β2(u0, v0)2|2

‖u0‖2∗ + β2‖u0‖22
.

We notice that η0(u0, v0) = 1
2Φ(u0, v0)− c

rΨ(u0, v0) ∈ IPM(u0,v0). Then, Theorem 3.1
agrees with the result in [17, 18] and states that blow up occur even for larger initial
energies, that is, if

η0(u0, v0) < E(u0, v0) < µλ∗(u0, v0).

Moreover, given any positive value of the initial energy there exist initial data satis-
fying (3.4) and with

PM(u0, v0) ≡ |(u0, v0)∗ + β2(u0, v0)2|2

‖u0‖2∗ + β2‖u0‖22
,

sufficiently large, so that E(u0, v0) ∈ IPM(u0,v0) holds and consequently the corre-
sponding solution blows up in finite time.

Remark 6. For each concrete example of (PM), if the potential well method is
applicable as it is in (P), then there are conditions to get blow up when E(u0, v0) < d.
Theorem 3.1 gives sufficient conditions for αPM(u0,v0) < E(u0, v0) < βPM(u0,v0). In
case that E(u0, v0) ≤ αPM(u0,v0) the blow up problem is resolved as follows. (i) If
E(u0, v0) < min{αPM(u0,v0), d}, by the potential well method. (ii) If d ≤ E(u0, v0) ≤
αPM(u0,v0), by the techniques in [17, 18].
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